
A COMMUNICATION DATA TYPE

FOR MESSAGE ORIENTED PROGRAMMING t

P.R.F. Cunha and T.S.E. Maibaum*

Abstract: In this report we resort to a definitional specification

technique in order to be able to bridge the gap between pro-

gram specification and program implementation (expressed in

a high level application language) in message oriented pro-

gramming. We show how the notion of algebraic specification

can be used to formalize the communications primitives and

then applied to the verification of communications proper-

ties of parallel programs. We illustrate the method by

introducing elements of a calculus for reasoning about mes-

sage passing programs and then using a specification of the

consumer and producer problem and showing that the proposed

solution is deadlock free.

t
This work was partially supported by a grant from the Natural Sciences and

Engineering Research Council of Canada.

University of Waterloo, Department of Computer Science, Waterloo, Ontario,

CANADA N2L 3GI.

80

i. INTRODUCTION

The classical approach for dealing with complex problems and computer systems

in particular is to attempt their decomposition into smaller and simpler parts.

Processes are building blocks for the modelling of dynamic environments in which

parallel and distributed processing occurs. They play in parallel programming the

role of standard units which have been reserved for subroutines or procedures in

sequential programming. Process communication and synchronization can be achiev-

ed either through shared variables or by message transmission. It has been shown

[22] that the message transmission mechanism leads to a more general computational

structure, since shared variables can be viewed as a special case of message trans-

mission in which two processes cannot communicate at the same time. Furthermore,

shared variables cannot deal with the case in which processes run on different

nodes of a network of processors because they require a common address space. The

general idea of message passing for interprocess communication was preliminarily

discussed by Brinch Hansen in [2]° More recently the concept has been discussed

in a more general setting, by presenting processes and messages as both a struct-

uring tool and as a synchronization mechanism. Instances of this recent effort

can be found in Zave[22], Jammel[14], Hoare[13] and in the description of multi-

processing systems such as Demos[l], Mininet[19] and Thoth[4,5].

Zave[22] has argued for the naturalness, usefulness and generality of program-

ming with messages and processes. We think that a further characterization of

this programming technique is necessary. It needs to be at least as well under-

stood as the technique for parallel programming with shared variables. In other

words, design principles, specification and proof methods need to be developed for

the complete characterization of this novel programming style.

MacQueen[18] in an excellent recent survey studies some models for distributed

computing. The work concentrates on message passing systems for the same reasons

that we decided to study models based on processes and messages - that is, the

belief that the full promise of distributed computing is unlikely to be fulfilled

unless a new programming technology is developed to match the new hardware systems.

The reservations which we have about the models surveyed in [18] can be stated

as follows. The fact that the flow algebra model of [21], the actor model of [ii],

and the stream (data flow) model of [15] do not deal with the internal structure

of processes make them, like Petri nets, very operational in nature. In other

words, the model is too far removed from the control and data structures of pro-

grams to guide the designer in constructing a process. One might compare it to

the situation in which a sequential language is modelled semantically by using an

SECD like mechanism (Landin[16]). Knowledge of this semantic model is of very

little help in the construction of structured (sequential) programs. To be able

to bridge the gap between program specification and program implementation

81

(expressed in a high level application language), we resort to a definitional

specification technique. We show in section 2 how the notation of algebraic spec~

fication [9,10~17] can be formalized and used for modelling of properties of para-

llel programs. We illustrate the method in section 3 by outlining the elements of

a calculus for reasoning about message passing programs and then using a speci-

fication of the consumer and producer problem and showing that the proposed

solution is deadlock free.

2. A MODEL FOR MESSAGE PASSING

Let us assume that in a certain configuration of a system we have n processes~

Conceptually, to each of them we associate a set of n different buffers, which can

just contain one message individually. Each buffer is labelled with one of the

process names of the system and thus can only receive messages from this particuls_r

prccess. One possible conceptual representation for this communication model would

be a square matrix where the rows aud columns would be labelled with each of the

process names. Every time a create process operation is executed, we increase both

the number of rows and columns by one and we decrease them by the same value in

the destroy operation. We use the idea of environment in order to capture all the

past histor~ ~ of the communication mechanism, recording how the matrix, referred to

above, evolves from one configuration of values to another. The concept of envir-

onment models the interrelationship between processes which is altered only by the

communication mechanism. A practical implementation is present in the construct

called "switch" that is implemented in communications networks [19].

