
G a u s s - M a n i n  O p e r a t o r s  

Gauss-Manin Operators 

I n t r o d u c t i o n  

This  c h a p t e r  is d e v o t e d  to the  case  of  i n t e g r a n d s  w h i c h  c o n t a i n  a t r a n s c e n d e n t a l  

p a r a m e t e r  apa r t  f r o m  the  va r i ab l e  of  in t eg ra t ion ,  so t h a t  we c a n  c o n s i d e r  our  p r o b l e m  to b e  

the  i n t eg ra t i on  of a f u n c t i o n  in {K(x,y) I F(u,x,y) = 0] ,  whe re  K is an  a lgebra ic  ex tens ion  

of k(u) for  some field k and  u t r a n s c e n d e n t a l  o v e r  it. W e  shall  use  th i s  no t a t i on ,  wi th  u 

be ing  the  i n d e p e n d e n t  t r a n s c e n d e n t a l ,  and  we shal l  use  the  p re f ix  o p e r a t o r  D to d e n o t e  

d i f f e r e n t i a t i o n  # wi th  r e spec t  to u* ,  and  the  suff ix  ~ to d e n o t e  d i f f e r e n t i a t i o n  wi th  respec t  to  

x. This  case  is o f t en  more  t r a c t a b l e  t h a n  the  case  w h e n  the re  is n o  such  t r a n s c e n d e n t a l ,  for  

i n t e g r a t i o n  wi th  r e spec t  to x and  d i f f e r e n t i a t i o n  w i th  r e spec t  to  u c o m m u t e ,  so t ha t  if 

G(u,x,y) is in tegrab le ,  t h e n  so is DG(u,x,y), D2G(u,x,y) and  so on. 

In  this  case we can  s o m e t i m e s  d e t e r m i n e  t h a t  a d ivisor  is no t  of  f ini te  order ,  so t ha t  

we t h e n  k n o w  t h a t  the  f u n c t i o n  is u n i n t e g r a b l e .  If  we c a n n o t  do  tha t ,  t h e n  we c a n  

# We are go ing  to  d i f f e r e n t i a t e  wi th  r e s pec t  to  u e v e n  if u does  r e p r e s e n t  a c o n s t a n t  
t r a n s c e n d e n t a l  p a r a m e t e r  ( such  as e or  rr ). W e  c a n  do  th is  because ,  s ince  the  p a r a m e t e r  
is t r a n s c e n d e n t a l ,  it c a n n o t  sa t i s fy  any  a lgebra ic  equa t i ons  r e l a t ing  to o the r  c o n s t a n t s  in  
the  in t eg rand ,  and  t h e r e f o r e  its precise  va lue  does  no t  ma t t e r .  

This  b r ings  ou t  the  po in t  m a d e  u n d e r  " T h e o r e t i c a l  L i m i t a t i o n s "  in  C h a p t e r  1 t h a t  
we mus t  k n o w  all the  d e p e n d e n c i e s  a m o n g  ou r  cons t an t s .  Fo r  example ,  s ince it is no t  
k n o w n  w h e t h e r  e and  ~r are a lgebra ica l ly  i n d e p e n d e n t ,  we c a n n o t  cons ide r  an  in tegra l  
invo lv ing  b o t h  of t hem,  s ince we do  no t  k n o w  h o w  to express  dF/de in  t e rms  of aF/Oe 
a n d  Of/O~r. W e  could,  of  course ,  a s sume  t h a t  t hey  were  i n d e p e n d e n t  a n d  p roduce  a 
resu l t  of  the  fo rm "i f  e and  ~r are a lgebra ica l ly  i n d e p e n d e n t ,  t h e n  F has  no  e l e m e n t a r y  
in teg ra l " .  

