
Tree-affix dendrogrammars for languages and compilers

by

Frank DeRemer and Richard Jullig
University of California
Santa Cruz, California 95064

ABSTRACT

Research in progress is reported regarding a variation
on attribute and affix grammars intended for describing the
"static semantic" or "context-sensitive syntactic" con-
straints on programming languages. The grammars are oriented
toward aDstract-syntax trees, rather than concrete-syntax
strings. Attributes are also trees (only) and predicates are
simply nonterminals, defined just as other nonterminals are,
NOT in some extra-grammatical way. Moreover, trees are
allowed as decorations on trees. Thus, the formalism is com-
pletely self-contained. The grammars are proposed for langu-
age specifications in reference manuals and for the automatic
generation of practical compiler modules. Such a module is
given an abstract-syntax tree, analyses it, and produces the
checked, decorated tree as its result.

Key words and phrases: static semantics, context-sensitive
syntax, attribute grammars, affix grammars, abstract syntax,
concrete syntax, language specification, compiler generation,
translator writing system.

301

Introduction

Brief history. In 1968 Donald Knuth invented attribute
grammars to describe the semantics of context-free languages
[Knu 68]. Basically these are context-free grammars (CFGs)
extended by the addition of "attributes" to the nonterminals.
Each attribute may take on any value of some given data type,
and the attribute values in any given production p must be
related as specified by some equations associated with p.
These equations may involve arbitrary functions on combina-
tions of the attribute data types involved.

The attribute dependences imply a graph associated with
each derivation tree of the underlying CFG. The problem of
of deciding whether a given attribute grammar defines circu-
lar graphs, and thus sentences with undefined semantics, is
very difficult [JOR 74]. However, given that the grammar has
been confirmed not to produce circularities, the attribute
dependencies imply a deterministic processor to compute the
attributes and thus the semantics of any given sentence. In
effect such a processor flows attribute values along the
edges of the dependency graph until all values are computed
and all equations have been satisfied. Attributes that flow
down the tree are called "inherited"; those that flow upward
are called "synthesized" or "derived". Functions involved in
evaluating attributes are defined outside the grammar.

It can be determined~ by analysis of the grammar, how
many passes around the derivation tree of a general sentence
will be necessary to evaluate the attributes [Boc 76]. More-
over, under stringent conditions it is even possible to com-
pute the attributes during parsing [Wat 74]. This, in turn,
has led to the (anti-modular) idea of letting the attributes
influence the parsing |Wat 74] [W&M 79] [M&J 80].

In 1971 Kees Koster invented affix grammars, based on
two-level grammars [Van 75]. Affix grammars are much like
attribute grammars but were intended primarily for the
purpose of describing the context-sensitive aspects of
programming languages [Kos 71], called by some the "static
semantics". Affix grammars have parameters, called "af-
fixes", associated with the nonterminals. The effects of the
"semantic equations" of attribute grammars are achieved via
"predicate nonterminals" that generate the empty string while
imposing a constraint, defined outside the grammar, on the
values of the affix variables.

The affix values are specifically restricted to flow
from left to right by restricting the affixes to depend only
on others to their left in each production. With the add-
ition of an LL(k) constraint on the underlying CFG, it is al-
ways possible to implement the grammar as a recursive-descent

302

parser with value parameters in place of "inherited affixes"
and result parameters for "derived affixes". The parser sim-
ply calls predicates at appropriate times in the parsing pro-
cess to enforce context-sensitive constraints and to compute
the affix values. Watt has extended this idea to LR(~) par-
sers [Wat 74].

In 1979 Watt and Madsen combined some of the best ideas
from attribute, affix, and two-level [Van 75] grammars to
form a very civil "extended attribute grammar" (EAG) [W&M 79].
Two advantages of EAGs are that they are easy to conceptual-
ize as generative systems and that they are relatively com-
pact and easy to follow. However, they do not differ suffi-
ciently for our purposes here to warrant a description.

Our point of view. It is our thesis that language
descriptions can and should be modularized, just as large
programs can and should be, by the principles of structured
programming. Proper modularization will occur when the
"natural fracture planes" are found in language descriptions,
and correspondingly, in compiler structure. Not all such
boundaries have yet been found. Indeed, all practical
compilers and language definitions to date are either large
and momolithic, or some or all of their components have messy
interfaces and/or far too many interconnections.

We also believe that restrictive formalisms help define
such boundaries. For example, lexical grammars define scan-
ners based on finite-state technology, and phrase-structure
grammars define parsers based on deterministic pushdown tech-
nology. The natural fracture plane between these two is
characterized by a language of token sequences. The modular-
ization is effective at reducing the total number of states
in the compiler "front end" and at enhancing the comprehens-
ibility of the total language definition. The limited tech-
nology at each level restrains us from being overly ambitious
at that level.

It must be emphasized, however, that these are only re-
straints. It is our opinion that even now CFGs are being
overused. For example, the Algol 60 grammar tried to des-
cribe type checking, a thoroughly context-sensitive issue,
and became ambiguous for its inadequate efforts. This "error"
is repeated in all too many grammars modeled on that one.
In general, we find that so many minor restrictions are typi-
cally "wired" into CFGs that they are much more difficult to
comprehend than is necessary. The Ada grammar is a recent
case in point [Ada 79].

