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I. Introduction 

For directed graphs G 1 and G2, a homomorphism h of G ! into G 2 is, 

roughly speaking, a mapping of the set of arcs of G 1 into the set of 

arcs of G 2 that preserves the adjacency of arcs. It is naturally ex- 

tended to a mapping h* of the set of paths in G 1 into the set of paths 

in G2, which is called the extension of h. Also, h naturally induces 

a mapping h of the set of bisequences over G 1 into the set of bise- 

quences over G2, which is called the global map of h. In [9], Hedlund 

describes the properties of endomorphisms of the shift dynamical system. 

In [i0], using results in [9] and graph-theoretical approaches, the au- 

thor further investigated the properties of global maps of one-dimen- 

tional tessellation automata ("global maps of one-dimensional tessella- 

tion automata" and "endomorphisms of the shift dynamical system" are 

names for the same notion in different fields). Many notions and results 

in [9~ and [i0] can be naturally generalized to extensions and global 

maps of homomorphisms between strongly connected graphs so that we have 

a new area of graph theory [13][14]. 

In this paper, we survey a part of the results obtained in [13]and 

[14] which is mainly concerned with uniformly finite-to-one and onto 

global maps of homomorphisms between strongly connected graphs. 

Most of our results except for Theorem 1 can be considered as gen- 

eralizations of results described somewhere in [9] and [10]. (We do not 

say why they can be considered so and which result in [9] or [i0] each 

of them corresponds to. These are found in [13] and [14]. See also 

[15].) As a generalization of the shift dynamical systems, a class of 

symbolic flows known as irreducible subshifts of finite type has been 

studied. Global maps of homomorphisms between strongly connected graphs 

are closely related to homomorphisms of symbolic flows between irreduci- 

ble subshifts of finite type, and our results can be directly applied 

to them. These applications are contained in [13] and [14]. Related 
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results on symbolic flows are found in the works of Coven and Paul [3] 

[4][5]. 

2. Basic definitions 

A graph(directed graph with labeled points and labeled arcs) G is de- 

fined to be a triple (P, A, ~ > where P is a finite set of elements call- 

ed points, A is a finite set of elements called arcs and ~ is a mapping 

of A into P x p. If ~<a) = (u, v) for a e A and u, v E p, then u and v 

are the initial endpoint of a and the terminal endpoint of a, respective- 

ly, and are denoted by i(a) and t(a), respectively. 

A sequence x = a!..-a p (p ~ i) with a i • A, i = i, ..-, p, is a 

path of length p in G if t(a i) = i (ai+ I) for i = i, .-°, p-l. We call 

i (a I) and t(ap) the initial endpoint of x and the terminal endpoint of 

x, respectively. Every point u of G is a path of length 0 in G whose 

initial [terminal] endpoint is u. For any path x in G, we denote by 

i(x) and t(x) the initial endpoint of x and the terminal endpoint of x, 

respectively, and if i (x) = u and t(x) = v, then we often say that 

goes from u to v. The set of all paths in G is denoted by ~(G). The 

set of all paths of length p (2 0) in G is denoted by K(P) (G). 

Let Z be the set of integers. For a graph G = ( P, A, ~ ) , a mapping 

: Z + A is a bisequence over G if t(~(i)) = i (e(i+l)) for all i • Z. 

Let ~(G) denote the set of all bisequences over G. If e E ~(G) and i 6 

Z, then a(i) will often be denoted by ei" 

Let G 1 = <P, A, ~I } and G 2 = (Q, B, ~2 > be two graphs. A homo- 

morphism h of G i into G 2 is a pair (h, ~) of a mapping h : A ~ B and a 

mapping ~ : P ~ Q such that for any a e A, if ~l(a) = (u, v) with u, v @ 

P, then 

~2(h(a)) - (#(u), ~(v)). 

if G 1 has no isolated point, that is, for each point u of G!, there ex- 

ists at least one arc going from or to u, then the homomorphism h = (h, 

~) of G 1 into G 2 is uniquely determined by h. Therefore, when G 1 has 

no isolated point, we say that h is a homomorphism of G 1 into G 2 and we 

denote by ~h the unique mapping ~ such that (h, ~) is a homomorphism of 

G 1 into G 2. In what follows we assume, without loss of generality, that 

graphs have no isolated point. 