* By th is  we will m e a n  a to t a l  d i f f e r en t i a t i on ,  t ak ing  in to  a c c o u n t  t he  d e p e n d e n c e  of  y on  u 
caused  by  the  f u n c t i o n a l  r e l a t i onsh ip  F(u,x,y)=O ( a s suming  t h a t  u a p p e a r s  e f fec t ive ly  in 
this  func t ion ) .  We  h a v e  t ha t  dy/du = -OF/Ou/OF/Oy, so t ha t  
DG = OG/Ou + (dy/du)OG/Oy. 
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determine a value u 0 in k for the parameter u such that the divisor P(u) on F(u,x,y) = 0 is 

of finite order iff the divisor P(uo) is of finite order on F(uo,x,y) = 0. In other words, we 

can reduce the problem to one not involving u. Recursively, we can reduce the problem to 

one with no transcendental parameters. We shall not discuss in this chapter how to solve 

such problems, rather they are left to the next two chapters. If P(u o) is of infinite order, 

then we know that P(u) is too, and the problem is solved. Otherwise, let n be the order of 

P(uo) and consider nP(u), 2nP(u) in turn until we discover what the order of P(u) is, and 

we know that this process must terminate, though we have no idea when. In the case of 

curves of genus 1, we can use Cayley's determinant test in order to decrease the amount of 

work, as explained towards the end of the last chapter. 

This work is based on two papers (1958, 1963) of the Russian mathematician Ju.I. 

Manin, and the reader is referred to them for the full generality of the exposition and most 

of the proofs, which we will just state. These papers do not make easy reading however, 

and both the English and Russian versions contain many misprints. Furthermore Manin's 

exposition is complicated by his desire to work with n parameters (and hence n differentia- 

tions) rather than just 1. We may, of course, have several parameters Ul,...,Un, but we 

shall eliminate then one-by-one,  using the methods of this chapter recursively, rather than 

try to consider them all simultaneously. I have been unable to conduct any experiments 

with curves with two parameters, so I have no firm ideas as to which or the two approaches 

(parallel or recursive) is better, but intuitively it seems that we want to make the problem 

as small as possible, by eliminating parameters, as soon as possible, rather than work with 

then all until we reach the end. 

E x a m p l e  

Before giving the general theory, we will consider a worked example of this theory, 

taken essentially from Manin (1963, pp. 190-192). Consider the "general" elliptic curve 

y2 = x(x-1)(x-u) and take the ground field K to be a finite extension of k(u) for some 

field k. Let  w = y - l d x  be a differential of the first kind (and since the curve is elliptic, all 

others are constant (in the sense of not depending on x or y) multiples of this form). Then 



78 Gauss-Manin Operators 

if C is any closed curve on the surface {K(x,y) 1F(u,x,y) = 0}, then e = f c w  is infinitely 

many valued (and an analytic function of u), and in fact the space of these is generated by 

an arbitrary pair e l ,e  2 of such periods*. These functions are the solutions of the Gauss 

linear differential equation 4 u ( u - 1 ) D 2 e - 4 ( 1 - 2 u ) D e  + e = O. 

On the other hand, functions of the form f e w  , where O is the point at infinity, are 

extremely important for the investigation of the geometry of the curve. Such functions are 

only defined up to some period, because we could choose any path to get from O to P, and 

satisfy the equation I (P)  + I (Q)  = I (P  + Q) modulo such a period, where P+Q is the 

sum according to the group law (see the previous chapter). We can remove this ambiguity 

by acting on both sides of the equation with the Gauss operator, which destroys such 

periods, thus obtaining the function J(P)  = ( 4 u ( u - 1 ) D 2 - 4 u ( 1 - 2 u ) D  + I ) I (P ) ,  which 

can be identified with an element of {K(x,y) I F(u,x,y) = 0}. Because of the linearity of 

the Gauss operator and the relationship between I(P),  I (Q)  and I (P+Q) ,  J defines a 

homomorphism from the group of points on the curve to the additive group of this function 

field. 

This can be made explicit in the following way: first we observe that 

[4u (u -1 )D  2 -  4 ( 1 - 2 u ) D  + 1 ] y - l d x  = - 2 d ( y ( x - u ) - 2 ) .  

If we then integrate round a closed curve, the right hand side is the integral of an exact 

differential, so vanishes, and on the left hand side the integration and the differentiation 

with respect to u commute, so that we have 

[ 4 u ( u - 1 ) D  2 - 4 ( 1 - 2 u ) D  + 1] ( ' y - l d x  = [ 4 u ( u - 1 ) D  2 - 4 ( 1 - 2 u ) D  + l ie( t )  
Jc 

thus giving the Gauss differential equation. Then 

_ l ] f  Pdx 
J(P)  = [ 4 u ( u - 1 ) D  2 4 ( 1 - 2 u ) D  + J o  y ' 

* A period is defined to be the integral of a differential of the first kind round a closed 
curve on the Riemann surface of the curve. 
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bu t  this  t ime we c a n n o t  c o m m u t e  the  i n t e g r a t i o n  and  D, because  P d e p e n d s  o n  u. Wr i t e  P 

as the  po in t  (X(u),Y(u)). T h e n  if G is an  a lgebra ic  f u n c t i o n  of x and  u, r a t i ona l  in x and  y, 

we can  s ta te  t ha t  

D fPG(x,u)dx = (DX(u))G(X(u),u) + foPDG(x,u). 