We propose instead to use CFGs primarily to generate all
desired programs and to associate with each the appropriate
phrase structure. Never mind undesired programs at this
level. The formalism is not powerful enough for such screen-
ing, nor should it be. It should restrain our ambition and
focus the design. But the problem is bigger than that.

303

The reason CFGs are overused is precisely that we lack
acceptable formalisms for capturing the context-sensitive
constraints and, separately, the dynamic semantics, in a
modular way. Stated another way, given only tools for part
of the language design process, we typically start off with
an entirely wrong focus.

It is furthermore our thesis that the abstract syntax of
a language [McC 62] is THE place to start when designing or
learning it, and that the "language" of abstract-syntax trees
(ASTs) characterizes this level quite naturally. Thus, since
an AST, or a linearization of it, is the natural output of a
parser, we argue that context-sensitive constraints should be
addressed to ASTs, rather than to concrete-syntax strings.
The concrete syntax is complex enough already, where operator
precedence, bracketing, noise words, and the like, are enough
to contend with. Rather than bog down an already overloaded
CFG, we propose to adapt the attribute/affix technology to
trees, ASTs. What is needed is an "attributed dendrogrammar"
that generates a "dendrolanguage". (Greek "dendron" means
"tree".)

Finally, it is our thesis that "decorated" trees serve
well as the intermediary between the context-sensitive syn-
tactic and dynamic semantic levels of language specification/
processing [Cul 73]. By "decorations" we mean, for examples,
explicit links from uses of identifiers back to the subtrees
that represent their declarations, links from calls to the
procedures called, from returns to the procedure returned
from, from exits to the loops exited from, etc. In general,
the idea is to make explicit all the implicit or symbolic
references.

Thus, we propose a kind of grammar for descriDing decor-
ated ASTs, to capture the context-sensitive syntax of pro-
gramming languages, from which a practical compiler module
can easily and directly be constructed. This module would
primarily drive the declaration table mechanism of the compi-
ler, enforcing scopes of definitions and type compatibility
rules, resolving and explicitly recording nonlocal referen-
ces. It would take the AST from the parser and deliver the
decorated AST to the code generator. Correspondingly, we
would argue that any formal specification of the (dynamic)
semantics of the language should be based on the decorated
AST as the starting point, although we will not pursue that
position here.

We emphasize that we are NOT looking for a universal
solution to the language ~esign/specificaticn/implementation
problem across all levels. Indeed, we are addressing one
isolated subproblem, in the style of structured prcgramming.
The goal is the modularizaticn of the design prccess, langu-
age specification (definition), and its implementation, and
most importantly, better programming languages.

304

Criteria for a good context-sensitive formalism. There
follows a list of criteria for a good formalism aimed at the
context-sensitive syntax (CSS) level of programming languages:

(i) It should encourage the designer of the language to
ask just the right questions and consider all aspects of the
CSS. Indeed, it should guide him toward a good design and
provide a good notation for recording design decisions.

(2) It should encourage, and indeed help define, clean
boundaries between the context-free syntax and the CSS on the
one hand, and between the CSS and the (dynamic) semantics on
the other. Thus, it should contribute to modularity in the
language design process, in the language descriptions, both
formal add informal, and in the implementation.

(3) It should be based on a data type that is natural
to the CSS problem: e.g. abstract-syntax trees rather than
concrete-syntax strings, and futhermore, decorated ASTs as
the result, just as ASTs are the "result" of context-free
(transduction) grammars.

(4) It should preferably model accurately what the hu-
man reader does when he reads add debugs a program, so that
it will be most useful as a reference.

(5) It should De totally self-contained, not needing
supporting definitions outside the grammar.

(6) It should be automatically implementable, just as
CFGs are, resulting in a practical compiler module. Prefer-
ably this should not involve any problems as difficult as the
circularity problem for attribute grammars, although this is
a minor issue. More importantly, it should be possible to
detect and report meaningfully any inconsistencies or circu-
larities in a given CSS specification.

(7) Finally, to include some motherhood and apple pie,
the notation for writing a CSS specification should be con-
cise, but not to the point of obscuration, and simple, yet
powerful.

Preview. The general idea of our proposed CSS notation
is presented in the next section, primarily via a small
sample language from elsewhere. Then comes a summary of our
current approach to formalizing the notation as a grammar.
Next the pragmatics of using the notation in a reference man-
ual, and automatically generating a compiler module from it,
are discussed briefly. Finally, a brief summary and evalua-
tion of the notation is made relative to the above criteria.

The results reported here are from the Masters and Ph.D.
thesis work, in progress, of the second author, under the
supervision of the first.