A homomorphism h : A ~ B of a graph G 1 = <P, A, ~l > into a graph 

G 2 = <Q, B, ~2 > is naturally extended to a mapping h* : K(G I) ~ K(G2). 

That is, we define h* : K(G I) ~ K(G 2) as follows : For each x E H(GI) , 
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if the length of x is 0, i.e~, x is a point of GI, then h*(x) = ~h(X), 

and if x = al.--a p (p A i) with a i E A, i = i, .--, p, then h*(x) = h( 

al)---h(ap). Mapping h* is called the extension of h. Another mapping 

is naturally induced by h. We define h : ~(GI) ~ ~(G2) as follows : 

For ~ e ~(GI) , h (~) = 8 where 8 i = h(~i) for all i 6 Z. We call h the 

global map of the homomorphism h. 

A graph G = < P, A, ~ > is strongly connected if for any u, v e p, 

there exists a path going from u to v. (Note that by our assumption, 

A~¢.) 

For a positive integer k, a mapping f : X ~ Y is k-to-one if If -I 

Y) I = k for all y e f(X). A mapping f : X ~ Y is constant-to-one if 

there exists a positive integer k such that f is k-to-one, uniformly fi- 

nite-to-one if there exists a positive integer k such that [f-l(y) I ~ k 

for all y e y, and finite-to-one if If-l(y) I < ~ for all y • Y. 

3. Uniformly finite-to-one and onto extensions 

one and onto global maps 

and uniformly finite-to- 

In this section, we state some properties of uniformly finite-to- 

one and onto extensions and uniformly finite-to-one and onto global maps 

of homomorphisms of graphs. 

For a graph G, let M(G) be the adjacency matrix of G (i.e., if G 

has n points Ul, ''', Un, then M(G) is the square matrix (mij) of order 

n such that mij is the number of arcs going from u i to uj.) Since M(G) 

is a non-negative matrix, by Perron-Frobenius Theorem, M(G) has the non- 

negative characteristic value that the moduli of all the other charac- 

teristic values do not exceed (cf. Gantmacher [7]). We denote by r(G) 

that "maximal" characteristic value of M(G), which is often called the 

spectral radius of G. 

Theorem 1% . Let h be a homomorphism of a graph G 1 into a graph G 2. 

If h* is uniformly finite-to-one and onto, then r(G I) = r(G 2) and the 

characteristic polynomial of M(G I) is divided by the characteristic poly- 

nomial of M(G2). 

Let h be a homomorphism of a graph G 1 into a graph G 2. Two paths 

x and y in G 1 are indistinguishable by h if i (x) = i (y), t (x) = t(y), 

and h*(x) = h*(y) . 

% A stronger result than Theorem 1 is found in [13]. 
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Proposition i. Let G 1 and G 2 be two strongly connected graphs, and 

let h be a homomorphism of G 1 into G 2. Then the following statements 

are equivalent. (i) h* is uniformly finite-to-one. (2) There exist no 

two distinct paths in G 1 which are indistinguishable by h. (3) h a is 

uniformly finite-to-one. (4) h is finite-to-one. 

Proposition 2. Let G 1 and G 2 be two graphs such that for each point 

u of them, there exist at least one arc going to u and at least one arc 

going from u. Then for any homomorphism h of G 1 into G2, h* is onto if 

and only if h is onto. 

Theorem 2. Let G 1 and G 2 be two strongly connected graphs with 

r(G!) = r(G2). Then for any homomorphism h of G 1 into G2, h* is uni- 

formly finite-to-one if and only if h* is onto. 