We can  t h e n  d i f f e r en t i a t e  again  to get  tha t  

2 / ~  P 
D JO G(x,u)dx = 

P 2 
(D2X(u))G(X,u) + (DX(u))[(DG(x(u),u)) + OG(X(u),u)/Ou] + fOD G(x,u). 

In the  specia l  case  u n d e r  cons ide ra t ion ,  this  gives us t ha t  ~ 

J(P) = - 2 Y ( X - u )  -2 + D 2u(u-1)(DX) + 2u(u-1)D(XDY). 
Y 

P i c a r d - F u c h s  E q u a t i o n s  

L e t  C be  a curve  of genus  g de f ined  by  F(x,y)=O, w h e r e  the  coef f i c ien t s  of  F lie in K,  

an  a lgebra ic  e x t e n s i o n  of  k(u), and  invo lve  u e f fec t ive ly .  T h e n  we can  f ind  2g c losed  

curves  on  C(u) such  t h a t  any  c losed curve  on  C(u) is c o n t i n u o u s l y  d e f o r m a b l e  to  a sum of  

these  2g curves*. L e t  these  curves  be  c 1 .... ,C2g and  let  Wl,...,Wg be g l inear ly  i n d e p e n d e n t  

# O b s e r v e  the  d i f f e rence  b e t w e e n  the  two  ha lves  of  the  s e c o n d  t e rm  in th is  s u m m a t i o n .  
The  f i rs t  c o n t a i n s  a to t a l  de r iva t ive  of  G(X(u),u) wi th  r e spec t  to  u, whi le  the  o t h e r  
con t a in s  on ly  a par t i a l  der iva t ive ,  and  is in  f ac t  the  resu l t  of  subs t i t u t i ng  X(u) fo r  x in  
DG(x,u). The  d i f f e rence  b e t w e e n  these  two  is t oo  sub t l e  for  m a n y  a lgeb ra  sys tems ,  a n d  
this  adds  to the  d i f f icul ty  of  i m p l e m e n t i n g  th is  work  in a s t r a i g h t - f o r w a r d  f a s h i o n  (see 
i t em 2 in A p p e n d i x  1). 

* The  prec ise  word i ng  is t h a t  we can  f ind  2g cu rves  c 1 .... ,C2g w h i c h  f o r m  a bas i s  fo r  t he  
1 -d imens iona l  h o m o l o g y  of  the  R i e m a n n  surface .  
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differentials of the first kind on C(u).  Define La, b to be fc b wa, so that this is a period of 

the curve. 

Lemma 1 For any a, the periods La, b satisfy a linear differential equation of order 2g 

(or possibly less in degenerate cases): 

Pa,2g(u)D2gLa,b + "'" + Pa,lDLa,b + Pa,OLa,b = 0 

(i.e. the equation does not depend on b). 

Proof: If w is a differential with no residues (i.e. of the second kind), then Dw is a 

differential with no residues (Manin, 1963, Corollary 2, p. 198). Then wa,DWa,...,D2gwa 

are 2g+ 1 differentials of the second kind, so there is a linear relationship between them: 

Pa,2gD2gwa + . + Pa,lDWa + Pa,OWa = d f  

for some function f .  Then we merely integrate round the periods, and the integral of d f  

round any closed curve is 0. 

After Manin, we will call such equations Picard-Fuchs equations. The differential 

operator L = E Pa,i Di is termed a Gauss-Manin operator. We can endow the space of such 

equations of the form L f  c w = o with the structure of a module by allowing the more 

general equation* E L i f  c w i -- 0. Now if D is the divisor E niPi, where the n i are integers, 

define f ~ ( x ) d x  Pi = E n i l  O~f(x)dx, where the lower limit of integration is some fixed point 

O. This is clearly independent of the precise choice of O for divisors of degree 0. 

If J is such a Picard-Fuchs equation, then we have that X Liw i is an exact differential, 

say dz. Then, if P and Q are any two points on an Abelian variety A, we can define a 

* More formally (Manin, 1963, p. 199) a Picard-Fuchs equation is any relation of the form 
J: ~, L i f  c w i = 0 where the w i are differentials of the first kind and L i are linear differen- 
tial operators. Such equations can be defined on any Abelian variety A, but we will only 
be concerned with the case A = Jac(C).  