305

The general idea of tree-affix dendrogrammars (TADGs)

Underlying dendrogrammar. The general idea has already
been given away in the introduction. TADGs are based on
"dendrogrammars", essentially context-free grammars that gen-
erate trees, rather than strings [Rou 70]. Greek "dendron"
means "tree". Actually, what is generated is a direct string
representation of a tree, namely "Cambridge Polish" [McC 62] o
Thus, the tree

b c

is represented by "<+ a <~ b c>>". In our dendrogrammars the
symbols "<" and ">" are meta-symbols, and terminal symbols
are distinguished from nonterminals by quoting the former and
using "identifiers" with the first letter capitalized for the
latter. Thus, a "dendroproduction" with left part E and
right part indicating a "+" node with two E subtrees is
written "E -> <'+" E E>". When there are several right parts
for one left part, we factor out the left part; and we termi-
nate rules with a semicolon; e.g.

E -> <e+, E E>
-> <'neg" E>
-> "<INTEGER>';

The latter alternative illustrates a "pseudo-terminal", a
terminal that has subrosa information, namely the actual text
of the symbol. In this case literal integer numbers are
intended. The angle brackets included in the quotes are
intended to suggest that, although it is a terminal as far as
the dendrogrammar is concerned, there is additional subrosa
information, which could be viewed as subtrees, i.e. one leaf
per character (digit, here).

Affixes, constraints. TADGs follow affix grammars in
that they specifically admit of only right-to-left affix
dependencies, and thus only left-to-right flow of attribute
values. This flow, however, is relative to the grammar nota-
tion itself, not the tree generated. Indeed~ a TADG can
explicitly specify several passes around any given subtree.

Latin "affix" means "attachment". Nonterminals have
affix variables attached to them through which context-
sensitive constraints are implemented. Conceptually, TADGs
flow information around ASTs that they generate, rather than
the derivation trees of generated strings.

306

Moreover, TADGs allow TREES ONLY as affix or attribute
values, so nonterminals can serve the purpose of predicates
as well as generators. Thus, the formalism is totally self-
contained, a property that neither affix nor attribute gram-
mars have. It is also possible to name subtrees, pass them
as affix values, and thus specify multiple traversals of
them. Finally, it is possible to "decorate" one subtree with
another. Let us consider an example:

S
-> <'while" E S>

: Statement T Env
{E: Expression V Env A "boolean'}

If the constraints to the right are ignored, there
remains a simple dendroproduction indicating the abstract
syntax of a while loop. The first constraint indicates that
the left part S denotes or generates members of the domain
Statement [Ten 76], the definition of which is sensitive to
the context or environment Env, an inherited (T) affix. The
recursive occurrence of S in the right part abides by this
same restriction, in the same environment Env, by impli-
cation, although this could have been explicitly overridden.
The second constraint indicates that the subtree E is in the
domain of Expression(s) of type "boolean" in the context Env.
The "type" is specified by the derived (A) affix, which must
be the tree (leaf) "boolean" only. Now consider:

E
-> <'+" E E>

-> "<INTEGER>"
-> <N> dec D

: Expression ¥ Env A Type
A "integer"
{E: Expression T Env & "integer
A "integer"
A T
{N: From ¥ Env A D}
{D: <'var" <M> <T>>};

-}

The usual constraint on E is overridden under the "+" node
so that those subtrees (subexpressions) can be required to be
of type "integer" The derived (A) type of the sum is speci-
fied on the line with the "+" to be "integer" The literal
integer case is straightforward.

The case of an identifier N is the most difficult. The
surrounding angle brackets indicate that N is a "parameter",
a place holder for ANY arbitrary subtree. N is restricted to
an identifier by the nonterminal From, which we regard as
predefined and system implemented though it can be defined in
TADG notation, and which retrieves from the environment the
subtree D associated with N. The association must have
been established by a declaration, as we shall see shortly.
D is required to be a subtree with "var" as the name of its
root and with two subtrees, M and T, with no constraints
on them. (In fact, M will be the same identifier as N.)
T is the derived type in this case.

307

Finally, we note that D is also specified as the
decoration on N; thus, from N there is a direct link to its
declaration. A resulting decorated tree might look like:

_ x3 1

Declarations are specified by the nonterminal D as being
in the domain Declaration in context Env, upon which there is
a side effect, namely the name N is associated with the
declaration (D) by the predefined function Into:

D
-> <'var" <N> <T>>

: Declaration • Env
{N: Into Y Env • D};

A substantial example~ The next two pages contain two
grammars adapted from the extended attribute grammar of Watt
and Madsen [W&M 79]. The little language described is rough-
ly a subset of Pascal, except that, like Algol 60, mutually
recursive procedures do not require a forward declaration.
Surprisingly, at least one variable declaration is required
at the head of each block, and each procedure (and call) must
have at least one parameter. Our grammars faithfully adhere
to these conventions, although it is easy to allow zero in
each case.

The first grammar describes the context-free concrete
syntax and the translation to abstract-syntax trees, while
the second describes the contextual constraints on ASTs and
their decoration. Of course Watt and Madsen did not specify
ASTs and their decoration. Nonetheless, the second grammar
is believed to impose exactly the same context-sensitive
restrictions as their grammar.