We will be considering the usual communication primitives found in most para-

llel systems: send, receive, create and destroy. It is assumed the non-blocking

send and blocking receive are used although we can edequately simulate the other

possibilities such as blocking send and blocking receive and so one Note that we

have not specified the body of the process in the operation create. (We preferred

a more abstract definition to concentrate only on the effect of various primitives

on the communication environment. We do not deal with issues raised by the nature

of a host language - such as which processes can create and destroy and how this

can be done.) We also define basic operations such as isthereprc (is there a pro-

cess), istheremsg (is there a message) and isprcblocked (is the process blocked).

The only way that a process can block is to do a receive operation on an empty

buffer.

We are now ready to define our communications data type. The sorts used are

Environment (or Env), Process-name, Message, and Boolean (or Beol). The syntax of

the operations is defined in the style of [9] as follows:

82

i. %: + Env

2. create: Process-name ~ Env ÷ Env

3. destroy: Process-name x Env ÷ Env

4. sendi: Process-name x Message × Env ÷ Env for each ieProcess-name (Pn)

5. receive.: Process-name x Env x Message ÷ Env for each icP
I n

6. isthereprc: Process-name x Env ÷ Bool

7. istheremsg: Process-name x Process-name × Env ÷ Bool

8. isprcblocked: Process-name x Env + Bool

9. isprcblocked: Process-name x Process-name x Env ÷ Bool

~. x: Process-name × Process-name × Env ÷ Message

~. i: + Process-name for each ieP
n

~. msg: ÷ Message for each msg c Message U {no-msg}

~. error: ÷ s for each s~Sorts

We now state the axioms for the type. Consider cp e {create(h), destroy(k),

send~(m,msg), receive~(m)} for ~,m variables ranging over Process-name, ~ and ~'

ranging over Env, msg ranging over Message.

i. create(%)(ep(o)) = create(~)(o') =

i error if cp eq create(£)

= create(~)(cp(~)) if ~' eq ¢

cp(create(~)(o)) otherwise

4.

5.

6.

7.

where the symbol "eq" denotes syntactic equality between terms.

destroy(~)(o) = i_f--~isthereprc(~)(o) then error

send~(m,msg)(o)

= if ("I isthereprc(~,m)(o) v istheremsg(~,m)(o)) then error

where--~isthereprc(%,m)(o) z--]isthereprc(~)(~) v --Tisthereprc(m)(o)

receive%(m)(o)

= if (--~isthereprc(~,m)(~))then error

send~(m,msg)(o) = if isprcblocked(%)(o) then erro~

receive%(m)(o) = if isprcblocked(%)(~) then error

x(~,m)(cp(~)) = x(Z,m)(o') =

error i~--~isthereprc(%,m)(o')

msg if (cp eq sendm(~,msg) a--~isprcblocked(~,m)(o)

= no-msg if ((cp eq sendm(~,msg) A isprcblocked(~,m)(~)) v

cp eq receive%(m) v cp eq create(k) v

cp eq create(m))

x(~,m)(o) otherwise

istheremsg(%,m)(~)

I error if x(%,m)(o eq error

= false if x(~,m)(o) eq no-msg

truee otherwise

2°

3.

88

8. isprCblocked(%)(cp(o)) - isprcblocked(~)(o') =

error i f--7isthereprc(Z)(~')

true if (cp eq receivez(m) A--]istheremsg(~,m)(o))

= false if (cp eq create(k) v cp eq send%(m,msg) v

(cp eq receivez(m) A istheremsg(o,m)(o))

isprcblocked(%)(~) otherwise

9. isprcblocked(Z,m)(cp(o)) = isprc:blocked(Z,m)(o') =

I error i f--]istherepre(k,m)(~')

tru_ e if (cp eq receivez(m) A--Tistheremsg(%,m)(o))

= false if (cp eq create(k) v cp eq create(m) v

cp eq sendz(m,msg) v (cp eq reeeive~(m) A

istheremsg(%,m)(o)))

ispreblocked(%,m)(o) otherwise

isthereprc(%)(cp(~)) = isthereprc(Z)(~') =

l error if ~' eq

= true if cp eq create(Z)

false if cp eq destroy(k)

isthereprc(%)(o) otherwise

[Note the way the environment ~ is used in the axioms (i.e. not as specified by

the syntax). This notation is preferred because sometimes the environment will be

implicit, as for example, in the code of a program.]

