Siate Transition Machines for Lambda~Calculus Expressions

David A, Schmidt *
Computer Science Depariment
Aarhus University

Abstract

The process of compiler generation from formal definitions of the lambda-
calculus is studied. The compiling schemes developed utilize as an object
language the set of state transition machines (STMs): automata-like
transition sets using first order arguments. An intermediate definition

form, the STM~interpreter, is defined and treated as central to the formu-
fation of state transition code. Three compiling schemes are produced:

one derived directly from an STM-interpreater; one formuiated from a

version of L.andin!'s SECD~-machine; and one defined through meaning pre-
serving transformations upon a denotational definition of the lambda~calculus
itself. The results are compared and some tentative conclusions are made

regarding the utility of compiler generation with the use of the STM forms.

* Permanent Address: Computer Science Department, Kansas State
University, Manhattan, Kansas 66506, USA.

416
[ntroduction

The work in this paper stems from the conjecture that once one has
defined a programming language via formal means, a class of natural
compilers for the language is implicitly described as well. Selection

of a target {(object) language produces a compiler from this class.

The diverse levels of formal definitidns and object languages make it
difficult to formalize the actions taken to develop these compilers.
Consequently, we explore compiler development from those formal de-
finitions transformable to a primitive operational form, the STM-~inter-
preter. The STM~interpreter utilizes transition rules into an object
language of state transition machines {(STMs). The lambda-calculus

is used as the example source language for the definitions as it is a
well known universal language. Three compiling schemes are developed:
one derived directly from an STM~interpreter; one formulated from a
version of LLandin!s SECD-machine [7]; and one defined through meaning
preserving transformations upon a denotational definition of the lambda-
calculus itself [13]. The different starting points provide insight into
the techniques of compiler generation via the use of tha intermediate
form. Finally conclusions are drawn as to the utility of a compiler

generation methodology based upon use of the STM forms.

The Object Language and the STM-interpreter

The automata-like language of state transition machines {STMs) is used

as the object language for the compiling schemes. intuitively an STM is a
finite state automaton, each state possessing a finite number of first order
{non-functional) arguments. The actions upon the arguments are limited

to a set of "machine primitive! operations (e.g., addition, concatenation)
and are performed when a transition from one machine state to another
occurs. The STM is specified by a set of transition rules, each rule stating
the possible state, argument pairs traversible from a current control state.
Typically decision predicates are aliowed so that a state may have more
than one possible successor, The STM format provides a structure which

is low level but not yet tied to any machine architecture {although sequen-

417

tial machines are natural targets}. A transformation analogous to

assembly could be applied to obiain concrete object code.
Formally, an STM is a <§,£> pair, where

8§ = {51, e ,sm} , a finite set of state names including the

entry state S5

e = {s,
equations where x is a variable name and sex, of the form

x=sex1,...,ij=sex3}, 1<]=m, a finite set of

i) s.ex, 1<j<m, an explicit state transition;

i) ex ex,, a compuied siate transition;

1

iii) ex- sex,, 8eX,, & conditional state transition;

where ex is an expression composed of first order constants
(ra!, 111, nilt. ..}, primitive operators defined upon first

order objects ('+1, '¥! <> li,...), state names, and x.

The right hand sides of the transition equations are to be well formed in
the sense that all variable names used in arithmetic expressions are bound
to names on the corresponding left hand sides. Typically the formal defi~-
nition of an STM can be deduced from an informal presentation; we use
the informal version in most cases. Alsc, when a teft hand side variable

X represents a tuple object <y1, ciea Y, > we sometimes use the tupled

form in place of x.

418

An example of an STM to compute the factorial function {(using the

srimitive operators equality, subtraction, and multiplication) is

§: |s0, s1, s2}
£: s0x = sl<x, 1>
1<x,y> = x=0 =+ s2vy,

sl<x-1, x x y>.

A computation history for the above with initial configuration s0 2

is the sequence of configurations
s02 = s1<2,1> = s1<1,2> = 51<0,2> =2 52 2.

Now the designation of STM-~interpreter can be made. We describe a

formal definition of a language to be an STM-interpreter if

i) it is an operational interpreter with finite arguments and

discrete transition rules;

i} the interpreter!s transition rules are motivated by the syntax

of the source language;

iii) for all inputs the computational history of the definition re-
sembles exactly the history produced by a hypothetical state

transition machine,

The intention is that if the definitional interpreter's transition rules

define STM computation sequences, we can use these same rules to
assemble a set of sequences which may be traversed during computation for
some specific input program. The implicit assumption Is that interpreters
are distinguished from compilers in that an interpreter computes one
particular computation sequence for some input program whereas a com-

piler outputs a set of potential computation sequences {represented in

419
finite form) of which one is selected and traversed at "run time", The

objective is to use the interpreter's transition rules to produce a

compiling scheme which outputs these potential sequences.

