
SUGGESTIONS FOR COMPOSING AND SPECIFYING

PROGRAM DESIGN DECISIONS

M. S in tzo f f (~)

Abstract : It is proposed to express program designs by hierarchical spe-

cifications of design decisions. A case study of program cons-

truction is presented to substantiate the proposal. Composition

rules based on logic are given for these hierarchical specifica-

tions. Advantages and disadvantages of the suggestions are assessed

(~) Philips Research Lab., av. Van Becelaere 2, Bte 8, B-|]70 Bruxelles,

Belgique.

312

I. INTRODUCTION ~qD MOTIVATIONS.

We view program design as a constructive intellectual ac-

tivity. Such an activity should be organized and expressed using the successful

principles laid down for composing and communicating programs.

~ny styles are used to express software design : sequen-

ces of successive versions of specifications or programs are formulated in de-

detail ; general and intuitive guidelines are presented to define methods of

development ; single decisions are characterized as applications of formal deduc-

tive rules which are strongly associated with one specific technique of program-

ming. As a consequence, the scientific study of the motivation, the essence and

the composition of the decisions is made difficult.

We propose here to express design decisions by specifying

their logical and qualitative effects precisely, but independently of their imple-

mentation on fully detailed program descriptions. Moreover, these specifications

should be composed hierarchically : this would help to organize design methods by

successive levels of importance, and to ensure the adequacy of each subdecision

and of the interfaces between them. The effectiue realization of design decisions

and the explicit result of their application should remain hidden, but one should

be able to derive these implementations systematically, if and when needed. By

abstracting from irrelevant details of program descriptions and by avoiding flat

structure or vagueness, such an approach should help in establishing a common,

well-defined framework for many useful software design methods, which are still

formulated as general, intuitive advices or as successive manipulations of program

descriptions. It would thus enhance the systematic composition and modification of

program designs, and facilitate deeper understanding.

We shall first give an informal presentation of the main

lines of the ideas. In order to suggest how they could be followed, we then deve-

lop a case study. After, we present a more precise framework based on logic. Rela-

ted works, and pros and cons are discussed at the end.

313

2. SPECIFICATION AND COMPOSITION OF DECISIONS

We first give an informal development of the main lines of

the suggestions. Let us assume that a given stage in a software design process is

represented by a program description, which consists of (sub)problem specifica-

~ons and (sub)program constructs. A design decision then defines a correspondance

between two such design stages. We introduce below rules for specifying design

decisions and for composing them. These rules are given precise meanings in

Section 4.

SPECIFICATION

We specify a design decision by stating an applicability

predicate (antecedent) and a predicate expressing the qualitative effect desired

(consequent). Here is a too obvious illustration :

Dec : Replace recursion by iteration

Antec : the given program description is a linear recursive function

Conseq : the new version is equivalent to the given one and is an iteration

using a fixed number of new auxiliary variables,

A specification of a decision defines a relation between program descriptions S

and T : S verifies the antecedent, and S and T verify the consequent. The heart

of the matter is to abstract relevant properties in the antecedent and resulting

ones in the consequent.

We do not assume that the antecedent is a sufficient con-

dition for the existence of a new program description verifying the consequent.

To accommodate case analysis, a decision can also be specified by a set of pairs

<antecedent, consequent > .

COMPOSITION

We merely lift at the level of design decisions the basic

compositions rules successfully used at the algorithmic level. The specific no-

tations used below for the various compositions can easily be modified, if so

desired.

314

Serial composition : (Dec]; Dec2)

Case analysis : [Predl ÷ Dec] I Pred2 ÷ Dee2]

The cases are distinguished by predicates on program descriptions.

Definition : Id = Dec spec

The identifier Id is a synonymous to a given decision specification which may

well be a composed one.

Induction : D = F(D)

This defines decision D as the limit of a series of stronger and stronger ones :

D O = Undefined decision

Dn+l= F(D n)

We assume F is a monotone mapping between decisions, for the set-inclusion orde-

ring between decisions, viewed as relations.

Hereafter, in addition to the antecedent and consequent

of each decision , we may add hints to indicate how the decision was conceived,

and we mention its component subdecisions as the case may be .

3. CASE STUDY

The example has been selected for various reasons. Firstly,

it is not usually considered as an illustration of program transformations but

rather of program "formation". Secondly, the way the design decisions are organi-

zed, chosen or precised leaves room for improvement although its author already

presents a quite helpful explicitation. Thirdly, the design has been invented al-

ready : we do not tackle here the problem of discovery.

MAXIMAL LENGTH OF ASCENDING SUBSEQUENCES

The considered problem is the third one in Dijkstra (1980).

Our intent is to obtain hierarchical specifications of the very design decisions

explained there. Since our main topic is composition and implementation indepen-

dence, we content ourselves with semi-formal expressions, hopefully sufficiently

precise.