# We are using J in two senses, both for the Picard-Fuchs equation and for the operator 
which takes (P ,Q)  onto z (Q)  - z (P)  (the so-called Picard-Fuchs operator) ,  but this 
should cause no confusion. 
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J(P,Q)  to be z ( Q ) - z ( P ) ,  and this is well-defined (Manin, 1963, p. 202, Theorem 1) and is 
P 

in fact E L i f  Q wi, and it does not matter along which contour we integrate since the integral 

of an exact differential round any closed curve (i.e. the difference of two contours) is 0. 

Furthermore J(P,Q)  = J (P ,R )  + J (R ,Q) ,  since we can choose a contour from P to Q 

which passes through R, and then split the integral at R (This is part (b) of Manin, 1963, 

p. 202, Theorem 1). 

P i c a r d - F u c h s  o p e r a t o r s  as h o m o m o r p h i s m s  

We now make a fundamental  remark about the relationship of the Picard-Fuchs 

operator J to addition of points on our Abelian variety: 

J ( P  + R , Q  + R )  -. J (P ,Q) .  

The proof of this follows from the fact that differentials of the first kind are invariant 

under translations of our variety: this is made formal by Manin (1963, p.207, Lemma 12). 

We now define J(P)  to be J(O,P)  where O is the zero of the group law on our 

Abelian variety. This brings us in line with the notation used in our example earlier. 

Lemma 2 J is a homomorphism from the points of an Abelian variety (as an additive 

group) into the ground field. 

Proof: In order to prove this, it is sufficient to prove that J ( P  + Q) = J (P )  + J (Q) ,  

since J(O)  = 0 and O is the zero of the additive group on the Abelian variety. 

J (P  + Q) = J(O,P + Q) 

= J (O ,P)  + J ( P , P  + Q) = J (O ,P)  + J ( O , Q )  by the remark above 

= J ( P )  + J ( Q ) .  

Corollary 3 For any Picard-Fuchs equation J,  the set of points of .4 of finite order lie 

in the kernel of the corresponding Picard-Fuchs operator J. 

Proof: Because the ground field is torsion free and homomorphisms map torsion parts 
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into tors ion parts. 

This  means  that  the points  of  A of  f ini te  o rder  lie in the in te rsec t ion  of  the kernels  of  

all the P icard-Fuchs  operators .  It would be wonder fu l  if the converse  were  true, but  that  

cannot  be the case. To see this, let  C be a curve over  Q with  a point  P of infinite order.  

N o w  consider  C and P over  Q(u). Then  P(u) is cer tainly still of infinite order,  but  we 

cannot  say that  it does not  lie in the kernel  of  J ,  for  J must  take it and O to the same 

value,  for both  depend  equal ly  (not  at all) on  u. H o w e v e r ,  the  next  best  thing is true,  i.e. 

that  this is the only way in which things can go wrong.  

In order  to explain this more  precisely,  we need a little more  notat ion.  This is taken  

f rom Lang(1959 ,  p. 213) ,  though we gain some simplicity by only consider ing the charac-  

terist ic 0 case. Let  K be any overf ie ld  of k for  the purpose  of this paragraph ( though the 

applicat ion will be to K an algebraic  extension of  ~:(u)). Le t  A be a var ie ty  over  K. A pair  

(AP,$) is said to be a K/k-trace of A if A p is an abel ian var ie ty  over  k and r is a homomor -  

phism f rom A t to A and has finite kernel ,  such that ,  for  any abel ian var ie ty  B def ined over  

k, and h o m o m o r p h i s m / 3 : B  - > A def ined over  K, there  is a homomorph i sm/S t :B  - > A r 

def ined  over  k such that  $/3r= /3. This may appear  a somewha t  abstract  defini t ion,  as 

indeed it is, but  it defines the trace as that  por t ion  of A which is essential ly independent  of  

K/k (u in our  case).  The  presence  of T is, in some sense, technical  - -  the p rob lem is that  

A p may have a few more points  def ined in it than  we would  like, which correspond to 

points  def ined over  algebraic extensions  of K. 