The Source L.anguage

The lambda-calculus [2] is used as the source language for the com-
pilers. Following convention, the set of lambda~calculus expressions
Exp is the smallest set formed from a set of variables x,y,z,... and

symbols X, {,) such that

1) avariable x is a member of Exp, i.e., x € Var ¢ Exp;

il) if x€ Var and B € Exp then (A xB) is a member of Exp,
i.e., A xB) € Abs « Exp;

iil) if M,N & Exp then (MN) is a member of Exp, i.e.,
(MN) € Comb < Exp.

Abs is the set of abstractions in the language and Comb is the set of com-
binations. We abbreviate expressions of the form {(} x{8B)} to {} x. B} and

({MN)P)} to (MNP), Outermost parentheses will be dropped in many cases.

Using the standard meanings of the terms free variable, bound variable,
and closed term [2], [M/X]B denotes the syntactic substitution of ex~

pression M for all free occurrences of x in B (with the renaming of

bound variables in B to avoid name clashes with free variables in M),

This allows description of the rules of conversion:

o Ax.B > Ay. [v/x]B

B: (x.BM > [M/x]B.

The g-rule performs renaming of bound variables, and the §~rule performs
the binding of an argument to an abstraction form. The utility of the two

rules is augmented by the addition of substitution rules:

420

M > M,

M > M!
(A xM]) > (A xM1)

M> Mf, N> NI
{(MN) > (MIN') .

The expression M >* N denotes the application of zero or more of the above

rules to M to obtain N.

A lambda-expression is said to be in normal form if it contains no sub~
expression (redex) of the form (A xB)(M). A term is said to have a

head redex [3] if it is of the form (A xB)N1. . .Nh where N1.. 'Nn’ nz 1,
are themselves lambda expressions. (Note that the term head redex is used

differently from that in [15].) A notion we find useful is weak normal form:

a lambda expression is in weak normai form when it contains no head redex,
For expressions M and N, the expression M = N means that M and N are
syntactically identical with the exception of bound variable names, that is,
a finite number of applications of the g~rule to M yields N. The following

result is well known:

Theorem [3]: If M>* Ny, M>* N ; and N, are in normal
form, then N1 = NZ'

20 and both N

The analogue does not hold for expressions in weak normal form -~ for exampie,

(O xR %) (y)) =% v %o x){y]) and (X xo xHy QA x. <My })> *yy. A given
expression may reduce to many weak normal forms. However, if we restrict

all uses of the §-rule to head redexes only, not allowing use of the substitution
rules, the resulting determinism produces a unique weak normal form (if one exists}.
The expression M 3 N denotes zero or more uses of the restricted § -

reduction, We study 5y because it describes the evaluation of a program

by sequential machine - instructions are executed one at a time from first

to last; procedure bodies are evaiuated only when actual parameters

421

are bound to formal ones. If a lambda~calculus "program! is reducible
to ground type (an atomic form such as Var}, then 3 is exactly leftmost
reduction, and the standardization theorem {that leftmost reduction is
adequate for discovering normal forms) [3] guarantees that computation

using F winl produce the expected result.

A Lambda-Calculus Machine

To obtain insight into the siructure of STM-interpreters we develop
one to interpret lambda-calculus expressions. The development is based

upon the tenets that

i) a lambda~expression represents a state of computation;

i) application of the g-rule causes a state transition.

The interpreter will use as its set of automaton state names the set of
subexpressions of the input lambda-expression (which can be represented
by label names, if desired}. Binding of variables in f-reduction will be
accounted for by the inclusion of an environment argument. An operand
stack for handling nested applications is also needed. We introduce the
a_> denote

POLREFLM
a member ofDix sz e X Dn, and define<a.‘,az,...,an> li=a

following notation., Given objects a, € Di’ let <a1,a

i
when 1< i< n. Appending tuple p to list L is given as p:L., The empty

list is denoted by <>.

We can describe the lltype! of a list by using regular equations

(see below). To access a list m let m{x] =<y Ygre e a Y > Iff
<x,y1,y2, PN ,ym> is the first tuple in m with first member equal to x
(treated as a symbol, not the specific occurrence). Finally, for lambda
expression M, let £(M) define the set of subexpression occurrences
{"iabels") of M.

We now define the interpreter. The state of the interpreter is given

by the triple s, e,c where

422

s € £(M), the automaton state
e € ENV = (Var x £(M) x ENV)*, the environment
c € CONT = (£ (M) x ENV)*, the operand stack.