315

The program description given initially consists of the

two following assertions defining the problem.

Preassertion P(A) : A is a non-empty sequence.

Postassertion Q(A,k) : k is the maximal length of the upsequences in A ; u is an

"upsequence in" v iff u is obtained from v by removing some or zero elements from

v and by retaining the remaining elements in their order in v.

Design = (Dec I; Dec II)

Dec f : Derive the postassertion by iteration

Antec : P(A) and Q(A,k) are given

Conseq : A sequence s=(sl,...,SM) , a predicate H, and terms UI,U are found such

that, writing H for H(Sn,k n) U 1 for UI(S I) and Un+ 1 for U(Sn+l,kn)

P(A) ~ H I A (kl=U1) , H M A (kM=k) = Q(A,k) ,

Hn+ 1E H n A (kn+ I = Un+1)

Moreover, each s is defined in terms of A.
n

Compos : (Dec II; Dec 12) ; Dec 2

Choose a sequence Dec 11 :

Antec : Antec of Dec I, which includes the data A

Hint : Follow the sequence A from left to right, viz. reconstruct it natural-

ly.
Conseq : s is the sequence (sl,...,SN) where si=A(:i)=(A I ,Ai)

Dec 12 : First version of the iterative predicate

Antec : Dec 11. (This means the antecedent and the consequent of Dec 11 are

known).

Hint : Since H(A(:N),k) ~ Q(A(:N),k), weaken Q(A(:N),k) to Q(A(:n),kn) , as

a tentative version I of H.

Conseq : In ~ I(A(:n)'kn)

(k n is max. Igth of upseq, in A(:n))

Dec 2 : Find an inductive definition for I

Antec : Dec 12

Conseq : UI,U s.th. P(A) ~ I 1A (k1=Ul)

and In+ 1 ~ I n A (k .=U •)
n+ I n* 1

316

where Un+l=U(A(:n+I),kn) and UI=UI(A(:I)).

Compos : (Dec 21; Dec 22; Dec 23); D3

Dec 27 : Find U!

Antec : Antec of Dec 2

Hint : The max. igth of any upsequence of a sequence of one dement is one.

Conseq : UI=] .

Dec 22 : First version of Un+]

Antec : Antec of Dec 2

and k are the max. igths of upseq, in A(:n) and A(:n+I) Hint : Since k n n+l

respectively, we have k n < kn+ 1 < kn+! •

Conseq : Un+]=(C + kn+l IV c ÷ kn), where C is an unknown condition on

A(:n+l) and k . (We use conditional expressions with their usual meaning).
n

Dec 23 : First version of C

Antec : Dec 22

Hint : Some longest upsequence in A(:n) can be extended in A(:n+]) iff

An+ I is not smaller than the minimum mn of the elements ending the upsequen-

ees of length k n in A(:n).

< A given an additional predicate Conseq : C z m n n+l'

J ~ J(A(:n),kn,m n) n

z (m n is min. last el. of upseq, of Igth k n in A(:n))

Find an inductive definition of J Dec 3 :

Antec : Dec 23

Conseq : Vl,V s.th. Jl ~ II A (m]=V I)

Jn+l ~ In+! A Jn a(mn+l=Vn+1)

where Vn+]=V(A(:n+]),kn+l~mn) and VI=VI(A(:I),k])

Compos : (Dec 31; Dec 32; Dec 33); Dee 4

Dec 31 : Find V 1

Antec : Antec of Dec 3

Hint :" The min. last el. of longest upseq, in a sequence of one element

is this element.

317

Conseq : VI=A 1

Dec 32 : First version of Vn+ !

Antec : Antec of Dec 3

Hint : mn+ 1 is either An+ 1 or mn° It equals m n iff An+ 1 is strictly smaller

than the minimum m' of the elements ending the upsequences of length
n

(kn-l) in A(:n).

Conseq : Vn+ 1 = (mn~ A + A n+l n+l

]kn=l A An+l<mn + An+ 1

{kn>l A (m' < < ÷ n An+l mn An+l

JAn+ 1 < m'n + mn))

given another additional predicate, defined for kn> I, by

J'n E J'(A(:n)'kn'mn)

(m~ is min. last el. of upseq, of igth kn-! in A(:n))

_= Sn(A(:n),kn-l,mn) _-- f(Sn)

Dec 33 : Final version of the iterative predicate

Antec : Conseq. of Dec 32

Hint : To define Jn inductively, we needed J' if kn > I. Now, J~=f(Jn)

for some substitution f. Hence, to define J'n' we need J~=f2(Jn)=Jn(A(:n)

kn-2, m"n) when k n > 2. Thus, we need Jn(A(:n),kn-P,m~P)) for p=O kn-l.