Concrete syntax. The first grammar below, GI, is a
regular right part, string-to-tree transduction grammar fDeR
74], i.e. a context-free grammar with (extended) regular
expressions in right parts of productions, and optionally, a
tree part with each right part. The tree part, if present,
is preceded by "=>" and indicates what node name is to parent
the subtrees associated with the nonterminals and pseudo-
terminals of the right part. A pictorial version of a
dendrogrammar PDG generating the same ASTs generated by G1
is presented in comment form following GI.

308

Concrete syntax -- G1

parser Program:

Program -> Block ". ";

Block

Vdcln
Pdcln

Fparm

Type

• , -) - -)
-> vat" (Vdcln ; + (Pdcln ; *

• begin" Stmt list ";" "end" => •block•;

S tmt

-> Name ": Type => var ;
• • . • • •) •

-> procedure Name "(Fparm list ;
Block => "proc';

-> var" Name ": Type => "ref"
-> Name ":" Type => "value';
-> < •boolean • I "integer" >
-> "array" "[" Integer .. " Integer "] "

"of" Type => •array•;

-> "begin • Stmt list ";" "end"
-> "if" Expn •then" Stmt •else • Stmt
-> "while • Expn "do • Stmt
-> Variable :=" Expn
-> Name "(" Expn list , •)

Expn

Sexp

Term

-> Sexp < "=• i •<>" > Sexp
-> Sexp;
-> Sexp < "+• I •-" > Term
-> Term;
-> < "true" I •false • > I Integer
-> Variable I "(" Expn ")';

Variable-> Variable •f" Expn "] •
-> Name;

Name -> •<IDENTIFIER>';
Integer -> •<INTEGER>';
end Program

=> "."
l

=> "if •
=> "while"
~> " . :=

=> "call';

Abstract syntax -- PDG

#B: ~ # S: ~

D+ P* S+ S+

/ \E # E E E

N F+ B N T

=> "rlnop •

=> "add,p"

E S S E S

=> •subscript"

Lexical.
Lexical.

Program: B

V E N E+

! \
N T

I I T

I V

end of pictorial abstract syntax.

v: s bscrip9
/ \

V E

N

N : C<iDgNTI~iER~)

309

Contextual constraints -- G2

attributer Program: # "MtE" = empty environment,

Program : Pgrm
-> B { : Open • "MtE" & EnvGlobal}

{B: Block ¥ EnvGlobal};

B : Block W EnvLocal
-> <'block" D+ P* S+> {D: Dcln • EnvLocal}

{P: Dcln • EnvLocal}
then {P: Pbody • EnvLocal}

{S: Stmt T EnvLocal};

S : Strut
-> < ; S+>
-> <'if" E S S> {E: Expn
-> <'while" E S> {E: Expn
-> <':=" V E> {V: Vrbl

{E: Expn
-> <'call" <N> dec D E+> {N: From

• Env

¥ Env A "boolean'}
• Env A "boolean'}
• Env A Tcommon}
• Env A Tcommon}

Env A D}
{D: <'proc" <X> <F>+ >}
{F: <'ref" <Y> <Tcommon>>
E: Vrbl ¥ Env & Tcommon
IF: <'value'<Y> <Tcommon>>
E: Expn T Env A Tcommon};

P : Pbody W Env
-> <'proc" <N> D+ B> { : Open W Env & EnvLocal}

{D: Dcln • EnvLocal}
then {B: Block ¥ EnvLocal};

D
-> <('var'I'ref'I "value'I

"proc') <N> ...>

: Dcln

{N: Into

• EnvLocal

• EnvLocal ¥ D};

E

-> <'rlnop" E <Op> E>

-> <'rlnop" E <Op> E>

-> <'addop" E <Op> E>

-> ('true • ~ "false')
-> "<INTEGER>"
-> V

: Expn • Env A Type
A. "boolean"
{E: Expn • Env A "boolean'}
& "boolean"
{E: Expn V Env & "integer'}
A "integer"
{E: Expn • Env A "integer'}
A "boolean"
A "integer"
A Tvar
{V: Vrbl • Env A Tvar};

V
-> <'subscript" V L>

-> <N> dec D

end Program

: Vrbl T Env A Yype
A Telem
{V: Vrbl T Env A T}
{E: Expn V Env A "integer'}
{T: <'array" <L> <U> <Telem>>}
A T
{N: From • Env • D}
{D: < ("var" I "ref" i "value') <X><T>> } ;

310

The only two pseudoterminals in G1 are <IDENTIFIER> and
<INTEGER>. Each occurrence of these, including the actual
text of the token, is included in the AST by default. On the
other hand, terminals are not included in the tree, except as
they are encoded into the node name of the production in
which they appear. The left part of a production is associ-
ated with the tree specified by its right part and tree part,
if any. The four operators.of the language, and the. four key
words, "boolean', "integer , "true , and "false , are sur-
rounded Dy angle brackets, < and >, meaning to override the
default and include these terminals as leaves in the tree.

