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ABSTRACT 

Research in progress is reported regarding a variation 
on attribute and affix grammars intended for describing the 
"static semantic" or "context-sensitive syntactic" con- 
straints on programming languages. The grammars are oriented 
toward aDstract-syntax trees, rather than concrete-syntax 
strings. Attributes are also trees (only) and predicates are 
simply nonterminals, defined just as other nonterminals are, 
NOT in some extra-grammatical way. Moreover, trees are 
allowed as decorations on trees. Thus, the formalism is com- 
pletely self-contained. The grammars are proposed for langu- 
age specifications in reference manuals and for the automatic 
generation of practical compiler modules. Such a module is 
given an abstract-syntax tree, analyses it, and produces the 
checked, decorated tree as its result. 

Key words and phrases: static semantics, context-sensitive 
syntax, attribute grammars, affix grammars, abstract syntax, 
concrete syntax, language specification, compiler generation, 
translator writing system. 
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Introduction 

Brief history. In 1968 Donald Knuth invented attribute 
grammars to describe the semantics of context-free languages 
[Knu 68]. Basically these are context-free grammars (CFGs) 
extended by the addition of "attributes" to the nonterminals. 
Each attribute may take on any value of some given data type, 
and the attribute values in any given production p must be 
related as specified by some equations associated with p. 
These equations may involve arbitrary functions on combina- 
tions of the attribute data types involved. 

The attribute dependences imply a graph associated with 
each derivation tree of the underlying CFG. The problem of 
of deciding whether a given attribute grammar defines circu- 
lar graphs, and thus sentences with undefined semantics, is 
very difficult [JOR 74]. However, given that the grammar has 
been confirmed not to produce circularities, the attribute 
dependencies imply a deterministic processor to compute the 
attributes and thus the semantics of any given sentence. In 
effect such a processor flows attribute values along the 
edges of the dependency graph until all values are computed 
and all equations have been satisfied. Attributes that flow 
down the tree are called "inherited"; those that flow upward 
are called "synthesized" or "derived". Functions involved in 
evaluating attributes are defined outside the grammar. 

It can be determined~ by analysis of the grammar, how 
many passes around the derivation tree of a general sentence 
will be necessary to evaluate the attributes [Boc 76]. More- 
over, under stringent conditions it is even possible to com- 
pute the attributes during parsing [Wat 74]. This, in turn, 
has led to the (anti-modular) idea of letting the attributes 
influence the parsing |Wat 74] [W&M 79] [M&J 80]. 

In 1971 Kees Koster invented affix grammars, based on 
two-level grammars [Van 75]. Affix grammars are much like 
attribute grammars but were intended primarily for the 
purpose of describing the context-sensitive aspects of 
programming languages [Kos 71], called by some the "static 
semantics". Affix grammars have parameters, called "af- 
fixes", associated with the nonterminals. The effects of the 
"semantic equations" of attribute grammars are achieved via 
"predicate nonterminals" that generate the empty string while 
imposing a constraint, defined outside the grammar, on the 
values of the affix variables. 

The affix values are specifically restricted to flow 
from left to right by restricting the affixes to depend only 
on others to their left in each production. With the add- 
ition of an LL(k) constraint on the underlying CFG, it is al- 
ways possible to implement the grammar as a recursive-descent 
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parser with value parameters in place of "inherited affixes" 
and result parameters for "derived affixes". The parser sim- 
ply calls predicates at appropriate times in the parsing pro- 
cess to enforce context-sensitive constraints and to compute 
the affix values. Watt has extended this idea to LR(~) par- 
sers [Wat 74]. 

In 1979 Watt and Madsen combined some of the best ideas 
from attribute, affix, and two-level [Van 75] grammars to 
form a very civil "extended attribute grammar" (EAG) [W&M 79]. 
Two advantages of EAGs are that they are easy to conceptual- 
ize as generative systems and that they are relatively com- 
pact and easy to follow. However, they do not differ suffi- 
ciently for our purposes here to warrant a description. 

Our point of view. It is our thesis that language 
descriptions can and should be modularized, just as large 
programs can and should be, by the principles of structured 
programming. Proper modularization will occur when the 
"natural fracture planes" are found in language descriptions, 
and correspondingly, in compiler structure. Not all such 
boundaries have yet been found. Indeed, all practical 
compilers and language definitions to date are either large 
and momolithic, or some or all of their components have messy 
interfaces and/or far too many interconnections. 

We also believe that restrictive formalisms help define 
such boundaries. For example, lexical grammars define scan- 
ners based on finite-state technology, and phrase-structure 
grammars define parsers based on deterministic pushdown tech- 
nology. The natural fracture plane between these two is 
characterized by a language of token sequences. The modular- 
ization is effective at reducing the total number of states 
in the compiler "front end" and at enhancing the comprehens- 
ibility of the total language definition. The limited tech- 
nology at each level restrains us from being overly ambitious 
at that level. 