Conseq2 Hn=I n ^~/[0 < p < kn-] ~ Jn(A(:n),kn-P, m(P))] n
P

Dec 4 : Find an inductive definition of H

Antec : Conseq. of Dec 33

Hint : Omitted in Dijkstra (1980). Generalize Vn+|, from Conseq of Dec 32,

according to the hint of Dec 33.

Conseq : Omitted here. The interesting part is

m(P+l)< A < m (p) = m (p)
n n+] n n+l =An+]

Dec [I : Implement a search efficiently

Antec : Conseq. of Dec I, viz. of Dec 4, implies a search : in the increasing

,_(p)
sequence (tu n , . ,m n, m n) to find the smallest m (p) such that A <m (p)

. ' n n + I n "

818

Conseq : This search is implemented by dichotomy, which is of logarithmic

complexity.

Reflections

Two surprises must be reported. First, the main structure

of the original design in Dijkstra (1980) boils down here to two main steps,

Dec I and Dec fI, with just one crucial subdecision, Dec 33. Second, all the

decisions and subdecisions, once clearly identified and composed, appear to be

rather straightforward and easy: the above development could even seem boring

because of the obviousness, the weakness or the repetitiousness of decisions.

To contrast, the first reading of Dijkstra (1980) gave the impression that de-

cisions were tricky, or inspired, as well as varied.

The original design description mixes three levels, name-

ly the program descriptions, the definition of the decisions, and their discove-

ry. Moreover, it gives priority to the clarity and the structure of the program

descriptions, viz. assertions and algorithmic constructs, whereas the two higher

levels are described operationally. Here, we have separated the concern about

program descriptions from the one about decisions, and concentrated on the latter

Yet, we still mixed the specification of the final, complete decisions with

their derivation by successive approximations. To separate these two latter asp-

ects would further clarify the design . For instance, instead of obtaining the

complete predicate H by induction on the structure of the predicates J,J' in

Dec 33, we could derive Dec 4 by induction on ~he dexTsion Dec 32 itself ; as

a by-product, the hint for Dec 4 would become redundant. Also, the wondrous ac-

cident thanks to which Dec I can be followed by the optimization Dec II, would

be better analyzed and anticipated.

The design specification above uses definitions in the

program descriptions, instead of, a.o., statements and assignments. The latter

ones, although they do have well-defined semantics, have been abandoned here :

using them, we were unable to specify subdecisions independently of one another,

because the assigmment requires carrying a global log$cal state; see Dec 2],22.

319

An alternative design for the same problem is given by

Broy et al. (1979), in terms of successive transformatiens of specifications and

algorithms. The two designs are reconstructed in Finance (1979), § 2.1.2, by

use of logical deductions. Both works present a lucid analysis of the critical

choices made for the sequence guiding the iteration, here Dec II.

ABSTRACTING A METHOD FROM EXAMPLES

Examples are often used to suggest the nature of an under-

lying method. It is better, in this case, to specify the method directly, by pa-

rametrizing the program descriptions. This would make the method available for

other applications, and would allow to separate the specification of the method

from that of its application on a given problem. As an illustration, here is a

sketch of the method behind the example above.

Dec A : Derive the result by iteration

Antec : P(X) and Q(X,Y) are respectively the initial and final assertions

defining a problem ; the type of initial informations X contains that of

sequences.

Conseq : A sequence s=(sl,...,SM) and a predicate H are obtained, such that

each s is defined from X and that
n

P(X) = H 1 A (rl=Ul) , H M A (rM=Y) ~ Q(X,Y)

A Hn+ I ~ H n (rn+l=Un+])

where Hn, U I and Un+ I denote H(Sn,rn) , Ul(Sl) and U(sn+1,rn) ,

Co~os : (Dec At; Dec A2; Dec A3)

Dec A1 : Choose a sequence

Antec : Antec of Dee A, with data X •

Co~seq : s=(s I ,SM) such that Sn+1=concat(Sn,g(n+l,X)) and sl=g(l,X)

Dec A2 : Choose an iterative predicate

Anteo : Dec A1

Conseq : H s . t h . P(X) ~ ~ r i : H i , and H(SM,Y) = Q(X,Y)

320

Dec A3 : Find an inductive definition

Antec : Dec A2

Conseq : E],E s.th. P(X) ~ ~i ^ (rl=El(Sl))

and Hn+ 1 ~ H n ^ (rn+l=E(Sn+l,rn))

In the problem of upsequences,Dec 2, Dec 3 and Dec 4 are all applications of

Dec A3 , and they correspond to the successive approximations Dec 12, Dec 23,

and Dec 33, respectively, of Dec A2.

OTHER EXERCISES

The example and the method above have been chosen also

because they can be discussed in a short space. Yet, other case studies have

been looked at too, viz. : programming by stepwise refinement, design guided by

input- and output-structures, and methods to derive parallel or distributed

programs. And there are of course many other useful methods and examples to con-

sider.