If the pictures following G1 do not make the string-to-
tree correspondence obvious, the reader should review prior
work [DeR 74]. However, it may De useful to review the mean-
ings of the regular operators: "list" means a list of that to
its left separated by the delimiter to its r~ght, "+" means
one or more occurrences of that to its left, "*" means zero
or more, "?" means zero or one, i.e. optional, and "I" means
either that to its left or that to its right. Terminals are
in single quotes in these grammars. Nonterminals are just
standard identifiers. Meta-symbols are unquoted, e.g. ->, ;.

Dendrogrammar. Assuming that the reader has a firm grasp
of the simple abstract syntax of this little language, we
procede to G2 and the context-sensitive constraints on the
language. In this notation regular operators are used on
trees, really on string representations of trees, just as
they are used on strings in the concrete-syntax realm. Thus,
"<'block" D+ P* S+>" denotes a "block" node whose subtrees
consist of: one or more D subtrees, then zero or more P's,
then one or more S subtrees.

Grammar G2 is laid out such that, if all the constraints
to the right are covered up, all that remains is the "under-
lying dendrogrammar" UDG2 with decorations indicated by the
key word "dec'. Thus, each variable name gets decorated with
a D subtree, namely the one representing its declaration, as
we shall see; and each procedure name is decorated with the
corresponding procedure definition suDtree, as will be
deduced from the constraints.

Note, however, that UDG2 is not equivalent to the pic-
torial dendrogrammar PEG of the page preceding it. In parti-
cular, each name N in UDG2 is left unspecified. Futhermore,
the nonterminal I has been back substituted away (it was in
PEG only as an abbreviation anyway); T does not appear at all
in UEG2; and D, F, and P of PEG nave been merged into just D
in UDG2, although P also remains in UDG2, and the production
for D contains the "..." notation, indicating that ANY
sequence of subtrees or "orchard" is derivable following the
first subtree N of a "var', "ref', "value', or "proc', node.

311

The "block" case is interesting because it specifies
some explicit dependencies~ and thus sequencing for the
parser. The D and P subtrees can be derived or parsed
in any order, but, as indicated by the key word "then',
this must happen before the P's are confirmed also to be
in the subdomain Pbody ¥ EnvLocal, and independently, that
the S's are in Stmt ¥ EnvLocal. This ordering is necessary
because our model of an environment is one with side effects,
as discussed below. Thus, the grammar mirrors what the reader
must do to read a program top-down: in each block he must
scan the declarations and procedure headers, to find out what
is defined, but not how procedures work, BEFORE investigating
procedure bodies and the statements that are the block body.

Note that procedure bodies are derived in a definite
order also. First a new "scope of definition" is opened in
the environment, resulting in a local version. Then the for-
mal parameter declarations are derived, as indicated by the
attribute dependency: the EnvLocal derived by Open is inher-
ited by Dcln. Then the block can be derived, as indicated by
the keyword "then'.

The nonterminal D (promiscuously) generates declarations
of both variables and formal parameters, as well as procedure
declarations. Its only real purpose is to enter the name N
"Into" the current environment, associating it there with
the very declaration D just derived (parsed).

Thus, when V generates a name N, it is constrained to be
an identifier by "From" which also retrieves the associated
declaration subtree D From the environment. The name N is
decorated with D, which is constrained to be a "var" "ref"

, s , '

or "value subtree, not a proc , with two subtrees X and T.
T is used to represent the type of the variable for economy's
sake, and is the derived attribute of Vrbl in this case. It
happens that we know that x will be the same identifier as N,
by definition of the environment mechanism, but this need not
be checked here (which it could be by changing <X> to <N>).

The "subscript" case derives the V and E subtrees inde-
pendently, requiring that E be of type "integer" and that V
be of type array with element type Telem, which is the
derived Type of Vrbl in this case, as indicated by "A Telem"
to the right of <'subscript" ... >. The L and U subtrees are
not restricted by this grammar, but are known from grammar G1
to be "<INTEGER>" nodes, i.e. leaves representing literal
integer constants. (We could have replaced "<L> <U>" with
"..." since they are unrestricted.)

312

Such mergers and missing restrictive specifications mean
that UDG2 derives a superset of the ASTs generated by GI.
This is perfectly all right, since redundant restriction is
pointless in this modular language specification. Note also
that, had it been useful, some further restriction could have
been achieved by designing UDG2 to generate a subset of some
portion of the tree language generated by Cl, getting the
effect of intersecting two context-free languages. For exam-
ple, type checking could have been achieved in this trivial
language by generating Boolean expression subtrees only where
allowed, etc. We chose not to do that here to keep a close
correspondence with the matt grammar and because that techni-
que does not work for more complex languages in which the
programmar can define new types.

Finally for UDG2, note that the grammar is ambiguous in
E, because of the two identical right parts defining rela-
tional expression subtrees. Also, V is ambiguous, since the
parameter <N> derives ANY subtree, including the "subscript"
alternative. These ambiguities will be eliminated by con-
straints. Thus, a deterministic "tree parser" will be con-
structable to "recognize" the AST and impose the constraints.