Theorem 4 * If P is a point  of  A, and J ( P ) - - 0  for all P ica rd-Fuchs  opera tors  J on A, 

then  there  is an integer  n such that  nP (in the sense of  the addi t ion on A),  lies on the image 

of the k(u)/k-trace of A. Fu r the rmore  if such an n exists, then  J ( P ) = 0  for all Picard-  

Fuchs  opera tors  J .  

What  this theorem means  for our purposes  is that,  if J(P) = 0 for all J ,  then P is 

essential ly independen t  of u. Now,  there are infini tely many  such Picard-Fuchs  opera tors  

* ( M a n i n ,  1963, p. 208, Theo rem 2) I would  like to thank Professor  M.F.  Singer for  his 
invaluable  assistance with this theorem.  
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J ,  but  we need  only consider  a basis for the space of P icard-Fuchs  operators ,  ra ther  than  

all P icard-Fuchs  operators .  The d imension of such a basis is equal  to the genus of the 

algebraic  curve C in the case A = Jac (C) .  

D i v i s o r s  o f  F i n i t e  O r d e r  

N o w  let D be a divisor on an algebraic curve C. D corresponds  to a point  D e on 

Jac (C) ,  and D is ra t ional ly  equiva len t  to 0 iff D t is of  finite o rder  on Jac (C) .  If D t 

depends  essentially on u, then it is cer ta inly of infinite order,  and if it does  not,  then the 

problem has been reduced  to a s impler  one. The  way the reduct ion  is pe r fo rmed  is by 

subst i tut ing a value in k for u, so that the p rob lem is reduced  to one  over  k, ra ther  than 

k(u). N o t  every  value of  u will do - consider  subst i tut ing u = 0 in y2 = ux 3_1. The 

ques t ion  of  which values of  u will work  is called " G o o d  R e d u c t i o n " ,  and is discussed in 

grea te r  detai l  in chap te r  8 (see the sect ion "Cr i t e r i a  for  G o o d  Reduc t ion ,  especia l ly  

Theorem 8), where it plays a much more impor tan t  part  in the argument .  It  suffices here  

to say that  there are only finitely many  values of  u which are not  of  good reduc t ion  (i.e 

which do not  work) and there is a simple a priori test* to de te rmine  whe ther  or  not  a value 

of u is of good reduct ion.  

FIND ORDER MANIN 

Input:  

F (X ,Y) :  the equa t ion  of  an algebraic  curve  

There  is no actual need  for this to be in primit ive,  ra ther  than mult ivar ia te ,  

form. The only explici t  use made of  F is in the calcula t ion of  the d i f fe ren-  

tials of  the first kind. 

* The  value u 0 in k of  u is of  good reduct ion  if F(uo,x,y) is absolute ly  i r reducible  ove r  k, 
and has the same genus as F(u,x,y). 
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D: 

U: 

M 
a divisor on the curve,  wri t ten as Z n .P .. 

j=l J J 
We will somet imes write Pj as (Xj, Yj). 

a parameter  over  which the curve is defined.  

Output :  

I N F I N I T E  or an in teger  N, depending  on whe ther  D is 

of infinite or  finite order.  The  integer  N signifies that  the image was of order  

N, so that  we should consider  ND, 2ND . . . .  in our search to f ind the order  of  

D. 

[1] D I F F  1 :=  

A linearly independen t  basis for  the different ials  of  first kind on curve  F ( X , Y ) = 0 .  

Le t  G be the length  of D I F F  1, viz the genus of  the curve F ( X , Y ) = 0 .  

This can be done by a simple variant  of Coa tes '  Algori thm: see Chapter  3 

for details. 

[2] Fo r  e a c h W i n D I F F  1 do: 

2G-1 
[2.1] Le t  A2G_I ..... A 0 be indeterminates ,  and let A2G be l~__Egi, so that  the sum of all the 

A i is 1 (because P icard-Fuchs  opera tors  are inde te rmina te  up to constant  multi-  

pies). 

[2.2] Solve the equat ion  Z A i d i W / d U i =  d R ( X , Y ) / d X  for  the unknowns  A i and the 

rat ional  funct ion  R (X,Y). 