The transition function = for the interpreter takes interpreter states into

interpreter states and is defined as

1.1 x,e,c >e[x] L1, e[x] +2, ¢ HxE€Vvar

1.2 (A xB),e,<a,e'>:ic = B, <x,a,e'>e, ¢ if (A xB) € Abs

1.3 (MN}, e, c > M, e, <N,e>ic if (MN} € Comb.
Figure 1,

We underiine the automaton state for clarity. The initial state of the
machine is given as [nit(M) = M,<>,<>; the machine reaches a final state
when none of 1. 1-1, 3 apply. The lambda-~expression denoted by an inter-

preter state is given by the function Unload:

Unload(s, e, Cricyt e :cn) = Real (s, e)Rea!(c?)Rea!(cz). .. Real(cn)

where

Real(s, e) = [Real(e[x,])/x,][Realle[x,])/x,]. .. [Realle[x 1)/x_]1s

and {XT’ +esy%_} is the set of free variables in s,
n

An example of the interpreter's evaluation of an expression is given in

figure 2.

we find the following notation useful. Given interpreter states a and b,
let a= b denote an application of a transition rule to state a yielding b.
Similarly ag b denotes m transitions from a to obtain b. Let Evaim(M)
describe Unload(s, e, c) where M, <> ,<> s s,e,c. An execution of

M,<>,<> to an Unloaded final state is dencted by Eval{M}.

423

For M = {{x vi(x y{yyi)IvIHA xx}) let the following numeric labels

denote the subexpressions of M:
9,8,0
vy 332 oa)®)

init(M} = 0,<>,<>
= 1,<>,<8,<>>

= 2,<y,8,<>>,<> Plet<y,8,€>> =¢l
= 3,e1,€7,el1>
= 4,<y,7,el>:el, <> I let<y,7,el>:el =e2

= 5,e2,<6,e2>

= 7,e1,26,e2>

= 8,<>,<6,e2>

= 8,<x,6,e2>,<>
= 6,e2,<>

= 7,e2,<>

= 8,<>,<>

Unload(8,<> ,<>) = Real(8,<>) = (X xx)

Figure 2.

Since the interpreter is to model leftmost f-reduction to weak normal form,

its operation is to be consistent with the rule
7yl
L {)&xB)MNI...Nn 7 [M;x_SBNI...Nn, n= 0.

In the results which follow M ? N denotes n applications of rule | to

M obtaining N as a result.

The consistency of the machine is guaranteed by the following iemma:
Lemma 1: Vn. nz0:ifM ? N then I m. mz 0: Evaim(M) = N,

The converse also holds.

Lemma 2: ym. m=2 0: if Eval (M) =N then 3n. n2 0: M -? N.

424

Together the two lemmas yield the main result:

N and N is in weak normal form.

a4

Theorem 1: Eval(M) = N Iff M

As the proofs of these properties are somewhat long and tedious, they

will not be presented; they can be found in [H]‘

A Compiling Scheme

The translation rules specified for the interpreter can be used to pro-
duce a syntax directed translation scheme (SDTS) for the lambda-calculus.
The scheme is defined as an attribute grammar (see [16]), and it
generates a set of transitions for a lambda-expression. [t is described

using the following rules:

3.1 <Exp {m1t n0>=x, where n0 = {m,e,c2e[x] 1 1,e[x] 12,c}

3.2 “ExpimtnlUpl>=
AX<Exp I m:1 1 pl> nl={m,e,<a,e>icam:l, <x,a, e>e,c)

3.3 <Exp imtn2Up2l g2>+
<Exp I mil 1 p2><Exp I m2 ¢t q2», n2 = {m,e,czm: 1,e,<m:2,e>:c}

Figure 3.

The SDTS generates output code by unioning the code for an expression's
sons with the transition rule corresponding to the expression itself., Note
that unique labels are assigned to the rules through the use of an inherited
attribute m, specified in the style of Watt and Madsen [16]. Also the label
e[x] L 1 denotes a run-time evaluation which will determine a tabel to in-

sert in that position.

The compilation of the expression of figure 2 is shown in figure 4. The
execution of the transition set is exactly that of figure 2. We can call
the anonymous control over the traversal of the STM a function NEXT.
NEXT receives as its arguments the initial configuration M,<> ,<> and
the STM for M. This allows statement of

425

0, e, c > 1, e, <8,e>:c
1, e, <a,el>:ic = 2, <y,a,el>ie, ¢
2, e, c > 3, e, <7,e>.c¢
3, e, <a,e'>:c = 4, <y,a,e'>le, C
4, e, ¢ > 8, e, <B,e>: ¢
5, e ¢ = e[y|tl, e[yliz, c
6, e, ¢ = ely]it, elv]iz, c
7, & ¢ = elylit, ely]iz, c
8, e, <a,e'>:c > 9, <x,a,e'>ie, c
9, e, ¢ = e x|i1, e[x]i2, c

{Note: assume label numbering to be the same as in figure 2.)

Figure 4,
Theorem 2: Eval(M) = NEXT (M,<>,<>,STM(M)).