We will now endeavour to explain the intutitive meanings of (some of) these

axioms:

I. The creating operation cannot create a process with a name that was used to

label another process previously. This procedure implies that a name can just

be taken once.

3. In this model one process cannot send two consecutive messages to another one;

it has to wait until the first message is received. Therefore, it is "error"

if the receiving process m does not exist or if process Z tries to superpose a

a message on m's buffer.

4. Performing a receive operation when either the sending or receiving process

does not exist results in error.

i0.

7. istheremsg(%,m)(o) determines if, in the present environment, there is a mes-

sage sent by process Z to process m which has not yet been received by process

m. The operation x(k,m)(o) determines the value of the switch for the pro-

cesses ~ and m in the present environment by examining communication primitives

used in building the present environment.

8. A process % is blocked in an environment ~' if it is trying to do a receive

operation for wNich there has not yet been a corresponding send. So the axiom

84

determines if Z is blocked in o' as follows:

(i) If there is no process Z in ~', then we have error;

(ii) If 0' = receiveg(m)(o) and there is no message from m to Z in ~, then true;

(iii) If 0' = create(~)(o) then false (since ~ cannot be blocked if it has just

been created). If 0' = send£(m,,msg)(o) then false since Z cannot be blocked

if it has just done a send. (Finally, it is also false if we have the

negation of condition (ii) ;)

(iv) Otherwise, we can determine the value of ispreblocked(Z)(ep(o)) by evaluat-

ing ispreblocked(Z)(o). That is, we look in the previous environment.

I0. The explanation of this axiom is analogous to the previous one. We compute if

process Z exists in environment 0' by looking for create(Z) and destroy(Z) in

the communication primitives used to build o'.

Let us look at a simple example:

3" 010 1 2 ,, 4 ~ 00;

create(1)(o O) ~ Ol;

create(2)(Ol) z o2;

sendl(2,msgl)(a 2) ~ 03;

create(3)(03) z ~4;

send3(2,msg2)(o 4) ~ 05;

destroy(3)(o 5) ~ o6;

receive2(3)(~ 6) ~ 07;

create(4)(~7) z 08;

send4(l,msg3)(o8) z 09;

send2(4,msg4)(o 9) ~ al0;

2

..3 /

4 msg 3

msg 1

/
msg 2

/

msg 4

F~ure 1

The above sequence of primitives results in the switch of figure 1 where pro-

cess 3 is no longer active. Also, the message msg 2 has already been received by

process 2. Consider the following example of reduction to illustrate the use of

the axioms (supposing that no error situation is encountered):

istheremsg(l,2)(Ol0)

= if x(1,2)(oI0) eq no-msg then false else true by axiom 7

= if x(1,2)(09) eq no-msg then false else true by axioms for x

o o o

= if x(l,2)(sendl(2,msgl)(O2)) eq no-msg then false else true by axioms for x

= if msg I eq no-msg then false else true by axioms for x

= true by boolean axioms

3o A CALCULUS

We are now going to introduce elements of a calculus being developed for reas~

oning about parallel programs and illustrate its use for verification by address-

ing common properties found in message oriented programming such as the deadlock

85

problem. (The condition for the occurrence of a deadlock is the existence of a

circular chain of processes in which each process is blocked and is waiting for a

message from the next process in the chain.)

The first step in our analysis is to derive from the code of the parallel pro-

gram synchronization formulae (sf's) which describe the possible sequences of

communication primitives for each of the processes that form the program. The syn-

chronization formula is a kind of regular expression with the operations:

sequentiality or concatentation (;), deterministic case statement or union (or), and

iteration or transitive closure (*). We consider that the concurrent execution of

the sf's (or the processes that form the program) is equivalent to an interleaving

of these expressions (sf's). In order to represent the interleaving of the sf's

(or the sequence of sends and receives performed by the parallel program), we int-

roduce a general shuffle operation. The associated language generated by the

shuffle of the sf's is called the unrestricted language L.

Taking into account the communications data type and consequently the semantics

of the communication primitives we know that some of the expressions when eval-

uated may lead to error. For example, axiom 5 states that if a process is blocked

in some environment o (doing a receiving operation), then it cannot perform any

other operation before the corresponding sending operation is executed. As a

result of this, the language denoting the correct expressions L c is defined as the

difference between the unrestricted language L and the language formed by the in-

correct expressions L . The expressicns that lead to deadlock situations make up
e

a subset of L .
e

We can now restate the deadlock problem. A message-oriented program will be

deadlock free if all possible sequences of sending and receiving operations

generated by the execution of its code do not lead to expressions in L that con-

tain circular chains of blocked processes.