Let G 1 and G 2 be two strongly connected graphs and let h be a homo- 

morphism of G 1 into G 2. Then, by the above results, we have many state- 

ments which are equivalent to the statement that r(G I) = r(G 2) and h* 

is onto. The following are some of them. (i) r(Gl) = r(G 2) and there 

exist no two distinct paths in G 1 which are indistinguishable by h. (2) 

h* is onto and there exist no two distinct paths in G 1 which are indis- 

tinguishable by h. (3) h* is uniformly finite-to-one and onto. (4) h 

is uniformly finite-to-one and onto. 

Example I. Let G = < P, A, ~ ) be a graph. For any non-negative 

integer p, we define a graph L (p) (G) as follows. L (0) (G) = G. For p _> 

i, L (p) (G) = < H (p) (G), K (p+I) (G), ~(P)) where ~(P) (al'--ap+ I) = (al''" 

ap, a2"-'ap+ I) for al...ap+ 1 E K(p+l)(G) with a i E A~ i = i, ..., p+l~ 

We call L (p) (G) the path graph of length p of G. (L (I) (G) is usually 

known as the line digraph of G (cf. Harary [8]) or the adjoin t of G(cf. 

Berge [2])). Clearly, if G is strongly connected, then L(P~G) is strongly 

connected for all p > 0. For any positive integers p and q with p _> q, 

hG,p,q . E we define a mapping : H(P) (G) ~ A as follows. For any a I- -ap 

~(P) (G) with a i ~ A, h(al--.a p) = aq. Then clearly hG,p, q is a homomor- 

phism of L (p-I) (G) into G. If G is a graph such that for each point u 

of it, there exist at least one arc going to u and at least one arc going 

from u, then (hG,p,q)* is uniformly finite-to-one and onto and (hG,p,q) ~ 

is one-to-one and onto. Hence, by Theorem i, we know that under the 

same condition for G, r(L (p) (G)) = r(G) and }G' (X) is divided by ~G(X), 

where G' = L (p) (G) and we denote by ~H(X) the characteristic polynomial 

of M(H) for any graph H. In fact, Adler and Marcus [I] pointed out a 
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stronger result : For any graph G (without any restriction imposed on 

it) , ~G' (X) = xm-n~G(X) where G' = L (p) (G) , m = I K(p) (G) I , n is the num- 

ber of points of G, and we assume that ~@ (X) = 1 for the graph ~ with 

no point. 

4. Compatible sets and Complete sets 

Let G 1 = <P, A, ~i > and G 2 = (Q, B, ~2 > be graphs, and let h be 

a homomorphism of G 1 into G 2. Let U c p and let y • ~(G2). Define 

and 

Ch(U, y) = {t(x) ] x @ H(GI), i (x) • U, h*(x) = y} 

Ch(Y, U) = {i(x) I x • ~(C-I), t(x) • U, h*(x) = y}. 

For u E p and y • ~(G2), we denote Ch({U} , y) [~h(y, {u})] by Ch(U , y) 

[Ch(Y, u)]. A subset U of P is called a compatible set [a backward-com- 

patible (abbreviated b-compatible) set] for h if U = Ch(U , y) [U = ~h ( 

y, u)] for some u • P and y • ~(G2). 

A subset U of P is a complete set [a backward-complete (abbreviated 

b-complete) set] for h,if there exists v • Q such that U c ~hl(v), and 

Ch(U, y) % ~ [Ch(Y, U) % #] for all y • H(G2) with i(y) = v [t(y) = v]. 

Theorem 3. Let G 1 = <P, A, ~i } and G 2 = <Q, B, ~2 > be two strong- 

ly connected graphs with r(Gl) = r(G2). Let h be a homomorphism of G 1 

into G 2 with h* onto. Then every maximal compatible [b-compatible] set 

for h is a minimal complete [b-complete] set for h. 

Corollary i. Let G 1 and G 2 be two strongly connected graphs with 

r(G I) = r(G2), and let h be a homomorphism of G 1 into G 2 with h* onto. 