It must be emphasized, however, that these are only re- 
straints. It is our opinion that even now CFGs are being 
overused. For example, the Algol 60 grammar tried to des- 
cribe type checking, a thoroughly context-sensitive issue, 
and became ambiguous for its inadequate efforts. This "error" 
is repeated in all too many grammars modeled on that one. 
In general, we find that so many minor restrictions are typi- 
cally "wired" into CFGs that they are much more difficult to 
comprehend than is necessary. The Ada grammar is a recent 
case in point [Ada 79]. 

We propose instead to use CFGs primarily to generate all 
desired programs and to associate with each the appropriate 
phrase structure. Never mind undesired programs at this 
level. The formalism is not powerful enough for such screen- 
ing, nor should it be. It should restrain our ambition and 
focus the design. But the problem is bigger than that. 
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The reason CFGs are overused is precisely that we lack 
acceptable formalisms for capturing the context-sensitive 
constraints and, separately, the dynamic semantics, in a 
modular way. Stated another way, given only tools for part 
of the language design process, we typically start off with 
an entirely wrong focus. 

It is furthermore our thesis that the abstract syntax of 
a language [McC 62] is THE place to start when designing or 
learning it, and that the "language" of abstract-syntax trees 
(ASTs) characterizes this level quite naturally. Thus, since 
an AST, or a linearization of it, is the natural output of a 
parser, we argue that context-sensitive constraints should be 
addressed to ASTs, rather than to concrete-syntax strings. 
The concrete syntax is complex enough already, where operator 
precedence, bracketing, noise words, and the like, are enough 
to contend with. Rather than bog down an already overloaded 
CFG, we propose to adapt the attribute/affix technology to 
trees, ASTs. What is needed is an "attributed dendrogrammar" 
that generates a "dendrolanguage". (Greek "dendron" means 
"tree".) 

Finally, it is our thesis that "decorated" trees serve 
well as the intermediary between the context-sensitive syn- 
tactic and dynamic semantic levels of language specification/ 
processing [Cul 73]. By "decorations" we mean, for examples, 
explicit links from uses of identifiers back to the subtrees 
that represent their declarations, links from calls to the 
procedures called, from returns to the procedure returned 
from, from exits to the loops exited from, etc. In general, 
the idea is to make explicit all the implicit or symbolic 
references. 

Thus, we propose a kind of grammar for descriDing decor- 
ated ASTs, to capture the context-sensitive syntax of pro- 
gramming languages, from which a practical compiler module 
can easily and directly be constructed. This module would 
primarily drive the declaration table mechanism of the compi- 
ler, enforcing scopes of definitions and type compatibility 
rules, resolving and explicitly recording nonlocal referen- 
ces. It would take the AST from the parser and deliver the 
decorated AST to the code generator. Correspondingly, we 
would argue that any formal specification of the (dynamic) 
semantics of the language should be based on the decorated 
AST as the starting point, although we will not pursue that 
position here. 

We emphasize that we are NOT looking for a universal 
solution to the language ~esign/specificaticn/implementation 
problem across all levels. Indeed, we are addressing one 
isolated subproblem, in the style of structured prcgramming. 
The goal is the modularizaticn of the design prccess, langu- 
age specification (definition), and its implementation, and 
most importantly, better programming languages. 
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Criteria for a good context-sensitive formalism. There 
follows a list of criteria for a good formalism aimed at the 
context-sensitive syntax (CSS) level of programming languages: 

(i) It should encourage the designer of the language to 
ask just the right questions and consider all aspects of the 
CSS. Indeed, it should guide him toward a good design and 
provide a good notation for recording design decisions. 

(2) It should encourage, and indeed help define, clean 
boundaries between the context-free syntax and the CSS on the 
one hand, and between the CSS and the (dynamic) semantics on 
the other. Thus, it should contribute to modularity in the 
language design process, in the language descriptions, both 
formal add informal, and in the implementation. 

(3) It should be based on a data type that is natural 
to the CSS problem: e.g. abstract-syntax trees rather than 
concrete-syntax strings, and futhermore, decorated ASTs as 
the result, just as ASTs are the "result" of context-free 
(transduction) grammars. 

(4) It should preferably model accurately what the hu- 
man reader does when he reads add debugs a program, so that 
it will be most useful as a reference. 

(5) It should De totally self-contained, not needing 
supporting definitions outside the grammar. 

(6) It should be automatically implementable, just as 
CFGs are, resulting in a practical compiler module. Prefer- 
ably this should not involve any problems as difficult as the 
circularity problem for attribute grammars, although this is 
a minor issue. More importantly, it should be possible to 
detect and report meaningfully any inconsistencies or circu- 
larities in a given CSS specification. 

(7) Finally, to include some motherhood and apple pie, 
the notation for writing a CSS specification should be con- 
cise, but not to the point of obscuration, and simple, yet 
powerful. 

Preview. The general idea of our proposed CSS notation 
is presented in the next section, primarily via a small 
sample language from elsewhere. Then comes a summary of our 
current approach to formalizing the notation as a grammar. 
Next the pragmatics of using the notation in a reference man- 
ual, and automatically generating a compiler module from it, 
are discussed briefly. Finally, a brief summary and evalua- 
tion of the notation is made relative to the above criteria. 