Constraints. Now consider the right half of G2, the
constraints. Each left part now contributes to a syntactic
(tree) domain, parameterized by zero or more inherited or
derived attributes. Thus, S no longer generates just any
statements, but only those that are meaningful in a par-
ticular environment Env (or context, or in compiler terms,
a declaration table), as indicated by the new left part:
"S : Stmt • Env". The domain Stmt is the union of some
subdomains (not partitions), each of which is the set of
statements derivable in a particular environment. In G2 S
is the only nonterminal with Stmt as its constraint in the
left part, therefore it is the only contributor to the domain
Stmt, and so S derives the entire domain. Such uniqueness is
always the case in this simple grammar. Similarly, express-
ions (Expn) are derived by E in an (inherited) Env and with
a (derived) Type. And so on.

Consider the assignment statement, the ":=" node. The V
subtree must be a variable (Vrbl) in the inherited Env and
with some derived type, called here Tcommon. The E subtree
must be an Expn in the inherited Env with the SAME derived
type Tcommon. It matters NOT what order the two subtrees
are derived or "parsed" in; they are independent -- in fact,
ALL dependencies must be stated explicitly in these grammars.
Of course, the assumed Env is inherited from the left part.

Next consider the "while" statement. The E subtree must
be an Expn in Env with the leaf "boolean" as its derived type.
No restriction is stated for the S subtree, so the constraint
of the left part is recursively applied by default. This de-
fault applies, twice in the "if" right part, and one or more
times in the ;" case, as needed.

313

The E productions should be easy to understand now, so
let us consider the most complex case, "call'. Were we get
the procedure subtree D From the Env by constraint on N. D
must not be a "var', "ref', or "value" subtree, but a "proc"
with each formal parameter denoted F. Independently, each F
is required to be a "ref" with right subtree Tcommon AND
(juxtaposition) the corresponding actual parameter is requir-
ed to be a Vrbl in Env with the same type Tcommon, OR (~)
alternatively, F must be a "value" with right subtree Tcommon
AND the actual must be an Expn in Env with the same Tcommon°

Environments. The derivation process is started with
the goal or start symbol, whose constraint is not parameter-
ized. In this case Program starts by Open-ing a new scope
relative to an initial environment that is empty. If the
language had had any pre-defined procedures or variables,
they would have been entered in the environment at this point.
Now the derivation continues with B, given the "global" Env.

We are still debating how much power the environment
mechanism should have, and whether or not it should be side-
effect-free. There seem to be clear advantages either way.
Futhermore, it is not clear whether the environment formalism
should be described in the TAnG for each new language, or
extra-grammatically, once and for all -- for all languages,
that is. This question is related to the problem of formal-
izing and/or restricting the decoration of subtrees, so we
leave the issue for further discussion below.

314

Formalization of TADGs

This is the area in which our research is the least com-
plete and conclusive. The following page defines the abstract
and concrete syntax of TADGS, just as was done in the previ-
ous section for the little programming language. That is,
the page contains a reguler right part grammar for TAnGs.
Soon to come will be a TADG for TADGs, i.e. a self-describing
grammar on the context-sensitive level. Thus, initially we
are treating TADGs as a programming language, a notation
for programming constraint-checking phases of compilers.

Our ultimate goal, however, is to devise a formal gram-
matical model as a foundation for TADGs. The main stumbling
blocks currently are the very aspects of TADGs that make them
novel, powerful, and convenient, namely, the decorations and
the environment mechanism. It is desirable to harness this
power and to restrict it to no more than is needed for this
problem area. As it is, Turing machines can easily be simu-
lated.

It may be possible to restrict the decorations so that
they can be described generatively. This, no doubt, means
disallowing redecorations, at least. Without any such limit-
ation it is possible to use the decorations as memory cells
and perform arbitrary iterative computations. Clearly, this
is a misuse of what is intended to be a grammatical model.
Relatedly, the ability to create new nodes, even whole sub-
trees, "dynamically" for attributes and decorations, which we
currently allow, will have to be curtailed. Indeed, we have
rarely used the facility in practical grammars, and even when
we have, it could have been avoided by defining an extra node
or two in the AST.

Finally, an approach to environments must be settled
upon. Are the usual models, as used in attribute grammars
[W&M 79] and denotational definitions [Ten 76], e.g., really
appropriate for reference manuals, or are they just appropri-
ate for compiler writers? Can one environment formalism be
defined that will suffice for all well-designed languages?
Or should a specialized mechanism be defined within the TADG
for each new language? If the latter, then is it possible to
deduce an efficient implementation for each? If so, how?
These are some of our current research questions.

315

Concrete syntax of TADGs --

parser TANG:

TADG -> "attributer" Goal ":"
Rule+
"end" Goal

Goal -> Nontermnl;
=> "attributer';

Rule -> Leftpart ('->" Rightpart)+
Leftpart -> Nontermnl ":" Predicate
Predicate -> Pred name Inherits Derives

Inherits-> ('¥'--Tree expn)*
Derives -> ('A" Tree~expn)*

Rightpart -> Tree_expn Derives Cnstrnts

Cnstrnts -> Consgroup list "then"
Consgroup -> ('{" Cons_expn "}')*
Cons expn -> Cons term list "~"
Cons term-> Cons-prim+
Cons~prim-> Parameter?