Let U be an arbitrary maximal compatible [b-compatible] set for h. Then 

for any path y in G 2 with i(y) E ~h(U) [t(y) E ~h(U)], Ch(U , y) [~h(y , 

U)] is a maximal compatible [b-compatible] set for h. 

Proof. Let y be a path in G 2 with i (y) e ~h(U). From Theorem 3, 

U is a complete set. Hence Ch(U , y) is a complete set. Since U is a 

compatible set, Ch(U, y) is a compatible set. Let V be a maximal com- 

patible set such that V D Ch(U , y). Then from Theorem 3, V is a minimal 

complete set. Therefore, since Ch(U, y) is a complete set, we have V = 

Ch(U , y). Therefore Ch(U , y) is a maximal compatible set. 

The proof of the second reading is similar. 



5. Induced regular homomorphisms 

A homomorphism h of a graph G 1 into a graph G 2 is regular [back- 

ward-regular (abbreviated b-regular)] if for each point u of G 1 and for 

each arc b going from [to] %h(U), there exists exactly one arc a going 

from [to] u with h(a) = b. 

By virtue of the Corollary 1 in the preceding section, we can in- 

troduce the notion of "induced regular [b-regular] homomorphism" which 

is associated with every homomorphism h between two strongly connected 

graphs such that h* is uniformly finite-to-one and onto. 

Throughout this section, we assume that G 1 = <P, A, ~i > and G 2 = 

<Q, B, ~2 > are two strongly connected graphs with r(G I) = r(G 2) and h 

is a homomorphism of G 1 into G 2 such that h* is onto. 

Denote by C h [[h ] the set of all maximal compatible [b-compatible] 

sets for h. For any U c p and y e Z(G2) , we define 

and 

Bh(U, y) = {x E K(GI) ] J (x) E U, h*(x) = y} 

8h(y, U) = {x E ~(G1) I t(x) E U, h*(x) = y}. 

We define the bundle-graph induced by h as the graph G h = (Ch, E h, 

~h > where E h is the set of all pairs of the form (U, Bh(U, b)) where 

U e C h and b E B with i(b) E ~h(U), and ~h : Eh ~ Ch × Ch is defined as 

follows : 

~h ((U, Bh(U , b ) ) )  = (U, Ch(U, b) )  

for all U E C h and b c B with i(b) E ~h(U). By Corollary I, Ch(U , b) E 

C h for any U E C h and b E B with J (b) E ~h(U). Hence ~h is well-defined. 

Furthermore, we define a mapping h : E h ~ B as follows : 

hCCU, BhCU, b))) = b 

for all U ~ C h and b E B with J (b) ~ #h(U)- 

Similarly, the backward bundle-graph (abbreviated b-bundle-graph) 

induced by h is defined to be the graph Gh = (Ch' Eh' ~h > where ~h is 

the set of all pairs of the form (Bh(b, U), U) where U e Ch and b e B 

with t(b) e ~h(U) and ~h : Eh ~ ~h × ~h is defined as follows. 

~h((Bh(b , U), U)) = (Ch(b, U), U) 

for all U E ~h and b @ B with t (b) E ~h(U). We define a mapping ~ : Eh -* 
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B as follows : 

~((~h(b, U) , U)) = b 

for all U E ~h and b e B with t (b) e ~h(U). 

Theorem 4. G h [~h ] is a strongly connected graph, h [~] is a regu- 

lar [b-regular] homomorphism of G h [Gh ] into G2, and hence r(G h) = r(G h) 

= r(G2) (= r(Gl)). 

We call h [~] the induced regular [b-regular] homomorphism of h. 

To each path Z of length p (~ 0) in G h [Gh ], the subset of paths 

Bh(U, y) [Bh(Y, U)] of length p in G 1 where i (Z) = U [t(Z) = U] and y = 

h(Z) [y = ~(Z)], corresponds and is called the bundle of Z. Clearly 

each subset of paths of length p in G 1 of the form Bh(U , y) [Bh (y" U)] 

where U E C h [U e ~h] and y E ~(G2) with i(y) E ~h(U) [t(y) E ~h(U)], 

is the bundle of some path of length p in G h [~h] , and is also called 

a bundle Ibackward bundle, abbreviated b-bundle] of length p for h. 