The results reported here are from the Masters and Ph.D. 
thesis work, in progress, of the second author, under the 
supervision of the first. 



305 

The general idea of tree-affix dendrogrammars (TADGs) 

Underlying dendrogrammar. The general idea has already 
been given away in the introduction. TADGs are based on 
"dendrogrammars", essentially context-free grammars that gen- 
erate trees, rather than strings [Rou 70]. Greek "dendron" 
means "tree". Actually, what is generated is a direct string 
representation of a tree, namely "Cambridge Polish" [McC 62] o 
Thus, the tree 

b c 

is represented by "<+ a <~ b c>>". In our dendrogrammars the 
symbols "<" and ">" are meta-symbols, and terminal symbols 
are distinguished from nonterminals by quoting the former and 
using "identifiers" with the first letter capitalized for the 
latter. Thus, a "dendroproduction" with left part E and 
right part indicating a "+" node with two E subtrees is 
written "E -> <'+" E E>". When there are several right parts 
for one left part, we factor out the left part; and we termi- 
nate rules with a semicolon; e.g. 

E -> <e+, E E> 
-> <'neg" E> 
-> "<INTEGER>'; 

The latter alternative illustrates a "pseudo-terminal", a 
terminal that has subrosa information, namely the actual text 
of the symbol. In this case literal integer numbers are 
intended. The angle brackets included in the quotes are 
intended to suggest that, although it is a terminal as far as 
the dendrogrammar is concerned, there is additional subrosa 
information, which could be viewed as subtrees, i.e. one leaf 
per character (digit, here). 

Affixes, constraints. TADGs follow affix grammars in 
that they specifically admit of only right-to-left affix 
dependencies, and thus only left-to-right flow of attribute 
values. This flow, however, is relative to the grammar nota- 
tion itself, not the tree generated. Indeed~ a TADG can 
explicitly specify several passes around any given subtree. 

Latin "affix" means "attachment". Nonterminals have 
affix variables attached to them through which context- 
sensitive constraints are implemented. Conceptually, TADGs 
flow information around ASTs that they generate, rather than 
the derivation trees of generated strings. 
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Moreover, TADGs allow TREES ONLY as affix or attribute 
values, so nonterminals can serve the purpose of predicates 
as well as generators. Thus, the formalism is totally self- 
contained, a property that neither affix nor attribute gram- 
mars have. It is also possible to name subtrees, pass them 
as affix values, and thus specify multiple traversals of 
them. Finally, it is possible to "decorate" one subtree with 
another. Let us consider an example: 

S 
-> <'while" E S> 

: Statement T Env 
{E: Expression V Env A "boolean'} 

If the constraints to the right are ignored, there 
remains a simple dendroproduction indicating the abstract 
syntax of a while loop. The first constraint indicates that 
the left part S denotes or generates members of the domain 
Statement [Ten 76], the definition of which is sensitive to 
the context or environment Env, an inherited (T) affix. The 
recursive occurrence of S in the right part abides by this 
same restriction, in the same environment Env, by impli- 
cation, although this could have been explicitly overridden. 
The second constraint indicates that the subtree E is in the 
domain of Expression(s) of type "boolean" in the context Env. 
The "type" is specified by the derived (A) affix, which must 
be the tree (leaf) "boolean" only. Now consider: 

E 
-> <'+" E E> 

-> "<INTEGER>" 
-> <N> dec D 

: Expression ¥ Env A Type 
A "integer" 
{E: Expression T Env & "integer 
A "integer" 
A T 
{N: From ¥ Env A D} 
{D: <'var" <M> <T>>}; 

-} 

The usual constraint on E is overridden under the "+" node 
so that those subtrees (subexpressions) can be required to be 
of type "integer" The derived (A) type of the sum is speci- 
fied on the line with the "+" to be "integer" The literal 
integer case is straightforward. 

The case of an identifier N is the most difficult. The 
surrounding angle brackets indicate that N is a "parameter", 
a place holder for ANY arbitrary subtree. N is restricted to 
an identifier by the nonterminal From, which we regard as 
predefined and system implemented though it can be defined in 
TADG notation, and which retrieves from the environment the 
subtree D associated with N. The association must have 
been established by a declaration, as we shall see shortly. 
D is required to be a subtree with "var" as the name of its 
root and with two subtrees, M and T, with no constraints 
on them. (In fact, M will be the same identifier as N.) 
T is the derived type in this case. 
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Finally, we note that D is also specified as the 
decoration on N; thus, from N there is a direct link to its 
declaration. A resulting decorated tree might look like: 

_ ...... x3 1 

Declarations are specified by the nonterminal D as being 
in the domain Declaration in context Env, upon which there is 
a side effect, namely the name N is associated with the 
declaration (D) by the predefined function Into: 

D 
-> <'var" <N> <T>> 

: Declaration • Env 
{N: Into Y Env • D}; 

A substantial example~ The next two pages contain two 
grammars adapted from the extended attribute grammar of Watt 
and Madsen [W&M 79]. The little language described is rough- 
ly a subset of Pascal, except that, like Algol 60, mutually 
recursive procedures do not require a forward declaration. 
Surprisingly, at least one variable declaration is required 
at the head of each block, and each procedure (and call) must 
have at least one parameter. Our grammars faithfully adhere 
to these conventions, although it is easy to allow zero in 
each case. 