The denomina tor  of R (X,Y) can be chosen to be the least  common  multiple 

of the denomina tors  on  the lef t  hand side, and af ter  c lear ing denominators  

the equa t ion  breaks up into a series of  l inear equat ions  in the A i and the 

coeff ic ients  of  R(X,Y) ,  all of  which can depend  on U, but  not  on X or Y. 

Fur the rmore  the degree of R is at most  one more than the highest  degree 

on the left  hand side. 

Our  Gauss -Manin  opera to r  J cor responding  to the different ial  of  the 
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first kind W is now Z Aidi/dU i and J W = dR(X,Y)/dX. 

i p 
We now have to compu te  d i f oWdX for  l<i<_2G. This can be 

d U  
wri t ten as fo diW/dU i + Bi(X,U), where  B is the cont r ibu t ion  of  all the  

o ther  terms from the repeated  di f ferent ia t ion.  

[2.3] SUM :=  0. 

This will be used to accumulate  J(D) in. 

[2.4] For  j = 1 ... M do: 

[2.4.1] B 0 :=  0. 

[2.4.2] Fo r  i = 1 ... 2G do: 
dXj d i - l w  dBi-I + ) [ (where  [ P means  eva lua t ion  at the X,Y values 

Bi -- dU dU d ~  ~ e 
of the point  P j). 

The first term in this express ion comes  f rom the d i f fe ren t ia t ion  of  the B 

term for the previous i, and the second te rm comes f rom the fact  that  

d u f P  (P df (x )  dX dudP f(x)dX = ~, + --r---f (p) (since dO/dU = 0). 
dU 

J(P) is now E AiA~i fg  WdX, which can be re -o rde red  as 

d U ~ 

[2.4.3] S U M : - - S U M  + njZ BiA i + R(Pj). 

The above expression is the previous  formula  mult ipl ied by nj and is the 

contr ibut ion  of njPj to J(D). 

[2.5] If SUM is non-zero ,  then  re turn I N F I N I T E .  

[3] Fo r  U0  = 0,1,2 .... 

If  G O O D  R E D U C T I O N ( U 0 , F , K )  
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Then do: 

This is not necessarily the best way of performing this choice of the value 
/ 

for U. For example, suppose the equation F depends on U and ¢ U 2 + 1, 

and that 0 is not of good reduction. Then choosing U0 = 1 will give us a 

curve defined over Q ( ~ 2 ) ,  whereas choosing U0 = 3 will give us one 

defined over Q. However appealing such intuitive choices may be, it is 

hard to devise a program for finding 'good' values of U in that sense. 

[3.1] D:= Substitute U0 for U in D. 

[3.2] F:-- Substitute U0 for U in F. 

[3.3] Return FIND ORDER(F,D).  

FIND ORDER is implemented as one of FIND ORDER MANIN (in the 

event that, even after substituting U0 for U, there is still a transcendental 

parameter) ,  F INITE ORDER ELLIPTIC (see Chapter  7) or 

B O U N D T O R S I O N  (see Chapter 8). 

I m p l e m e n t a t i o n  

The implementation of this algorithm is technically fairly difficult, though few 

mathematical problems are raised by it. As was mentioned earlier when discussing the 

example, one major source of difficulty is the differentiation with respect to U and X 

occurring in the same expression, and the need to distinguish between partial derivatives 

with respect to U (as in step 2.2) and total derivatives (i.e. with the point Pj substituted 

for X and Y, which may well depend on U). In order to do this I have found it easier to 

write my own special-purpose top-level differentiation routines, rather than try to use 

REDUCE's  and manipulate REDUCE's  data structure for derivatives, which has no 

provision for distinguishing between total and partial derivatives. I do use a modified 

version of several of REDUCE's  differentiation routines for simpler parts of the task: 

details of the modifications are given in Appendix 1. 
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Another  major source of difficulty is the need for an efficient implementation,  with as 

few calculations as possible being repeated. Since all the expressions involved are multi- 

variate (with both the Gauss-Manin parameter and the variable of integration involved, 