The benefits obtained when separating the compiled STM from the context
of the interpreter inciude those typically attributed to compiiation. Most
importantly, the compilation of a lambda-absiraction less its argumenis
will produce a state transition machine which performs leftmost evaluation
once an enabled initial configuration is supplied. Thus compilation provides
the potential evaluation sequences mentioned earlier whereas interpreta-~
tion does not. The STM is sufficiently low level for easy translation to
object code for various computer architectures. The structure of the

rules encourages substantial optimization upon the set before execution.
This optimization may take the form of traversal of run-time invariant

transitions (mixed computation [4]) or elimination of redundant argument

structures by alternative descriptions. In addition, if the STM is viewed
as a set of general recursive function-like equations, with the state

names of the transition rules corresponding to the names of functions,

the evaluation of the STM can be mathematically described as the Jeast
fixed point [6] of the equation system. We explore later a com-

plementary approach to development when we take a functionally defined
semantics and convert it into state transition form. In the sections to follow

we will refer to the interpreter developed here as the WNFE —~machine.

426

Non-L.eftmost Reductions

The simplicity of the WNF-machine depends upon the utilization of the
leftmost reduction strategy. Unfortunately, many realistic computation
schemes use a non-leftmost strategy -~ in particular, a combination may
be defined such that the operand portion is reduced prior to the appli-
cation of operator to operand. Such a situation is known by the term of
call by value. An example of a call by value function is addition, which
requires that the meanings of both its operands be available before
application. We let the expression (A VALxB) denote the call-by-value
abstraction whose binding variable is x and body is B, The set of

expressions Exp is augmented by the rule for domain ValAbs:

If x€ var and B € Exp then A VALxB € ValAbs ¢ Exp.

An appropriate reduction rule for combinations involving ValAbs is

(A VALXBM > [M/x]B if M is In a normal form.
{(However, the Church-Rosser property may be violated; see [8] for an example.}
In order to draw the WNF -machine closer to existing devices we consider
only closed expressions and introduce a set of base constants C. The
principal problem in adjusting for the new abstraction construct is that
the strict leftmost evaluation sequencing is viclated -~ evaluation of a
combination in which the ValAbs abstraction occupies the operator
position requires the evaluation of the operand before the combination
itself can be reduced. This action is simulated by introducing a set of
marked labels, one for each ValAbs object in the input lambda-expression.
et the marked counterpart of label s be 5, In anticipation of the intro-
duction of base functions to the language, base constants will be handled
differently from variables. A new label, val, will be used as a universal
label for each base constant in the lambda~expression. The environment
argument of val will contain only the base constant value which val re-
presents. This version supports the introduction of d~rules [3] to the

system.

427

The compiete transition set of the augmented WNF~machine is given in
Figure 5. The rules for handling VValAbs are 5.5 and 5.6. The s and 5
labels are treated as distinct - for example, rule 5.6 applies only when the
first argument of ¢ is of the form < U, e>. Note the replacement of the e
argument on the right hand side of rule 5. 4, Base functions are not
included In the example, but the reader should have no problem with

their insertion.

5.5 (A\VAL xB),e,<a,e'>

5.6 s,e,<U,e'>:ic

a,e', <A VALxB,e>:ic If A VALxB} € ValAbs

B,<x,s,e>:el,c

5.1 x,e,c = e[x]i1, e[x]i2, ¢ if x € var
5.2 (AxB),e,<a,e'> » B, <x,a,e'>:te, ¢ If A xB) € Abs
5.3 MN,e,c = M,e,<N,e>:ic if (MN) € Comb
5.4 w,e,c = val,w,c HweC

=

=

Hu={VALxB)} and (s = vai or s € Abs or ValAbs)
Figure 5.

We also define analogous functions UnloadV and RealV for the new

interpreter,
Unload\(s,e,c) = Reorder{<> <s,e>:c)
where Reorder(i,c) = case ¢ of
<> = Realv{i)
<s,e>:c » Reorder{ii€s,e>,c)
<5,e>:ic + Reorder(<s,e>:i,c)
esac.
and
RealV(« sy cee €S, en>) = Ex\(s 1 e‘). ‘e Exv(sn, en),

>:
1
if s = val then e else Real(s, e).

ExVis,e) =

The purpose of the Reorder function is to extract the augmented labels
from the ¢ argument, recover the original label, and replace it in

its original position. ExV is necessitated by the val label.

An example of the new machine at work is given in figure 6.

428

For M = {{{X VAL x (XA VALy(xy})} xx}}1} let the following numeric

labels denote the subexpression of M:

(VAL x (VAL y (x8y)3)%2 (BT 19)0

g, <>, <> = 1,<>, <9,<>>
2,<>, <3,¢>>:1<9,<>>
3,€>,<2,€>>:<9,<>>
4,<x%,3,<>>, €9,<>> et <x,3,<>> = el
9,€>, <4,el>

?
val, 1, <&, el>

5, <y,val, 1>: el, <> P let<y,val, I>: el =e2
6, ez <7,e2>

3,<>, <7,e2>

8,<x,7,e2> , <>

7,e2, <>
val,1, <>

Unload(<val, 1,€>>) = Reorder{<yval, 1>)
= RealV({<val, 1>}

= 1,

Figure 6.

In order to show the consistency of the new machine with respect to call by
oy value reductions, we define rule set [l specifying this reduction

strategy.