The first grammar describes the context-free concrete 
syntax and the translation to abstract-syntax trees, while 
the second describes the contextual constraints on ASTs and 
their decoration. Of course Watt and Madsen did not specify 
ASTs and their decoration. Nonetheless, the second grammar 
is believed to impose exactly the same context-sensitive 
restrictions as their grammar. 

Concrete syntax. The first grammar below, GI, is a 
regular right part, string-to-tree transduction grammar fDeR 
74], i.e. a context-free grammar with (extended) regular 
expressions in right parts of productions, and optionally, a 
tree part with each right part. The tree part, if present, 
is preceded by "=>" and indicates what node name is to parent 
the subtrees associated with the nonterminals and pseudo- 
terminals of the right part. A pictorial version of a 
dendrogrammar PDG generating the same ASTs generated by G1 
is presented in comment form following GI. 
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# Concrete syntax -- G1 
# 
parser Program: 

Program -> Block ". "; 

Block 

Vdcln 
Pdcln 

Fparm 

Type 

• , -) - -) 
-> vat" (Vdcln ; + (Pdcln ; * 

• begin" Stmt list ";" "end" => •block•; 

S tmt 

-> Name ": Type => var ; 
• • . • • •) • 

-> procedure Name "( Fparm list ; 
Block => "proc'; 

-> var" Name ": Type => "ref" 
-> Name ":" Type => "value'; 
-> < •boolean • I "integer" > 
-> "array" "[" Integer .. " Integer "] " 

"of" Type => •array•; 

-> "begin • Stmt list ";" "end" 
-> "if" Expn •then" Stmt •else • Stmt 
-> "while • Expn "do • Stmt 
-> Variable :=" Expn 
-> Name "(" Expn list , •) 

Expn 

Sexp 

Term 

-> Sexp < "=• i •<>" > Sexp 
-> Sexp; 
-> Sexp < "+• I •-" > Term 
-> Term; 
-> < "true" I •false • > I Integer 
-> Variable I "(" Expn ")'; 

Variable-> Variable •f" Expn "] • 
-> Name; 

Name -> •<IDENTIFIER>'; 
Integer -> •<INTEGER>'; 
end Program 

=> "." 
l 

=> "if • 
=> "while" 
~> " . := 

=> "call'; 

# 
# Abstract syntax -- PDG 
# 
#B: ~ # S: ~ 

# D+ P* S+ S+ 
# 

/ \E # E E E 
# 

# N F+ B N T 
# 

# 
# 
# 

=> "rlnop • 

=> "add,p" 

E S S E S 

=> •subscript" 

# Lexical. 
# Lexical. 

Program: B 

V E N E+ 

! \ 
N T 

I I T 

I V 

# end of pictorial abstract syntax. 

v: s bscrip9 
/ \ 

V E 

N 

N : C<iDgNTI~iER~) 
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# Contextual constraints -- G2 
# 
attributer Program: # "MtE" = empty environment, 

Program : Pgrm 
-> B { : Open • "MtE" & EnvGlobal} 

{B: Block ¥ EnvGlobal}; 

B : Block W EnvLocal 
-> <'block" D+ P* S+> {D: Dcln • EnvLocal} 

{P: Dcln • EnvLocal} 
then {P: Pbody • EnvLocal} 

{S: Stmt T EnvLocal}; 

S : Strut 
-> < ; S+> 
-> <'if" E S S> {E: Expn 
-> <'while" E S> {E: Expn 
-> <':=" V E> {V: Vrbl 

{E: Expn 
-> <'call" <N> dec D E+> {N: From 

• Env 

¥ Env A "boolean'} 
• Env A "boolean'} 
• Env A Tcommon} 
• Env A Tcommon} 

Env A D} 
{D: <'proc" <X> <F>+ <B>>} 
{F: <'ref" <Y> <Tcommon>> 
E: Vrbl ¥ Env & Tcommon 
IF: <'value'<Y> <Tcommon>> 
E: Expn T Env A Tcommon}; 

P : Pbody W Env 
-> <'proc" <N> D+ B> { : Open W Env & EnvLocal} 

{D: Dcln • EnvLocal} 
then {B: Block ¥ EnvLocal}; 

D 
-> <('var'I'ref'I "value'I 

"proc') <N> ...> 

: Dcln 

{N: Into 

• EnvLocal 

• EnvLocal ¥ D}; 

E 

-> <'rlnop" E <Op> E> 

-> <'rlnop" E <Op> E> 

-> <'addop" E <Op> E> 

-> ('true • ~ "false') 
-> "<INTEGER>" 
-> V 

: Expn • Env A Type 
A. "boolean" 
{E: Expn • Env A "boolean'} 
& "boolean" 
{E: Expn V Env & "integer'} 
A "integer" 
{E: Expn • Env A "integer'} 
A "boolean" 
A "integer" 
A Tvar 
{V: Vrbl • Env A Tvar}; 