6. Mergible homomorphisms 

In this section, we introduce the notion of "mergible" for homomor- 

phisms between strongly connected graphs with uniformly finite-to-one 

and onto extensions, and we give an outline of the proof that for each 

mergib!e homomorphism h, h is constant-to-one. 

Let G 1 and G 2 be two strongly connected graphs with r(Gl) = r(G2) , 

and let h be a homomorphism of G 1 into G 2 with h* onto. Let p be a non- 

negative integer. We say that h is p bundle-mergible [p b-bundle mer- 

~i~le] if for each bundle [b-bundle] X of length p for h, all paths in 

X have the same initial [terminal] endpoint. We say that h is mergible 

if for some non-negative integers p and q, h is both p bundle-mergible 

and q b-bundle-mergible. We note that h is 0 bundle-mergible [0 b-bun- 

dle-mergible] if and only if h is regular [b-regular]. 

It is easily verified that for a homomorphism h between two strong- 

ly connected graphs G 1 and G 2 with r(Gl) = r(G2) , h* is onto and h is 

p bundle-mergible [p b-bundle-mergible] if and only if for any two paths 

x I and x 2 of length % ~ p in GI, if i(x I) = i(x2) [t(xl) = t(x2) ] and h*(x~= 

h*(x2) , then x I and x 2 have the same initial [terminal] subpath of length 

i-p. (For paths x and y in a graph G, y is an initial subpath [a ter- 

minal subpath] of x if there exists a path w in G such that x = yw [x = 

wy]~ Here we assume that i(x)x = xt(x) = x for each path x in a graph G@ 
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Another restatment of the property of being p bundle-mergible [p 

b-bundle-mergible] is given as the following proposition. 

Proposition 3. Let G 1 and G 2 be two strongly connected graphs with 

r(Gl)= r(G 2) and let h be a homomorphism of G 1 into G 2 with h* onto. Let 

p be a non-negative integer. Then h is p bundle-mergible [p b-bundle- 

mergible] if and only if for any point u of G 1 and y e H(P) (G2) with 

~(y) = #h(U) [t(y) = ~h(U)], C(u, y) [~(y, u)] is either empty or a max- 

imal compatible [b-compatible] set. 

Now we shall state six lemmas used in the proof of the main theorem 

of this section. 

Lemma 1. Let G 1 and G 2 be two strongly connected graphs with r(G I) 

= r(G2) , and let h be a homomorphism of G 1 into G 2 with h* onto. If h 

is mergible, then the induced regular homomorphism h of h is mergible. 

Lemma 2. Let G 1 and G 2 be two strongly connected graphs with r(G I) 

= r(G2) , and let h be a homomorphism of G 1 into G 2 with h* onto. If h 

is p bundle-mergible [p b-bundle-mergible] for a non-negative integer p, 

then there exists a one-to-one and onto mapping p: ~(G h) ~ ~(G I) [p ; 

~(Gh ) ~ ~(G1)] such that h = h p [~ = h p]. 

Let G 1 and G 2 be two strongly connected graphs and let h be a homo- 

morphism of G 1 into G 2. Let n be a non-negative integer. We define a 

• . (n) ~(n+l) (GI) ~ ~(n+l) (G2) by mapplng n 

h(n) (x) = h*(x) (x E ~ (n+l) (GI)) . 

It is easily seen that h (n) is a homomoprhism of L (n) (G I) into L (n) (G 2) , 

(h(n)) * is onto if and only if h ~ is onto, and if r(G I) = r(G2), then 

r(L (n) (GI)) = r(L (n) (G2)). {Cf. Example i.) 