.1 AVAL XB) MMy. o oM 7 [M/x]Mg 0 M if My s in weak normal for

] T 1
n.2 (AVALxB)MIMz...MnW (AVALxB)MMz...Mn if My == M

As before, M TR N denotes an application of either rule, and M —ﬁ-— N

denotes n applications of rules from the set. Along with rule I, these
axjoms constitute the entire 8 ~reduction scheme, We use the terms

Evalvm and EvaliV to define evaluation sequences similar to those given

429

earlier but using the augmented rule set with UnloadV. Analogous to

the earlier results, the following can be shown:

*
Theorem 3: Evalv(M) = N iff M TR N and N is in weak normal form.

The result is that the new scheme is faithful to rule set [I. Theorems
with respect to the complete system and combined ruie sets | and il are

not given but can be easily formulated.
As seen before, the rule set of figure 5 gives an SDTS for the extended
lambda-language. Again assuming the existence of an implicit control

function NEXT, we state without proof:

Theorem 4; EvalViM) s NEXT(< M,<> ,<>>, STMIM)).

Relationship to the SECD Machine

The archetypical lambda-calculus machine is LLandin's SECD-machine
[77. We present a brief explanation of its operation and compare it to
the WNF-machine. The definition used is derived from one presented
by Plotkin [8].

First we define Exp = Val U VailAbs U Comb U C; the set of environments
EN = (Var x CL)*; and the set of closures CL. = {(Exp xEN)}*, The state
of the SECD machine is a four~tuple S, E,C,D, where

S € CL¥*, a stack of closure values;

E € EN , the current active environment;

C € (ExpUiapplyl}*, the control string;

D € (SxExCxD)}* |, the stack of activation records {dump).

The transition function = takes states into states and is given In figure 7.
The start state for the machine for closed lambda-expression M is
<>,<>,M,<>. The machine's final state is of the form Cl,<> ,<> ,<>
where Cl € CLL. A function analogous to Unload can be defined to extract

the expression denoted by Ci.

430

We note three major differences between the WINF -machine and the

SECD construction:

i) the SECD~machine processes lambda-expressions from right to

left while the WINF -machine processes in a left to right order;

i1) the control in the SECD-machine is embodied in the stack
argument C, whereas the WNF-machine is driven by its automaton

state argument;

iii) the SECD~machine uses a dump D to maintain scopes of free
variables while the WNF -machine replicates the scope information
locally in the environment argument e associated with each auto-

maton state.

7.1 CIS,E«>,<S',ELC!',D» =» CLS,E!,C! D! where C1 € CL.

7.2 s,E,x:C,D » e[x]:8,E,C,D if x € Var

7.3 S, E,a:C,D =% <a,E>!5,E,C,D fxecC

7.4 S, E, (A VAL xB):C,D » <AVALXB, E»SE,C,D if (A VAL xB)¢ValAbs

7.5 <\VAL xB,E%:Cl:S,E,apply:C,D = <>,¢x,CI>E',B,<S,E,C,D>

7.6 S,E,(MN)XC,D = S,E,MN:M:gpply:C,D if {MN]} € Comb
Figure 7.

Constructing an SDTS from SECD

Earlier we contrived an interpreter which led to a compiling scheme. Now
we use this experience to transform the SECD-machine into a form which
gives a suitable SDTS also. The approach is to analyze the structure of
the input lambda~-expression M and encode into automaton state names all
possible sequences of C-values which may arise during M's evaluation.
The idea is feasible because the size of C is bounded and C's contents
are dependent only upon the form of M. The existence of an STM-interpreter
resuiting from the approach is assumed, and we move directly to the com-
piling scheme. The scheme's grammar Is augmented with an attribute c,
the current contents of the control string. As ¢ is an inherited atiribute,
we denote it as lc and enclose it in the nonterminal symbol; we also add a

fabel atiribute m. The attribute is assigned value by the trans-

434

lation portion of the scheme. The SDTS is given in figure 8. The infor-
malities used in earlier schemes appear here also. MNote that the applica~
tion tokens ap have been specialized to their point of creation s to give
aps. Additionally, abstractions generate an extra pop transition which

is used to recover the dump's values after the processing of an abstrac-
tion body. The token popb is used as the recovery state after evaluating
body b. The grammar alsc generates a pop transition denoted by popQ

to obtain the final value. Expression M's initial configuration is
O:popld,<>,<> ,<>. An exampie of compiled code and evaluation is seen

in figure 9.