V 
-> <'subscript" V L> 

-> <N> dec D 

end Program 

: Vrbl T Env A Yype 
A Telem 
{V: Vrbl T Env A T} 
{E: Expn V Env A "integer'} 
{T: <'array" <L> <U> <Telem>>} 
A T 
{N: From • Env • D} 
{D: < ( "var" I "ref" i "value') <X><T>> } ; 



310 

The only two pseudoterminals in G1 are <IDENTIFIER> and 
<INTEGER>. Each occurrence of these, including the actual 
text of the token, is included in the AST by default. On the 
other hand, terminals are not included in the tree, except as 
they are encoded into the node name of the production in 
which they appear. The left part of a production is associ- 
ated with the tree specified by its right part and tree part, 
if any. The four operators.of the language, and the. four key 
words, "boolean', "integer , "true , and "false , are sur- 
rounded Dy angle brackets, < and >, meaning to override the 
default and include these terminals as leaves in the tree. 

If the pictures following G1 do not make the string-to- 
tree correspondence obvious, the reader should review prior 
work [DeR 74]. However, it may De useful to review the mean- 
ings of the regular operators: "list" means a list of that to 
its left separated by the delimiter to its r~ght, "+" means 
one or more occurrences of that to its left, "*" means zero 
or more, "?" means zero or one, i.e. optional, and "I" means 
either that to its left or that to its right. Terminals are 
in single quotes in these grammars. Nonterminals are just 
standard identifiers. Meta-symbols are unquoted, e.g. ->, ;. 

Dendrogrammar. Assuming that the reader has a firm grasp 
of the simple abstract syntax of this little language, we 
procede to G2 and the context-sensitive constraints on the 
language. In this notation regular operators are used on 
trees, really on string representations of trees, just as 
they are used on strings in the concrete-syntax realm. Thus, 
"<'block" D+ P* S+>" denotes a "block" node whose subtrees 
consist of: one or more D subtrees, then zero or more P's, 
then one or more S subtrees. 

Grammar G2 is laid out such that, if all the constraints 
to the right are covered up, all that remains is the "under- 
lying dendrogrammar" UDG2 with decorations indicated by the 
key word "dec'. Thus, each variable name gets decorated with 
a D subtree, namely the one representing its declaration, as 
we shall see; and each procedure name is decorated with the 
corresponding procedure definition suDtree, as will be 
deduced from the constraints. 

Note, however, that UDG2 is not equivalent to the pic- 
torial dendrogrammar PEG of the page preceding it. In parti- 
cular, each name N in UDG2 is left unspecified. Futhermore, 
the nonterminal I has been back substituted away (it was in 
PEG only as an abbreviation anyway); T does not appear at all 
in UEG2; and D, F, and P of PEG nave been merged into just D 
in UDG2, although P also remains in UDG2, and the production 
for D contains the "..." notation, indicating that ANY 
sequence of subtrees or "orchard" is derivable following the 
first subtree N of a "var', "ref', "value', or "proc', node. 
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The "block" case is interesting because it specifies 
some explicit dependencies~ and thus sequencing for the 
parser. The D and P subtrees can be derived or parsed 
in any order, but, as indicated by the key word "then', 
this must happen before the P's are confirmed also to be 
in the subdomain Pbody ¥ EnvLocal, and independently, that 
the S's are in Stmt ¥ EnvLocal. This ordering is necessary 
because our model of an environment is one with side effects, 
as discussed below. Thus, the grammar mirrors what the reader 
must do to read a program top-down: in each block he must 
scan the declarations and procedure headers, to find out what 
is defined, but not how procedures work, BEFORE investigating 
procedure bodies and the statements that are the block body. 

Note that procedure bodies are derived in a definite 
order also. First a new "scope of definition" is opened in 
the environment, resulting in a local version. Then the for- 
mal parameter declarations are derived, as indicated by the 
attribute dependency: the EnvLocal derived by Open is inher- 
ited by Dcln. Then the block can be derived, as indicated by 
the keyword "then'. 

The nonterminal D (promiscuously) generates declarations 
of both variables and formal parameters, as well as procedure 
declarations. Its only real purpose is to enter the name N 
"Into" the current environment, associating it there with 
the very declaration D just derived (parsed). 

Thus, when V generates a name N, it is constrained to be 
an identifier by "From" which also retrieves the associated 
declaration subtree D From the environment. The name N is 
decorated with D, which is constrained to be a "var" "ref" 

, s , ' 

or "value subtree, not a proc , with two subtrees X and T. 
T is used to represent the type of the variable for economy's 
sake, and is the derived attribute of Vrbl in this case. It 
happens that we know that x will be the same identifier as N, 
by definition of the environment mechanism, but this need not 
be checked here (which it could be by changing <X> to <N>). 