We have used a general shuffle operation in order to define the unrestricted

language L. If the language L e is empty (L=Le), then all possible sequences of

communication primitives lead to unacceptable expressions. If we assume that the

sf's do not contain unpaired primitives (where an unpaired primitive is charact-

erized by a sending or receiving operation in an sf with no corresponding operation

in the other sf's), then all possible executions of the program lead to deadlock

situations. (Note that the existence of unpaired primitives in the sf's indicates

that the program has either superfluous use of primitives or that some primitives

which should be there have been left out.) On the other hand, in the most common

situation the nondeterminism involved in the computation of the processes may

introduce an exponential number of final expressions that can make impractical a

case by case analysis. In the next paragraph, we start describing a better

approach to the problem.

86

The asynchronous nature of message oriented programming determines the possible

occurrence of delay situations such as (i) processes sending messages before they

can actually be processed; (ii) processes trying to receive messages before they

are sent. The idea we introduce to handle delays is what we call a canonical

synchronization formula (csf). This formula is a canonical representation of the

sequence of all communication operations ("sends" and "receives") performed by a

parallel program. In the csf, the overa~blocking (delay) period between send

operations and the corresponding receive operations is minimized. Intuitively,

what the formula means is that a message sent by process Pl is received as soon as

possible by the target process P2 (immediately in a well designed system). Thus,

a csf is a specification tool which attempts to specify the intended history of

communications actions in the system. A given execution of the system will not in

general result in the same sequence of communications actions but it is intended

that whatever seqeuence results, it be equivalent to the sequence specified by the

csf. It is of course necessary to prove that the non-determinism introduced by the

asynchronous behavior of the system does not affect the result (and so the csf does

describe the behavior of the system).

We use what we call "synchronization axioms" which transform a given sequence

of corm~unication primitives into the corresponding csf. This is done by looking at

the delay situations. If the sending operation is performed before it can be pro-

cessed (i.e. the sending and receiving operations are not together) then this

"send" can commute with the next primitive in the expression° The same happens if

there is a receiving operation that was performed before the message wss sent.

There is no change of places where the receiving operation is preceded by the cor-

responding sending operation. It is, of course, clear that primitives of the same

process cannot be interchanged; otherwise the original order determined by the

sequential program would be violated.

Let us assume a set of synchronization formulae which describes the communi-

cation aspect of a parallel program. These expressions (sf's) give the possible

communication skeletons for each of the processes that compose the program (by

relating the different communication behaviors of a process). The set of communi-

cation behaviors (subexpressions separated by the operator or) form the corres-

ponding sf. By grouping the related subexpressions -- i.e. the ones that refer to

each other and are activiated together -- we can identify distinct behaviors of the

program. Instead of doing a general shuffle of the sf's, we will derive directly

the csf for each of the groups of interrrelated subexpressions. A message oriented

program is deadlock free if we can construct a csf for each of the groups of inter-

related subexpressions. Otherwise, we may have cases of potential deadlock or an

unavoidable deadlock stituation (L=#).

Having defined a communications data type in the last section, we present a

87

solution for the producer-consumer problem that is deadlock free in order to illu-

strate the use of our calculus. (See the appendix for the sample program in an

Algol-like notation with the symbols "{" and "}" being used in substitution for the

usual pair begin/end.) The problem can be stated informally in the following way:

a producer and a consumer process interact by means of a buffer area into which the

producer "deposits items" and from which the consumer "extracts items"; the two

processes repeat their actions continuously and it is known that the buffer is

large enough to hold n items. It is possible to base the solution of the problem

on two variables or resources: avpl (number of available places in the buffer) and

avid (number of available items in the buffer). To each of these two resources

will be associated a process which will be responsible for controlling access to

it. Note that we are assuming the use of an implicit buffer in this solution.