"simple" operat ions such as the computat ion of greatest  common divisors can be very 

time-consuming. This leads to the requirement for a variety of " look-aside" tables contain-  

ing, for example, d i W / d U  i or the (partial) derivatives o i y / o u  i, which must be created and 

purged as appropriate.  There are several other  efficiency points: for example the linear 

equations in step 2.2 can be partially sparse ~, and it is necessary to take advantage of this 

in order to obtain an implementation with reasonable efficiency. Despite these and other 

tricks, this algorithm can still be very expensive because of the size of expressions that  

have to be manipulated, especially in step 2.2. When at tempting to discover whether the 

divisor consisting of the point ( d ( d - 1 ) , d ( d - 1 )  3) with multiplicity 1 and the point  at 

infinity with multiplicity - 1  on Tate 's  curve (Appendix 2, Example 4) was of finite order 

or not (it is in fact of order 7) a carefully coded draft  implementat ion of this algorithm 

consumed approximately 15 minutes CPU on the IBM 370/168  at IBM Thomas J. Watson 

Research Centre at Yorktown Heights*. 

Although the Gauss-Manin operator  is generally of order 2G (where G is the genus of 

the curve), there are many special cases in which it is degenerate and has lower degree. 

For  example, while the Gauss-Manin operator  of a general elliptic curve has degree 2, it 

has degree 1 in the following special cases (Manin, 1958, p. 77): y2 = X3 + aX 

y2 = X 3 + a y2 = X 3 + a2X + ba 3 where b is any constant (i.e. not depending on X, Y or 

a) not  equal to 2 7 / 4  (or else the curve ceases to be elliptic).  Fur thermore,  in these cases 

# More information on sparsity, and an example of how it can make equations much 
simpler to solve is given in Appendix 2 Example 4. There is also a general discussion of 
linear equations in Chapter  9. 

* Unfortunately a more precise figure is not available because of a bug in the CMS-Batch 
simulation of OS installed at Yorktown Heights,  which meant  that  the LISP timing 
features were inoperative and the CPU time had to be calculated by multiplying elapsed 
time by the "service ratio" (i.e. the ratio of CPU to elapsed time) produced by the 
operat ing system. However  the figure is p robably  accurate to within 25%.  The 
370 /168  is approximately 5 %  faster than the 370 /165  installed at Cambridge,  and on 
which the remainder of the timings quoted in this monograph were measured. 
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the Picard-Fuchs operators are extremely simple (being XDa-2aD-XXDa-3aD-X.and 
2aY ' 3aY ' 

X D a - a D X  respectively). It is therefore important, in the interests of efficiency, to 
aY 

recognise these degenerate cases as early as possible, and this is not easy. 

A further special case is the one where )(7 is independent of U. In this case all the B i 

are 0 and the computation simplifies considerably. This case frequently arises in practice, 

and hence has to be tested for. 

S p e c i a l  V a l u e s  o f  P a r a m e t e r s  

In this section we shall suppose that our integrand f (x ,u)  dx depends algebraically on 

u. This is not really a restriction, since if it depends transcendentally on u, we can replace 

a transcendental function of u by a new transcendental parameter u '  without altering the 

problem, since we know that, if f (x ,u)  is integrable, then its integral is defined over the 

algebraic closure of the original ground field, i.e. no new transcendentals can be introduced. 

Proposition 5 If f (x,u)  depends algebraically on u, then the residues of f (x ,u)  dx are 

algebraic functions of u (because they lie in the algebraic closure of the constant field). 

If the algorithm FIND ORDER MANIN returns the answer INFINITE because 

one of the values of SUM was non-zero, one can conclude that the integral is not expressi- 

ble in elementary terms. It might seem reasonable to consider those special values of u for 

which SUM happens to be zero, and ask whether the integral is elementary in this special 

case. This leads on the the more general question: 

"For what values o f  u is f f ( x , u ) d x  an elementary function?". 

Unfortunately, those values of u which make SUM zero are not the only values which can 

make the integral elementary, for there are several other ways in which the problem can 

reduce when a special value is substituted for u. 

Let us now consider the various ways in which the substitution of a special value for 

the parameter u can alter the nature of the integration problem: 
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1) The curve can change genus. This can only happen for finitely many values of u, and 

we can decide what these values are by considering the canonical divisor, and the 

possibilities for it to degenerate. 

2) The places at which residues of the integrand occur can change. There are only finitely 

many of these, and they can be detected by looking for all the values of u for which 

factors of the numerator and of the denominator coincide, or factors of the denomi- 

nator coincide with each other (or for which the numerator or denominator change 

degree, to allow for the case of the factor x - infinity). 

3) The dimension of the space of residues can collapse. This is an exceptionally tricky 

case, and we will postpone a full discussion of it. 