8.1 <Mt nOy p0O> = where n0 = {pop0,Cl:S, E, D= Unload{C 1)}
<Exp | popQ | 0t pO>,

8.2 <Explcimt nl> =+ x, nt ={mc,S,E,Dac,E[x]:S,E, D}
8.3 <Explcimt n2 > = a, n2 = {mic,S, E,D=¢, <val,a>:S, E,D}
8.4 <Explcimit n3y p3> n3 = {mic,S, E,D= ¢, <m: lipopm, x, E>:S, E, D}

X Val x€Explpopm im: 11p3>, U {popm,Cl:S,E,<t,S',E,,D> =
t,C1:S, EL D)

8.5 <Expicimt n4U phU gi> = n4 ={mic,S,E,Dam:2:m: l:apm:e, S, E,D }
<Exp | apmic } m:11 p4> U {apmic,C11:CI2:S,E,D =
<Exp ¢ m:liapmic | m:i2 t g4> Cl1111,<>,<CI112,C12>:CI1 143,
<c,S5,E,D> |

Figure 8.

432

M = (A VAL z. 22 1130

(Note: use the above label scheme to represent mls values,)
Compilation:

pop0,Cl:S, E.D = Unload(CI)

0:pop0,S, E,D = 3:i:ap0ipop0d, S, E,D

ap0:pop0,CI1:CI2:S,E,D = CI111,<>,<C1112,Cl12>:C1113,<pop0,S,E, D>
1:ap0:pop0, S, E,D = apl:popd,< 2:pop1, z, E>:S,E,D

2:ipop1,S,E,D = popl,E[z]:S,E,D

popl,CIiS,E, <, ST, E', D> t,CLS', B!, D!

3:1:ap0:pop0,S,E,D = 1:ap0:pop0,<val, 1>:5,E,D

Evaluation:

0ipop0,<>,<>,<> = 3:l:gp0:pop0,<>,<>,<>
I:apQ:pop0,<val, 1>,<>,<>
ap0:pop0,< 2ipop 1, z,<>>:<val, I>,<>,<>
2:popl,<>,<z,<val, 1>>,<popld,<>,<>,<>>
popt,<val, 1>,<z,<val, 1>>,<pop0,<>,<>,<>>
op0,<val, 1>,<>,<>
Unload(< val, 1>)
1

Figure 9.

The modified SECD scheme produces STMs larger than those seen so far,
An optimization step becomes a necessity. Although the SECD interpreter
did not directly yield the compiling scheme (and thus is not an STM~
interpreter), the results of figure 9 suggest that a somewhat booader
definition of the STM~Iinterpreter might be considered, dependent upon
the class of transformations allowable. The study of meaning preserving

transformations is continued in the next section.

433

Compilation from Denotational Definitions

We further extend the compiler generation methods by developing a com-
piling scheme based upon a higher order definition of the lambda~calculus,
as given with the denotational definition method of Scott and Sirachey

[13] . Production of a compiling scheme from a higher order semantic
definition presents difficulties not encountered with the low level machines
we have dealt with so far. In particular, arguments to the semantic
definitions may be function objects and the order of evaluation of the

definition may be non sequential in nature,

We examine the standard semantics of the lambda~calculus as given in

Stoy [13]. The reader is advised to refer there for notational conventions.
The semantic definition uses an evaluation function €, analogous to Eval,
and an environment argument e, which is also a function. Unlike the
machines examined earlier, the definition maps the input lambda~expression
into an abstract object, a denotation. The domain of denotations is called
Dj this domain is satisfiable in the Scott-models of denotational seman-
tics [12], In the definitions, we dea! with syntactic domain Exp=Vvar U

Abs U Comb. The domains and equations are:

£ = Exp2E-D ! the evaluation function
e€ E= Var=2D ! the environment
a€D=D=D ! the lambda-calculus model of denotations;
! note that every object is treatable as a
! function
10.1exe = el x] ! x€ var
10.2 e [AxB] e= ra. e8] ela/x] ! x€ Var, B € Exp
10.3 e[[MN] e = e[M] e(e[[N] e ! M,N € Exp
Figure 10.

The right hand sides of 10. 1-10. 3 are expressions in Scott!s LAMBDA
language [12]. Thus, the meaning of '\ ' and 'e[a/x]! in 10. 2 are not
syntactic lambda~calculus expressions, but LAMBDA notation used to

describe abstiract denotations. Whatever STM compiling scheme we

434

develop from the above will therefore compile into object code which
computes LAMBDA representations of denotations and not syntactic

lambda~calculus terms.

Attempting to convert the above definition to an STM interpreter suggesis
using e[x], e [x =BT, and & [MN] to generate the automaton state
names - the syntax constructor [['_u is another form of the labels used to
this point. Unfortunately the right hand side definitions do not conform

to the STM form: 10. 3 contains two state names; 10. 2 has an ""abstraction!!
performed after a state name traversal; and the environment function is
higher order. We can first organize the state name sequencing by con-
verting the definition to a continuation passing form [14]. The equivalent
{congruent [107} definition of figure 10 is given in figure 11, It is adapted
from Reynrolds 107,

h = Exp~E-C-D!
e€ E = \Var #D!

c€C = D"aD!
fE D" =D'+D!
a€ D! =C D!