Lemma 3. Let G 1 and G 2 be two strongly connected graphs with r(G I) 

= r(G2) , and let h be a homomoprhism of G 1 into G 2 with h* onto. Let 

n and p be non-negative integers, if h is p bundle-mergible [p b-bundle- 

mergible], then h(n)is a p bundle-mergible [p b-bundle-mergible] homo- 

morphism of L(n) (GI) into L(n) (G2). 

Lemma 4. Let G 1 and G 2 be two strongly connected graphs with r(G l) 

= r(G 2) , and let h be a homomorphism of G 1 into G 2 with h* onto. Sup- 
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pose that h is p bundle-mergible [p b~bundle-mergible] for a non-nega~ 

tive integer p. Then any two distinct maximal compatible [b-compatible] 

sets for h (p) are disjoint. 

A homomorphism h between graphs is biregular if h is both regular 

and b-regular. 

Lemma 5. Let h be a regular homomorphism of G 1 into G 2 where G 1 

and G 2 are strongly connected graphs. If every two distinct maximal b- 

compatible sets for h are disjoint, then ~ is biregular. 

Lemma 6. Let h be a biregular homomorphism of a graph G 1 with Q( 

G I) % # into a strongly connected graph G 2. Let G 1 have p points and 

G 2 have q points. Then h is p/q-to-one. 

Theorem 5. Let G 1 and G 2 be two strongly connected graphs with r( 

G I) = r(G2) , and let h be a homomorphism of G 1 into G 2 with h* onto. If 

h is mergible, then h is constant-to-one. 

Proof. Assume that h is mergible. 

Let G 3 = G h and let h I = h. Then from Theorem 4 and Lemma i, G 3 

is a strongly connected graph with r(G 3) = r(G2) and h I is a regular and 

mergible homomorphism of G 3 into G 2. From Lemma 2, there exists a one- 

to-one and onto mapping p : ~(G3) ~ ~(GI) such that 

(hl) ~ = h~p. 

Since h I is regular and mergible, h I is 0 bundle-mergible and there 

exists p ~ 0 such that h I is p b-bundle mergible. Let G 5 = L(P) (G3) , 

* is onto, let G 4 = L(P) (G2) , and let h 2 = h P). Then, r(G5) = r(G4) , h 2 

and from Lemma 3, h 2 is 0 bundle-mergible and p b-bundle-mergible. More- 

over, from Lemma 4, any 

are disjoint. Let Pl = 

Example I). Then Pl is 

is a one-to-one mapping 

-i 
(h2)~ = P2 

two distinct maximal b-compatible sets for h 2 

i)~ and let P2 = (hG + 1 ) (cf (hG3,P+l, 2, p I, ~ " 

a one-to-one mapping of ~(G 5) onto ~(G 3) and P2 

of ~(G 4) onto ~(G2) , and we have 

(hl) ~P i 

Let G 7 = ~h2 and let h 3 = ~2" Then since h 2 is regular (because 

h 2 is 0 bundle-mergible) and any two distinct maximal b-compatible sets 

for h 2 are disjoint, it follows from Lemma 5 that h 3 is biregular. Since 
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h 2 is p b-bundle-mergible, it follows from Lemma 2 that there exists a 

one-to-one and onto mapping p' : ~(G 7) ~ ~(G 5) such that 

(h3) ~ = (h2)~p' 

Since h 3 is biregular, it follows from Lemma 6 that (h3) ~ is con- 

stant-to-one. Therefore, since p, PI' P2" and p' are one-to-one and onto 

mappings, it follows that h is constant-to-one. 

7. Characterizations of constant-to-one and onto global maps of homo- 

morphisms between strongly connected graphs. 

Let G be a graph with ~(G) % ¢. Two bisequences e, ~ c ~(G) are 

point-separated if i (~i) % ~ (6 i) for all i e Z. 