The "subscript" case derives the V and E subtrees inde- 
pendently, requiring that E be of type "integer" and that V 
be of type array with element type Telem, which is the 
derived Type of Vrbl in this case, as indicated by "A Telem" 
to the right of <'subscript" ... >. The L and U subtrees are 
not restricted by this grammar, but are known from grammar G1 
to be "<INTEGER>" nodes, i.e. leaves representing literal 
integer constants. (We could have replaced "<L> <U>" with 
"..." since they are unrestricted.) 
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Such mergers and missing restrictive specifications mean 
that UDG2 derives a superset of the ASTs generated by GI. 
This is perfectly all right, since redundant restriction is 
pointless in this modular language specification. Note also 
that, had it been useful, some further restriction could have 
been achieved by designing UDG2 to generate a subset of some 
portion of the tree language generated by Cl, getting the 
effect of intersecting two context-free languages. For exam- 
ple, type checking could have been achieved in this trivial 
language by generating Boolean expression subtrees only where 
allowed, etc. We chose not to do that here to keep a close 
correspondence with the matt grammar and because that techni- 
que does not work for more complex languages in which the 
programmar can define new types. 

Finally for UDG2, note that the grammar is ambiguous in 
E, because of the two identical right parts defining rela- 
tional expression subtrees. Also, V is ambiguous, since the 
parameter <N> derives ANY subtree, including the "subscript" 
alternative. These ambiguities will be eliminated by con- 
straints. Thus, a deterministic "tree parser" will be con- 
structable to "recognize" the AST and impose the constraints. 

Constraints. Now consider the right half of G2, the 
constraints. Each left part now contributes to a syntactic 
(tree) domain, parameterized by zero or more inherited or 
derived attributes. Thus, S no longer generates just any 
statements, but only those that are meaningful in a par- 
ticular environment Env (or context, or in compiler terms, 
a declaration table), as indicated by the new left part: 
"S : Stmt • Env". The domain Stmt is the union of some 
subdomains (not partitions), each of which is the set of 
statements derivable in a particular environment. In G2 S 
is the only nonterminal with Stmt as its constraint in the 
left part, therefore it is the only contributor to the domain 
Stmt, and so S derives the entire domain. Such uniqueness is 
always the case in this simple grammar. Similarly, express- 
ions (Expn) are derived by E in an (inherited) Env and with 
a (derived) Type. And so on. 

Consider the assignment statement, the ":=" node. The V 
subtree must be a variable (Vrbl) in the inherited Env and 
with some derived type, called here Tcommon. The E subtree 
must be an Expn in the inherited Env with the SAME derived 
type Tcommon. It matters NOT what order the two subtrees 
are derived or "parsed" in; they are independent -- in fact, 
ALL dependencies must be stated explicitly in these grammars. 
Of course, the assumed Env is inherited from the left part. 

Next consider the "while" statement. The E subtree must 
be an Expn in Env with the leaf "boolean" as its derived type. 
No restriction is stated for the S subtree, so the constraint 
of the left part is recursively applied by default. This de- 
fault applies, twice in the "if" right part, and one or more 
times in the ;" case, as needed. 
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The E productions should be easy to understand now, so 
let us consider the most complex case, "call'. Were we get 
the procedure subtree D From the Env by constraint on N. D 
must not be a "var', "ref', or "value" subtree, but a "proc" 
with each formal parameter denoted F. Independently, each F 
is required to be a "ref" with right subtree Tcommon AND 
(juxtaposition) the corresponding actual parameter is requir- 
ed to be a Vrbl in Env with the same type Tcommon, OR (~) 
alternatively, F must be a "value" with right subtree Tcommon 
AND the actual must be an Expn in Env with the same Tcommon° 

Environments. The derivation process is started with 
the goal or start symbol, whose constraint is not parameter- 
ized. In this case Program starts by Open-ing a new scope 
relative to an initial environment that is empty. If the 
language had had any pre-defined procedures or variables, 
they would have been entered in the environment at this point. 
Now the derivation continues with B, given the "global" Env. 

We are still debating how much power the environment 
mechanism should have, and whether or not it should be side- 
effect-free. There seem to be clear advantages either way. 
Futhermore, it is not clear whether the environment formalism 
should be described in the TAnG for each new language, or 
extra-grammatically, once and for all -- for all languages, 
that is. This question is related to the problem of formal- 
izing and/or restricting the decoration of subtrees, so we 
leave the issue for further discussion below. 
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Formalization of TADGs 

This is the area in which our research is the least com- 
plete and conclusive. The following page defines the abstract 
and concrete syntax of TADGS, just as was done in the previ- 
ous section for the little programming language. That is, 
the page contains a reguler right part grammar for TAnGs. 
Soon to come will be a TADG for TADGs, i.e. a self-describing 
grammar on the context-sensitive level. Thus, initially we 
are treating TADGs as a programming language, a notation 
for programming constraint-checking phases of compilers. 