4) A divisor may be a torsion divisor for a particular value of u, even though not generally. 

This is where we started on this discussion, and these cases (of which there are only 

finitely many) can be detected by looking at all the roots (in u) of the functions 

SUM in the algorithm FIND ORDER MANIN. 

5) The algebraic part may be integrable for a particular value of u, though not in general. 

These cases can be detected by looking at the equations generated in the algorithm 

FIND AI.GEBRAIC PART to see when the contradicting equation, which proves 

that the function is unintegrable, becomes degenerate. 

Thus we have shown that the number of "exceptional" values of the parameter u is finite 

(and these values are effectively computable) for cases 1,2,4 and 5. 

Case 3 is substantially more difficult. As an example, we can have infinitely many 

values of u for which the Z-module of residues decreases in dimension: 

Consider an integrand whose 4 residues are 1, - 1 ,  u, - u ;  for example 

1 1 + 

x ~ / x 2 +  1 X ~ X  2 +u  2 

d x .  

Then for every rational value of u the residue space becomes 1-dimensional, and 

hence potentially has to be considered as a special case. 

Lemma 6 Let the Z-module of residues (r 1 ..... rk) of f (x ,u)  dx have dimension k. 

Suppose that there are values Ul,...,u k of u such that f ( x ,u i )dx  has an elementary logar- 
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ithmic part (without lying in cases 1,2 or 4 above) for l < i < k  and such that the set of 

vectors {(ri(Ua) 1 < i < k) 1 < a < k} is of dimension k. Then f(x,u) dx has an elemen- 

tary logarithmic part. 

Proof: There is an integer n such that the vector (n,0 ..... 0) can be expressed as a 

linear combination, with integer coefficients, of the residue vectors (ri(Ua)). Then the 

divisor d I corresponding to the residue r I must be a torsion divisor, because it has been 

expressed as the n-th root of a sum of torsion divisors. Similarly all the other divisors are 

torsion divisors, and hence the logarithmic part of the general integral must exist. 

Theorem 7 If f(x,u) dx is not elementarily integrable, then there are only finitely 

many values u i of u for which f(x,ui)dx is elementarily integrable. 

Proof: The only problem is case 3 above, for we have shown (and our arguments can 

easily be made completely rigorous) that there are only finitely many values which corre- 

spond to cases 1,2,4,5. So suppose that there are infinitely many values corresponding to 

case 3, but not to case 1,2 or 4. Then by Lemma 6 above, the Z-module spanned by the 

residue vectors (ri(Ua)) is of dimension less than k, and so can be embedded in a space of 

dimension k - 1 .  Then there is a linear relationship between r l (u )  ..... rk(u ) which is not 

true in general, but which is true for infinitely many particular values of u. but since the 

r l (u  ) are algebraic in u, by Proposition 5 above, this means that we have an algebraic 

expression which is not identically zero, but which has infinitely many roots, and this 

establishes the required contradiction. 

Note that this Theorem is not completely constructive, in that we have shown no way 

of finding out what the finitely many values in case 3 are. That this problem is not 

completely trivial can be shown by the following example: 

Let E be an elliptic curve over Q with a point of infinite order and a point of finite 

order (i.e. the infinite portion of the Mordell-Weil group is to have rank at least 1 

and the torsion part is to be non-trivial, and such curves exist, as is shown by the 

tables in Birch & Swinnerton-Dyer (1963) or Swinnerton-Dyer (1974)) known as P 

and Q respectively. Let D be a divisor linearly equivalent to 3P, and D v be a divisor 

linearly equivalent to 5P-Q. Let f (x)  be a function on the elliptic with divisor of 
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residues D, and f l ( x )  one with divisor of residues D I. Then consider the function 

f (x)+uf~(x) ,  whose residue space is 2-dimensional for irrational u, and 1- 

dimensional for rational u. When u is irrational, the logarithmic part cannot be 

found, while if u is rational, say m / n ,  the divisor is n(3P) + m ( 5 P - Q ) ,  which is a 

torsion divisor only if the coefficient of P is zero, viz u = - 3 / 5 .  This example 

demonstrates the necessity for the restriction that f (x ,u)  should depend algebraically 

on u, because if we had written f ( x )  + sin u .f~(x) then there would have been 

infinitely many solutions, viz. all the roots of sin - I  - 3 / 5 .  