1. tnx} ec = ef[x] ¢
11.2nAxB] ec = cra. n[[B] e[a/x])
1.3n[MN] ec = n[M] e f. fnIN] e) c)

Figure 11,

An extra argument c € C, a continuation, is added. The continuation acts
as a sequencing device in that the right hand side of each equation has but
one semantic function with all its arguments available. An STM-interprete
derived from such a definition uses this function as the automaton siate

for the equation's right hand side. The iniroduction of the continuation
has added to the complexity of the semantic domains; the D domain has
been fractured into two forms, D', representing an element of D treated
as a function, and D!, representing an element of D treated as an argu-

ment. Further explanation is found in [10].

435

Now each equation has the desired state, argument form, but the e and
¢ arguments are higher order objects and still not acceptable. A well
known technique for reducing functional objects is the introduction of
closures [7]. The closures represent names of functions; once all
arguments are supplied, the name~plus—arguments are converted to the
function-plus—arguments form. The following transformation should make
this concept clear; it is based upon the construction given in [9] .

Figure 12 shows the defunctionalization of the e and ¢ arguments using

closures. All domain definitions have become nonfunctional. The effect
of defunctionalization is that even D! and D" must be represented as
closure objects. The three original semantic equations have expanded
to seven. This is because each domain which is simplified to ciosure
objects requires a new auxiliary function which converts the closure~
plus—arguments set to the original function applied to the arguments.
The new equations are seen in 12, 4-12.7. The simple structure of the
original definition has led to only one new closure object per defunc-
tionalized domain. This explains why the auxiliary functions are stated

so simply. Further examples of the technique are given in [9].

n = ExpxExC =+ D!
apC = C xDY + D!
M = DN xD‘ -3 D'
apE = ExVarxC =+ D'
apD! = D' xC + D!
e€ E = mk-el= Var xD!xE
c&€C = mke-cl= Exp xExC
feD" = mk-vl= Var xExp x E
a€ D! = mkev2= Exp xE
12. 1 nx] (e,c) = apEle, [x],¢)
12.2 n[A xBT (e,c) = apClc, mk-vi<x, [B],e>)
12.3 n [MN] (e, <) = n[M]{e, mk-c1<[NT, e,c>)
12.4 apC (mk-c1< [NT}, e,c>,f) = apD!(f, mk-v2< [N, e>,c)
12.5 apD'{mk~vi<x, [B],e>,a,c) = n[B7 (mk-el< x,a,e>,c)
12.6 apE(mk-el<x,a,e>Jy],c}) = {x=y)= apD{a,c),
apE (e, [[y],c)
12.7 apDi(mk-v2< [N],e>,c) = n[NT{e,c).

Figure 12,

436

The equations of figure 12 are in STM~form. The right hand side of each
equation contains a state name from the set {n[[M]] | M€ Exp} U

{ apC, apE, apD!, apD”} and each argument is nonfunctional. The seven

equation sets contain much redundancy - for example the constructor names of
the closures are unnecessary because each domain has but one closure

type. We eliminate the names. Alsosince the ¢ argument is of the form
<[N]},e',c>, the left hand side of 12, 2 can be stated as

nx xBJ{e, « [N, e*, c>), which allows the reduction of the sequence

12.2= 12,4 12.5 to one equation. This gives

12. 1 n [xT{e,c) = apE {e, [x],<)

12, 2! nxxB8Jle, <[NJ,e',c>} = [T (<%, <[N],e'>,e>,c)

12, 3! n [MNT] (e, <) = n [M] (e, <[N],e,c>)

12.6' apE(<x,a,e>,[[y],c) = (x=y) =+ apD' {a,c), apE (e, [v]],c)
12. 71 apD (< [[N],e>,c) = n[NJ (e,c)h

Since 12.6'= 12, 7' we can collapse the two into one equation, and conver-

sion of the nested closures to tuple form gives figure 13.

apE (e, [x],c)

nB8] {(<x,[N],e'>:e,c)
n[[M] (e, < [N],e>:c)
(x=y) +n [[N] (e',c),

apE (e, [v],c).

I

13. 1 n[[x] {e,c)

13.2 n A xB7J (e, < [N],e>:c)
13.3 n [MN] (e,c)

13.4 apE (<x, [N],e'>:e,[y],c)

it

I

]

Figure 13.

The results look similar to figure 1, but here the environment iookup

function is explicitly provided.

Some explanation is required as to what the equations above truly denote.