Our ultimate goal, however, is to devise a formal gram- 
matical model as a foundation for TADGs. The main stumbling 
blocks currently are the very aspects of TADGs that make them 
novel, powerful, and convenient, namely, the decorations and 
the environment mechanism. It is desirable to harness this 
power and to restrict it to no more than is needed for this 
problem area. As it is, Turing machines can easily be simu- 
lated. 

It may be possible to restrict the decorations so that 
they can be described generatively. This, no doubt, means 
disallowing redecorations, at least. Without any such limit- 
ation it is possible to use the decorations as memory cells 
and perform arbitrary iterative computations. Clearly, this 
is a misuse of what is intended to be a grammatical model. 
Relatedly, the ability to create new nodes, even whole sub- 
trees, "dynamically" for attributes and decorations, which we 
currently allow, will have to be curtailed. Indeed, we have 
rarely used the facility in practical grammars, and even when 
we have, it could have been avoided by defining an extra node 
or two in the AST. 

Finally, an approach to environments must be settled 
upon. Are the usual models, as used in attribute grammars 
[W&M 79] and denotational definitions [Ten 76], e.g., really 
appropriate for reference manuals, or are they just appropri- 
ate for compiler writers? Can one environment formalism be 
defined that will suffice for all well-designed languages? 
Or should a specialized mechanism be defined within the TADG 
for each new language? If the latter, then is it possible to 
deduce an efficient implementation for each? If so, how? 
These are some of our current research questions. 
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# 
# Concrete syntax of TADGs -- 
# 
parser TANG: 

TADG -> "attributer" Goal ":" 
Rule+ 
"end" Goal 

Goal -> Nontermnl; 
=> "attributer'; 

Rule -> Leftpart ('->" Rightpart)+ 
Leftpart -> Nontermnl ":" Predicate 
Predicate -> Pred name Inherits Derives 

Inherits-> ('¥'--Tree expn)* 
Derives -> ('A" Tree~expn)* 

Rightpart -> Tree_expn Derives Cnstrnts 

Cnstrnts -> Consgroup list "then" 
Consgroup -> ('{" Cons_expn "}')* 
Cons expn -> Cons term list "~" 
Cons term-> Cons-prim+ 
Cons~prim-> Parameter? 

"-" (Predicate ~ Subtree) 
-> "(" Cnstrnts ") "; 

=> "rule'; 
=> "leftpart'; 
=> "predicate'; 
=> "inherits'; 
=> "derives'; 
=> "rightpart'; 

" "9 => .sequence . ; 
=> group'?; 
=> "or'?; 
=> "and "?; 

=> "constraint" 

Tree_expn -> Tree term list "l" 
w 

Tree term -> Tree fact* 
--> ~et 

Tree fact-> Tree fact "dec" Parameter 
-- -> Tree--fact "has" Parameter 

-> Tree--prim "is" Parameter 
-> Tree-prim •+" 
-> Tree--prim "*" 
-> Tree--prim "?" 
-> Tree-prim; 

Tree_prim -> "<" ~arameter ">" 
-> "(" Tree expn ")" 
-> Subtree T Nontermnl; 

=> "alternates'?; 
=> "catenate" ? 
=> "any trees'; 
=> "decOrate" 
=> "decoration" 
=> "labeled" 
=> "one or more" 
=> "zero or more" 
=> "zero or one" 

=> •parameter" 

Subtree -> "<" Node name Tree fact* ">" => "subtree" 
-> Leaf; 

Node name -> "(• "<STRING>" list "~" ")" => "one of" 
-- -> •<STRING>'; 

Leaf -> "<STRING>'; # Lexical. 
Parameter -> "<IDENTIFIER>'; # Lexical. 
Pred name -> "<IDENTIFIER>'; # Lexicalo 
Nont~rmnl -> "<IDENTIFIER>'; # Lexical. 
end TADG 

# 

# "?" in tree parts means "do not Ouild the node if there 
# is only one subtree. 
# Contextual constraints -- 
# 

# Soon to come: a TADG for TADGs! 
# 
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Den~rogrammars. The underlying dendrogrammars of TADGs 
are about as easy to formalize as are context-free grammars: 

Definition. 

T 
N 

S 
P 

A (context-free) den~rogrammar G 
is a quadruple (T, N, S, P) where 

is a finite set of "terminal" symbols (node names), 
is a finite set of "nonterminal" symbols such that 
T, N, and { >, < } are mutually disjoint sets, 
is a member of N, called the "start symbol", and 
is a finite subset of N x L(G trees) where 
each "dend ' " P written A -> w, roproductlon in is 
w is called the "right part" (a tree expression), 
A is called the "left part" (a nonterminal), and 
G trees is a context-free grammar (Tt, Nt, St, Pt) 
w~ere Tt = T U { >, < }, Nt = {St, Tree}, and Pt = 
{ St -> St Tree, Tree -> t for all t in T, 

St -> (empty), Tree -> < t St > for all t in T ~. 

Note that G trees is a CFG that generates "tree expressions", 
namely, Cambridge Polish notation [McC 62] with angle brack- 
ets serving as meta-parentheses and with terminals in T ser- 
ving as node names, both interior and leaf. Of course, 
L(G trees) is the language generated by G_trees, and L(G) 
is ~he "dendrolanguage" generated by G, as usual for CFGs. 