Let G 1 and G 2 be two strongly connected graphs with r(G I) = r(G 2) , 

and let h be a homomorphism of G 1 into G 2. It is easy to see that if 

for each B E ~(G2) , any two distinct members of h~l(~) are point-sepa- 

rated, then h* is onto and h is mergible. Moreover, using topological 

arguments similar to those in Hedlund [9] or those in Ferguson [6] (see 

the proof of Lemma 2.3 of [6]), we can prove that if h is constant-to- 

one, then for each B E ~(G2) , any two distinct members of h~l(B) are 

point-separated. Therefore, using these and Theorem 5, we have the fol- 

lowing result. 

Theorem 6. Let G 1 and G 2 be two strongly connected graphs and let 

h be a homomorphism of G 1 into G 2. Then the following statements are 

equivalent. 

(I) h is constant-to-one and onto. 

(2) r(Gl) = r(G 2) and for each B e ~(G2) , any two distinct members 

of h~l(8) are point-separated. 

(3) r(Gl) = r(G2) , h* is onto, and h is mergible. 

By the fact stated after Theorem 2, statement (3) in the above the- 

orem can be restated as follows : 

(3 ~) h* is onto, there exist no two distinct paths in G 1 which are 

indistinguishable by h, and h is mergible. 

It is easy to see that there exists an algorithm to determine, for a homo- 

morphism h between two strongly connected graphs G 1 and G 2, whether (3') 

holds. This gives an algorithm to determine whether h~ is constant-to- 

one and onto for an arbitrary homomorphism h between strongly connected 

graphs. 
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As an application of Theorem 6, we have the following result which 

can be considered as a generalization of Theorem 2 of [12]. 

Theorem 7. Let GI, G 2 and G 3 be strongly connected graphs with 

r(G I) = r(G 2) = r(G3) , and let h I be a homomorphism of G 1 into G 2 and 

h 2 be a homomorphism of G 2 into G 3. Then if (hlh2) ~ is constant-to-one, 

then each of (hl) ~ and (h2) ~ is constant-to-one. 

8. One-t0~one and onto global maps of homomorphisms between strongly 

connected graphs. 

Let h be a regular [b-regular] homomorphism of G 1 into G 2 and let 

p be a non-negative integer. We say that h is.~ definite if for any Xl, 

x 2 E ~(P) (GI) , h*(Xl)= h*(x2) implies t(x I) = t(x 2) [i(x I) = i(x2)]. We 

say that h is definite if h is p definite for some non-negative integer 

p. 

A definite regular homomorphism is considered to be a generaliza- 

tion of the state transition diagram of an automaton having a definite 

table, which was introduced by Perles, Rabin, and Shamir [16]. We re- 

mark that properties of definite tables and a practical decision proce- 

dure for definiteness of tables presented in [16], are straightforwardly 

extended to definite regular [b-regular] homomorphisms of graphs. We 

can characterize homomorphisms between strongly connected graphs with 

one-to-one and onto global maps in terms of definiteness of their in- 

duced regular and b-regular homomorphisms. 

Theorem 8. Let G 1 and G 2 be two strongly connected graphs with 

r(G I) = r(G2), and let h be a homomorphism of G 1 into G 2 with h* onto. 

Let p be a non-negative integer. Then the induced regular [b-regular] 

homomorphism h [~] of h is p definite if and only if h is p b-bundle- 

mergible [p bundle-mergible] and U ~ V ~ # (I U n V1 = i) for any U E C h 

and V e Ch with ~h(U) = ~h(V). 

Theorem 9. Let G 1 and G 2 be two strongly connected graphs with r( 

G I) = r(G2) , and let h be a homomorphism of G 1 into G 2 with h* onto. 

Then h is one-to-one if and only if h is mergible and U n V = # [IU n 

V 1 = i] for any U E C h and V 6 ~h with ~h(U) = ~h(V). 

By the above two theorems, we have the following result. 

Theorem i0. Let G 1 and G 2 be two strongly connected graphs with 



170 

r(Gl) = r(G2) , and let h be a homomorphism with h* onto. Then h is 

one-to-one if and only if both the induced regular homomorphism and in- 

duced b-regular homomorphism of h are definite. 
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