The scheme of figure 1 translates lambda-expressions to lambda-expressions,
the action made possible assuming retention of the input source text and

the Unload function. In contrast, the denotational definition transiates

into abstract denotations. However, in the conversion to defunctionalized
form, the denotations themseives (D! and D"} are not obtained unless all

arguments to the semantic functions are present. But since the denotations

437

are themselves functions, the LAMBDA abstractions representing the
objects never appear! The result is that no form is ever fully expanded

to an abstract denotation. The disadvantage of using first order argu-
menis in STMs is that no higher order object can ever be computed

as a final result - only base objecis or closure names can appear. Another
side effect of the conversion is that the definition becomes non-homomorphic
{the meaning of a phrase in the language is no longer completely determined
by the meaning of iis subparis - see 13. 1= 13, 4}, Such a result is

inevitable when converting to a sequential form,

Conclusion

We have described the construction of compiling schemes for STMs from
three varied semantic definitions: an explicitly contrived interpreter; an
existing machine,one of whose central data structures was altered; and

a higher order definition upon which a pair of significant transformations
were performed. The intention has been to utilize the STM~interpreter
format of each definition as a device to expose the underlying structure of,
each language definition and to promote an easy conversion to an SDTS
from that point. With respect to the former, the arguments to the STM~
interpreter forms display the data organization of the original definitions,
This was most obvious in the SECD-machine - its rigid operational
structure was preserved in its STM form, |In contrast the WNF-machine
contained a simple structure explicitly oriented towards S-reduction. The
form produced by the essentially Ystructureless! denotational definition
could have been overtly reorganized into many different argument struc—

tures.

Of equal interest are the transformations applied to the definitions to
obtain the STM forms, for they elicit the complementary information as to
what features of the definition are counter-productive to easy compilation
for primitive sequential machines ~ conversion of the control

of the SECD~machine immediately comes to mind. The imposition of opera-
tional constructs in the abstract denotational definition implies that great

latitude is available to its impiementors for both optimization and error.

438

1t is not surprising that operational definitions lead to compiling schemes,
but the STM~interpreter form defines a class of definitions which are
especially useful. [t can be asked whether the STM restiriction is too
strong - in particular, can the requirement of finite state control be
repiaced by a weaker notion? On the other hand, the STM format is
itself quite general; a straightforward implementation of the examples

in this paper would use heap storage management, and some of the
'primitive operations' may require many lines of assembly code to per-
form. These questions are not considered here. We make a final remark
in regard to developing an automated compiling methodology. Using the
lambda~calculus as a universal defining language for programming
languages semantics suggests a direction-theuniversal process uses
the lambda-calculus SDTS to produce an object code scheme for each
construct in the defined programming language. This code set is then
utitized as a specific scheme for compiling input source programs in the

language. An elaboration of the technique is presented in [5]

Acknowledgment: Neil Jones contributed substantially by his critical reading
of an earlier draft of this paper. Thanks also go to Karen Mgller for her

assistance in organizing the material.

439

References

[17 Aho, A.V., and Wliman, J.D. The Theory of Parsing, Translation,
and Compiling, Volume 1, Prentice-Hall, Englewood Cliffs,
N. J. (1972).

[2] Church, A. The Calculi of Lambda~Conversion, Annals of Mathematical
Studies 6, Princeton Univ. Press, Princeton, N.J. (1951).

[3] Curry, H.B., and Feys, R. Combinatory L.ogic, Volume i,
North-Holland, Amsterdam (1958).

[4] Ershov, A.P. On the Essence of Compilation, in Formal Description
of Programming Language Conceptis, Neuhold, ed., North-Holland,
Amsterdam (1976} 391-420.

[51 Jones, N.D., and Schmidt, D.A., Compiler Generation from Denotational
Semantics, PB-113, Aarhus University, Aarhus, Denmark {1879).

[6] Kleene, S.C. Introduction to Metamathematics, North-Holland,
Amsterdam (1952},

[7] Landin, P.J. The Mechanical Evaluation of Expressions, Computer
Journal 6-4 (1964} 308~320,

[8] Plotkin, G.D. Call-by-Name, Call-by-Value and the Lambda~Calculus,
Theoretical Computer Science 1 {1975} 125-159,

[9] Reynolds, J.C. Definitional interpreters for Higher-Order Programming
Languages, Proc. of the ACM National Conference, Boston,
(1972) 717-740.

[10] Reynolds, J.C. On the Relation between Direct and Continuation
Semantics, Proc. of the Second Colloquium on Automata,
Languages and Programming, Saar‘br‘fjcken, Springer-Verlag,
Berlin (1974) 141-156.

[11]

[12]

[13]

[14]

(18]

[16]

440

Schmidt, D.A. Compiler Generation from Lambda-Calculus
Definitions of Programming Languages, Ph.D. Thesis,

Kansas State University, Manhatitan, Kansas, forthcoming.

Scott, D.A. Data Types as Lattices, SIAM Journal of Computing 5
(1976) 522--587.

Stoy, J.E. Denotational Semantics, MIT Press, Cambridge, Mass.
{1977).

Strachey, C., and Wadsworth, C.FP. Continuations - A Mathematical
Semantics for Handling full Jumps, Technical monograph PRG~11,
Oxford University {1974).

Wadsworth, C.P, The Relation between Computational and Denotationa
Properties for Scott's Models of the L.ambda-Caliculus, SIAM
Journa! of Computing 5 (1976) 488-521,

Watt, D.A., and Madsen, O.L. Extended Atiribute Grammars,
Report no. 10, University of Glasgow {1977},