"-" (Predicate ~ Subtree)
-> "(" Cnstrnts ") ";

=> "rule';
=> "leftpart';
=> "predicate';
=> "inherits';
=> "derives';
=> "rightpart';

" "9 => .sequence . ;
=> group'?;
=> "or'?;
=> "and "?;

=> "constraint"

Tree_expn -> Tree term list "l"
w

Tree term -> Tree fact*
--> ~et

Tree fact-> Tree fact "dec" Parameter
-- -> Tree--fact "has" Parameter

-> Tree--prim "is" Parameter
-> Tree-prim •+"
-> Tree--prim "*"
-> Tree--prim "?"
-> Tree-prim;

Tree_prim -> "<" ~arameter ">"
-> "(" Tree expn ")"
-> Subtree T Nontermnl;

=> "alternates'?;
=> "catenate" ?
=> "any trees';
=> "decOrate"
=> "decoration"
=> "labeled"
=> "one or more"
=> "zero or more"
=> "zero or one"

=> •parameter"

Subtree -> "<" Node name Tree fact* ">" => "subtree"
-> Leaf;

Node name -> "(• "<STRING>" list "~" ")" => "one of"
-- -> •<STRING>';

Leaf -> "<STRING>'; # Lexical.
Parameter -> "<IDENTIFIER>'; # Lexical.
Pred name -> "<IDENTIFIER>'; # Lexicalo
Nont~rmnl -> "<IDENTIFIER>'; # Lexical.
end TADG

"?" in tree parts means "do not Ouild the node if there
is only one subtree.
Contextual constraints --

Soon to come: a TADG for TADGs!

316

Den~rogrammars. The underlying dendrogrammars of TADGs
are about as easy to formalize as are context-free grammars:

Definition.

T
N

S
P

A (context-free) den~rogrammar G
is a quadruple (T, N, S, P) where

is a finite set of "terminal" symbols (node names),
is a finite set of "nonterminal" symbols such that
T, N, and { >, < } are mutually disjoint sets,
is a member of N, called the "start symbol", and
is a finite subset of N x L(G trees) where
each "dend ' " P written A -> w, roproductlon in is
w is called the "right part" (a tree expression),
A is called the "left part" (a nonterminal), and
G trees is a context-free grammar (Tt, Nt, St, Pt)
w~ere Tt = T U { >, < }, Nt = {St, Tree}, and Pt =
{ St -> St Tree, Tree -> t for all t in T,

St -> (empty), Tree -> < t St > for all t in T ~.

Note that G trees is a CFG that generates "tree expressions",
namely, Cambridge Polish notation [McC 62] with angle brack-
ets serving as meta-parentheses and with terminals in T ser-
ving as node names, both interior and leaf. Of course,
L(G trees) is the language generated by G_trees, and L(G)
is ~he "dendrolanguage" generated by G, as usual for CFGs.

In general, the tree expressions denote sequences of
trees, or "orchards", rather than just trees, so G generates
orchards in general, too. The former is handy because it
allows us to describe n-ary trees, or "bushes", which are
rather more useful often than r~nked trees (a fixed number of
subtrees per node name). Relatedly, add even more useful, as
the former TAnGs have clearly demonstrated, is the idea of
allowing regular expressions in the right parts of dendropro-
ductions, resulting in a "regular right part dendrogrammar".
The above definition is easily extended to "RRPDGs" by in-
cluding the desired additional meta-symbcls in G trees appro-
priately. See for example the .~ree expn suogrammar of the
TADG concrete-syntax grammar.

We believe that further research will produce extensions
of the above definition to describe first decorated trees and
then affixes and constraints.

317

Use in reference manuals and compiler construction

Each reference manual should be organized around the ab-
stract syntax of the language it describes. Thus, its major
sections should correspond to the syntactic domains, plus a
separate section for the lexicon and appendices for the indi-
vidual, collected grammars and other terse summaries. At the
least, there should be included a lexical grammar, a context-
free phrase-structure grammar, a context-sensitive constraint
grammar, and a formal definition of the semantics.

Each syntactic domain section, e.g. for declarations or
statements or expressions or variaDles, should be subdivided
according to individual language constructs, e.g. the "while"
statement, the "loop" statement, including the corresponding
"exit', the "procedure" definition, including "call" and re-
turn', etc. Each construct description should look something
like the following sample:

#*** "while" Statement ******************************

Concrete syntax:

Abstract syntax:

"while" Expression "do" Block "od"

<'while" E S>

Constraints: E: Expression T Env A "boolean"
S: Statement T Env

Semantics:

Discussion:

~.. (denotational definition?)

°.® (informal description)
(special notes, etc.)

Construction of a practical compiler module from each
language level description should be straightforward, though
there is a long way to go toward that goal, especially in the
semantics area. The goal has been attained in the lexical
and phrase-structure areas and attainment is now eminent in
in the area of context-sensitive constraints. In the case of
TADGs, we expect to know soon how to map each one into a
practical set of recursive tree-traversing procedures that
pass value parameters for inherited affixes and result para-
meters for derived affixes, decorating the tree as they pro-
ceed. We already perform this mapping manually, getting
scope and type checking compiler modules that are quite
satisfactory, in both size and speed. However, at least
another year will be needed to get the TADGs well defined and
the mapping to a compiler module automated.