In general, the tree expressions denote sequences of 
trees, or "orchards", rather than just trees, so G generates 
orchards in general, too. The former is handy because it 
allows us to describe n-ary trees, or "bushes", which are 
rather more useful often than r~nked trees (a fixed number of 
subtrees per node name). Relatedly, add even more useful, as 
the former TAnGs have clearly demonstrated, is the idea of 
allowing regular expressions in the right parts of dendropro- 
ductions, resulting in a "regular right part dendrogrammar". 
The above definition is easily extended to "RRPDGs" by in- 
cluding the desired additional meta-symbcls in G trees appro- 
priately. See for example the .~ree expn suogrammar of the 
TADG concrete-syntax grammar. 

We believe that further research will produce extensions 
of the above definition to describe first decorated trees and 
then affixes and constraints. 
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Use in reference manuals and compiler construction 

Each reference manual should be organized around the ab- 
stract syntax of the language it describes. Thus, its major 
sections should correspond to the syntactic domains, plus a 
separate section for the lexicon and appendices for the indi- 
vidual, collected grammars and other terse summaries. At the 
least, there should be included a lexical grammar, a context- 
free phrase-structure grammar, a context-sensitive constraint 
grammar, and a formal definition of the semantics. 

Each syntactic domain section, e.g. for declarations or 
statements or expressions or variaDles, should be subdivided 
according to individual language constructs, e.g. the "while" 
statement, the "loop" statement, including the corresponding 
"exit', the "procedure" definition, including "call" and re- 
turn', etc. Each construct description should look something 
like the following sample: 

#*** "while" Statement ****************************** 

Concrete syntax: 

Abstract syntax: 

"while" Expression "do" Block "od" 

<'while" E S> 

Constraints: E: Expression T Env A "boolean" 
S: Statement T Env 

Semantics: 

Discussion: 

~.. (denotational definition?) 

°.® (informal description) 
(special notes, etc.) 

Construction of a practical compiler module from each 
language level description should be straightforward, though 
there is a long way to go toward that goal, especially in the 
semantics area. The goal has been attained in the lexical 
and phrase-structure areas and attainment is now eminent in 
in the area of context-sensitive constraints. In the case of 
TADGs, we expect to know soon how to map each one into a 
practical set of recursive tree-traversing procedures that 
pass value parameters for inherited affixes and result para- 
meters for derived affixes, decorating the tree as they pro- 
ceed. We already perform this mapping manually, getting 
scope and type checking compiler modules that are quite 
satisfactory, in both size and speed. However, at least 
another year will be needed to get the TADGs well defined and 
the mapping to a compiler module automated. 
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Summary and evaluation 

Our research in this area is very much on-going. The 
form of TADGs presented here is different from what was pre- 
sented at the Workshop on Semantics-Directed Compiler Gen- 
eration in January, 1980. Just in the last week the second 
author has proposed a revised scheme that utilizes decora- 
tions so well that affixes are unnecessary and that has a 
user-oriented way of specifying scopes of definition, in 
place of the more compiler-oriented environment scheme usual- 
ly used in attribute grammars and denotational definitions. 
On the other hand, it is not obvious how to deduce a compiler 
module in this new scheme. 

An earlier version of TADG was used to describe the con- 
text-sensitive constraints of Pascal and to design those for 
a language of nearly the ambition of Ada. In the case of 
Pascal we found that some constraints were not clearly stated 
in any formal or informal definition that we checked. For 
example, the scope of definition of identifiers and the com- 
patibility of types are ill-defined. In these cases we fol- 
lowed Steensgaard-Madsen [Ste 79]. 

In the case of the more ambitious language we found that 
the TADG did cause us to ask just the right questions and was 
a good tool for recording the decisions as they were made. 
It did, indeed, guide us toward a good design. It also 
contributed to modularity in the design process in that we 
delayed the design of the concrete syntax and the semantics 
until after the constraints on the abstract-syntax trees were 
finished. 

Of course, we feel that TADGs are based on a natural 
data type for the constraint problem. In fact, we found the 
decorated tree to be ideal for input to the code generator, 
which was itself described in an extension of TADG notation. 

What we are most dubious about is whether TADGs, or any 
other related descriptional method now available, model in a 
good way what the reader does when he reads the program. 
Given an error at a point of usage of an identifier, one 
wants to refer back to its declaration. The usual environ- 
ment mechanism, ignoring theside effects used here, is at 
best a very implicit model of such a back reference and does 
not make use of the available tree structure. 

TADGS are self-contained, in that the environment can be 
modeled via TADG rules, but this modeling seems to misuse the 
(re-)decoration capability. We are still looking for a better 
solution. The previous version of ~ADGs was directly imple- 
mentaDle -- so much so that the implementation shined through 
the notation and made it more a programming language than a 
grammar. Finally, TADGs are clearly concise. They become 
obscure only when intricate nonlocal correspondences must be 
implemented via the environment. 
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