The first step in the proposed technique for deadlock detection in the commun-

ication mechanism is to derive the several synchronization formulas from the code

through which each process is expressed in the program. The expressions for the

four processes used in the program are given below. Let us denote send by s,

receive by r, the producer and consumer processes by pd and cs, and the processes

that control the resources avpl and avit by pl and it, respectively° The symbol

";" denotes sequentiality of actions (as in programs, so note the order of the

statements is the opposite of what one would expect in an expression denoting an

environment o) and "or" that more than one expression can be used for the process.

i. Producer: [(s(Pl); r(pl))i; s(it)] for i c N

2. Consumer: [(s(it); r(it))J; s(pl)] for j ~ N

3. Proprietor of resource avpl:

[(r(pd); s(pd,w))i-l; (r(pd); s(pd,go)) o rr (r(es))] for i e N

3~ Bb

4. Proprietor of resource avit:

[(r(cs); s(es,w))J-l; (r(cs); s(es,go)) or (r(pd))] for j ~ N
. J

~a 4b

First of all we note that there are no unpaired primitives in our sf's. A

simple analysis of the program code allowed us to derive the i and j exponents used

in the expressions I to 4 above. The analysis consisted of finding matching

sequences of sends and receives in the computation sequences of the interacting

processes. Exponent i in expression i expresses the fact that producer received

from the proprietor of resource avpl a wait message (called simply w above) (i-l)

times before it was permitted to proceed (or go). Therefore the first part of

expression 1 (corresponding to exponent i) is related to the first alternative

used in expression 3 (called 3s). It can also be seen that the last part of the

first expression (s(it)), producer signals one more available item, corresponds to

the second subexpression of the fourth expression (r(pd)). Symmetrically, the

88

exponent j used in expression 2 can be related to the corresponding alternatives

in expressions 3 and 4.

By analysing the code of the program we find that the expression i to 4 can be

divided into two interrelated groups: firstly i, 3a, 4b and secondly 2, 3b, 4a.

If we manage to construct the two csf's that describe the joint behavior of the

alternatives that form each of the distinct groups, then the program is deadlock

free. We match the send commands with the corresponding receive commands to con-

struct directly the canonical synchronization formula for the two alternatives.

We give below the csf's for the groups of alternatives (i, 3a and 4b) and (2, 3b

and 4a).

i. Processes pd, pl and it:

m n.-i

[((Spd(Pl) ; rpl(Pd); Spl(Pd,w); rpd(Pl)) I ;
i=l

(Spd(Pl); rpl(Pd); Spl(Pd,go); rpd(Pl)); (Spd(it); rit(Pd)))]

for n. c N. We use the symbol ~ to denote concatenation of expressions.
l

2. Processes cs, it and pl:

m' n~-I

[((Scs(it) ; rit(cs); sit(cs,w); rcs(it)) i ,"
i=l

(Scs(it) ; rit(es) ; sit(cs,go) ; rcs(it)); (Scs(Pl) ; rpl(CS)))]

for n '. s N.
m

By matching the send commands with the receive commands we constructed the

csf's corresponding to the two groups of expressions above. (We have skipped the

proof that the csf's are a canonical representation of the general shuffle of these

groups of expressions.) We may then conclude that there is no process blocked for-

ever while performing a receive operation because there are no unpaired receive

operations and there is no deadlock because we were able to construct both csf's.

4. CONCLUSIONS

The report presents an outline of a model of communication primitives using the

algebraic theory of abstract data types as the specification technique. The model

is simple, yet realistic for certain kinds of communicating systems. There is ab-

solutely no reason why the axiomatisation could not be modified to model more com-

plex systems. We further claim that the model is at an appropriate level of

abstraction to be useful in the development and specification of message oriented

programs, a property which is absent from previous models [6,7].

The elements of a simple calculus based on the specification of the data type

has been found to be useful for studying some properties (such as deadlock) of

communicating systems. We demonstrated this by showing that a formulation of the

consumer and producer problem is deadlock free.

Clearly, directions for further research can be divided into three categories:

89

(i) Modifications of the axiomatisation to take into account more complex

communications. Along these lines, some connection must be made between the

communications data type and the semantics of the host language (perhaps also

expressed in an algebraic setting).

(ii) Improvements to the calculus to extend its applicability to a larger class

of probl~ms. Again, a connection of the calculus with some appropriate calculus

for the verification of program properties is desirable.

(iii) Development of program specifciation methods based on the model.

We hope to carry on our work in all three areas of interest.

5. REFERENCES

[i] Baskett, F., Howard, J.H., Montague, J.T.: Task Communications in DEMOS;

Proc. of the 6th ACM Symp. on O.S. Principles, 1977.

[2] Brinch Hansen, P.: The Nucleus of an Operating System; CACM, April 1970,

pp. 238-241, 250.