318

Summary and evaluation

Our research in this area is very much on-going. The
form of TADGs presented here is different from what was pre-
sented at the Workshop on Semantics-Directed Compiler Gen-
eration in January, 1980. Just in the last week the second
author has proposed a revised scheme that utilizes decora-
tions so well that affixes are unnecessary and that has a
user-oriented way of specifying scopes of definition, in
place of the more compiler-oriented environment scheme usual-
ly used in attribute grammars and denotational definitions.
On the other hand, it is not obvious how to deduce a compiler
module in this new scheme.

An earlier version of TADG was used to describe the con-
text-sensitive constraints of Pascal and to design those for
a language of nearly the ambition of Ada. In the case of
Pascal we found that some constraints were not clearly stated
in any formal or informal definition that we checked. For
example, the scope of definition of identifiers and the com-
patibility of types are ill-defined. In these cases we fol-
lowed Steensgaard-Madsen [Ste 79].

In the case of the more ambitious language we found that
the TADG did cause us to ask just the right questions and was
a good tool for recording the decisions as they were made.
It did, indeed, guide us toward a good design. It also
contributed to modularity in the design process in that we
delayed the design of the concrete syntax and the semantics
until after the constraints on the abstract-syntax trees were
finished.

Of course, we feel that TADGs are based on a natural
data type for the constraint problem. In fact, we found the
decorated tree to be ideal for input to the code generator,
which was itself described in an extension of TADG notation.

What we are most dubious about is whether TADGs, or any
other related descriptional method now available, model in a
good way what the reader does when he reads the program.
Given an error at a point of usage of an identifier, one
wants to refer back to its declaration. The usual environ-
ment mechanism, ignoring theside effects used here, is at
best a very implicit model of such a back reference and does
not make use of the available tree structure.

TADGS are self-contained, in that the environment can be
modeled via TADG rules, but this modeling seems to misuse the
(re-)decoration capability. We are still looking for a better
solution. The previous version of ~ADGs was directly imple-
mentaDle -- so much so that the implementation shined through
the notation and made it more a programming language than a
grammar. Finally, TADGs are clearly concise. They become
obscure only when intricate nonlocal correspondences must be
implemented via the environment.

319

References (Internal page references below each reference.)

[Ada 79] Preliminary Ada reference manual. SIGPLAN Notices
14(6A), June 1979.

[Boc 76] Bochmann, G.V.: Semantic evaluation from left to
right. CACM 19, 55-62, 1976.

[Cul 73] Culik, K.: A model for the formal definition of
(3) programming languages. IJCM A(3), 315-345, 1973.

[DeR 74]
(7,10)

De Remer, F.: Review of formalisms and notation.
In: Compiler Constrution - An Advanced Course
(F. L. Bauer and J. Eickel, eds.), Lecture Notes in
Computer Science 21, Springer-Verlag, N.Y., 1974.

[JOR 75]
(i)

Jazayeri, M., Ogden, W.F., and Rounds, W.C.
Complexity of the circularity problem for attribute
grammars. CACM 18(12), 697-706, December, 1975.

[Knu 68] Knuth, D.E.: Semantics of context-free languages.
(i) Math. Sys. Theory 2(2), 127-145, 1968(errata 1971).

[Kos 71] Koster, C.H.A.: Affix grammars. In: ALGOL 68
(i) Implementation (J.E. Peck, ed.) , 95-109, North-

Holland, Amsterdam, 1971.

[M&J 80]
(i)

Madsen, M. and Jones, N.: Letting the attributes
influence the parsing. Workshop on Semantics-
Directed Compiler Construction, Aarhus, Denmark,
January, 1980.

[McC 62] McCarthy, J., et al: LISP 1.5 Programmer's Manual.
(5,16) MIT Press, Cambridge, Mass., 1962.

[Rou 70] Rounds, W.C.: Mappings and Grammars on Trees.
(5) Math. Sys. Theory 4(3), 257-287, 1970.

[Ste 79] Steensgaard-Madsen, J.: Pascal clarifications and
(18) recommended extensions. Acta Inf. 12, 73-94, 1979.

[Ten 76] Tennent, R.D.: The denotational semantics of pro-
(6,14) gramming languages. CACM 19(8), 437-453, Aug. 1976.

[Van 75]
(2)

Van Wijngaarden, A., et al: Revised report on the
Algorithmic Language ALGOL 68. Acta Informatica 5,
1-236, 1975; Springer-Verlag, N.Y., 1976.

[Wat 74]
(1,2)

Watt, D.A.: LR parsing of affix grammars. Report
7, Comp. Sci. Dept., Univ. of Glasgow, Aug., 1974.

[W&M 79]
(1,2)
(7,14)

Watt, D., and Madsen, O.: Extended attribute gram-
mars. DAIMI report no. PB-105, Comp. Sci. Dept.,
Aarhus University, Aarhus, Denmark, November 1979.