[3] Campbell, R.H., Habermann, A.M.: The Specification of Process Synchronization

by Path Expressions; l~ecture Notes in Computer Science, Springer-Verlag, Vol.

16, 1974.

14] Cheriton, D.R.: Multi-Process Structuring and the Thoth Operating System;

Ph.D. Thesis, University of Waterloo, August 1978.

[5] Cheriton, D.R., Malcolm, M.A., Melen, L.S., Sager, G.R.: Thoth, A Portable

Real-Time Operating System; CACM, February 1979.

[6] Cunha, P.R.F., Lucena, C.J., Maibaum, T.S.E.: On the Design and Specification

of Message Oriented Programs, to appear in the Int. J. of Computer and Infor-

mation Sciences.

[7] Cunha, P.R.F., Lucena, C.J., Maibaum, T.S.E.: A Methodology for Message

Oriented Programming; to be presented at the 6th GI Conference on Programming

Languages and Program Development, Darmstadt, March 1980.

[8] Dijkstra, E.Wo: Cooperating Sequential Processes; Programming Languages,

F. Genuys (ed.), Academic Press, New York, 1968 (pp. 43-i12).

[9] Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.F.: An Initial Algebra

Approach to the Specification, Correctness and Implementation of Abstract

Data Types; IBM Research Report, RC6487, 1976.

[i0] Guttag, J.: The Specification and Application to Programming of Abstract Data

Types; Ph.D. Thesis, CSRG TR-59, University of Toronto, September 1975.

[ii] Hewitt, C., Baker, H.: Laws for Communicating Parallel Processes; Information

Processing 1977, pp. 987-992.

[12] Hoare, C.A.R.: Monitors, an Operating System Structuring Concept, CACM,

October 1974 pp. 549-557 .

90

[13] Hoare, C.A.R.: Communicating Sequential Processes; CACM, August 1978,

pp. 666-677.

[14] Jammel, A.J., Stiegler, H.G.: Managers versus Monitors; Proc. of the IFIP

1977, pp. 827-830.

[15] Kahn, G., MacQueen, D.B.: Coroutines and Networks of Parallel Processes;

Information Processing 1977, pp. 993-998.

[16] Landin, P.J.: The Mechanical Evaluation of Expressions; Computer Journal,

Vol. 6, No. 4, 1964, pp. 308-320.

[17] Liskov, B.H., Zilles, S.: Programming with Abstract Data Types; Proc.

Conference on Very High Level Languages, SIGPLAN, Vol. 9, April 1974.

[18] MacQueen, D.B.: Models for Distributing Computing; Proc. of EEC/IRIA Course

on the Design of Distributed Processing, Nice, France, July 1978.

[19] Manning, E.G., Peebles, R.W.: A Homogeneous Network for Data-Sharing

Communications; Computer Networks i, 1977, pp. 211-224.

[20] Milne, G.: A Mathematical Model of Concurrent Computation; Ph.D. Thesis,

University of Edinburgh, CST-4-78, March 1978.

[21] Milne, G., Milner, R.: Concurrent Processes and their Syntax; JACM, Vol. 26,

No. 2, April 1979.

[22] Zave, Po: On the Formal Definition of Processes; Conf. on Parallel Process-

ing, Wayne Sate University, IEEE Computer Society, 1976.

91

APPENDIX

producer()

{ last : pointer;

x : pair of strings;

while true do

{ produce message;

x.msg := wait;

while x.msg = wait do

{ send(p-avpl);

x := receive(p-avpl)}

place message at last;

last := last + l(mod n);

send(p-avit)

}

consumer()

{ first : pointer;

y : pair of strings;

while true do

{ y.msg := wait;

while y.msg = wait do

{ send(p-avit) ;

y := receive(p-avit) }

get message from first;

first := first + l(mod n);

send(p-avpl);

consume message

}

}

p-avpl()

{ avpl : integer

t : pair of strings;

avpl := n;

while true do

{ t := rec-any;

if t.prc = producer

then if avpl = 0

then send(producer,wait)

else { avpl := avpl - i;

send(producer,goahead)}

else avpl := avpl + i}

p-avit ()

{ avit : integer;

u : pair of strings;

avit := O;

while true do

{ u := rec-any;

i_~f u.prc = consumer

then if avit = 0

then send(consumer,wait)

else { avit := avit- i;

send(consumer,goahead)

else avit := avit + I}