4. TOWARDS AN ALGEBRA OF PROGRAMMING

We present a small logical system as a precise framework

for the informal proposals made in Section 2.

Basic components

We assume that program descriptions S,T,..., are expressed

by first-order predicates, following Manna (1969) for example; if second-order

predicates are needed for this, then increase all orders by one. Antecedents

A,Ai... , and consequents C,Ci..., define properties of program descriptions and

thus are expressed by second-order predicates ; A and C have respectively one

and two free variables. Now a pair <A,C> of antecedent A and consequent C defines

as follows a relation between program descriptions :

S <A,C >T iff A(S) A C(S,T)

A decision is expressed by a finite set of such pairs :

321

D = $.<Ai,Ci >
It defines the relation l

with A. A A. = false (i#j)
l 3

SDT ~ D(S,T) e V S <Ai,Ci > T ~ V. Ai(S) ^ Ci(S,T)
i l

Serial composition

(X <Ai,Ci> ; ~ <A i C'. >) = ~ I (<Ai,Ci > " <A: C: >)
i j ' 3 i J ' J' 3

(<A,C> ; <A',C' >) = <A",C">

where A"(S) E A(S) A YR [C(S,R) = A'(R)]

C"(S,T) ~ ~R [C(S,R) A C'(R,T)]

Case analysis B, Bi..., are predicates on program descriptions.

[BI * D1 I B2 ÷ D2] = [B] ÷ DI] + [B2 ÷ D2]

[B ÷ <A,C>] = <B A A,C>

hence [B ÷ [B~÷D]] = [B A B' ÷ D]

The generalization to any number of alternatives is obvious. A non-deterministic

decision is made deterministic by applying the following rule iteratively :

~,C> + <A',C'> = <A A~A',C> + ~-~A A A',C'> + <2k A A',C V C'>

Inductive definitions

or set, X verifying

Assume a decision D is defined as the smallest relation,

¥ s , r [c ((s , i) , x) ~ x (s ,T)]

The predicate C expresses a relation between pairs (S,T) of program descriptions

and decisions X, such that, for all S,T,X,Y,

(X~ Y) A C((S,T),X) = C((S,T),Y)

Following Feferman (1977), p. 923, D can be defined using ordinals ~ and appro-

ximations D :

322

As illustration, take

D = Dao where Dao = Dao+l

m (S,T) ~ C((S,T), U D~)
B<a

C((S,T),X) ~ B(S)AG(S,T) rIB(S) A ~X' : R(X,X') A X'(S,T)

for a given decision G and a given relation R between decisions. Then

D (S,T) ~ B(S) A G(S,T) v]B(S) A ~X' : R(U D$,X') A X'(S,T)

For a sufficiently simple R, this can be expanded linearly.

Co~ents.

In the algebra of programs presented by Backus (1978), ~

the functionals are constructive maps between algorithms ; here, decisions are

taken as specifications of relations between program specifications. The forma-

lization above has not yet been strictly followed for any of the examples or me-

thods mentioned before ; the resulting design descriptions could be disappointing.

Remember, D. Scott wrote that formalization is an experimental science, and La-

katos (1976) warns against sterile formalizations.

We have used logic as foundation, and ignored the functio-

nal aspects too much : we should include some functional calculus. Also, we

used a straightforward system of finite types, thereby ensuring a safe stratifi-

cation. But this hinders the use of common composition rules for decisions to ob-

tain decisions as well as for the obtained decisions ; a self-applicable, type-

free system could be preferable.

5. DISCUSSION ~ND RELATED WORK

There exist numerous related works and viewpoints, although

nowhere is the attention concentrated on precise rules for the specification and

323

the composition of design decisions.

The principle of hierarchical design by use of abstract

machines, a.o. Zurcher and Randell (1968) and Dijkstra (1972), has yielded "sys-

tem design methods" expressed by informal know-how, techniques for module speci-

fication, or "program design languages" in which one may express successive pro-

gram descriptions or manipulate modules. Yet, one needs to precisely communicate

high-level prograr~ning decisions ; drawings, hints or rewriting rules are not

enough. Manna and Waldinger (1979) do study the nature of important programming

decisions, in the context of heuristic automation, but give priority to the spe-

cific definition of particular strategies. Jette (1979) presents suggestions

similar to ours, but describes decisions by combinations of abstract and concrete

specifications ; this facilitates implementation and hampers a common analysis

of different methods.

A large "metacurrent" has appeared during the last years.

In Feather (1979), metaprograms are hierarchical compositions of Darlington-

Burstall transformation decisions ; they use patterns and rewriting rules on

reoursive functions. Balzer (1979) introduces "development plans" with a similar

intent. Schwartz (1979) and Blikle (1979) propose to express their methods by

transformations of specifications mixed with program components, and they study

the logical effects of these specific transformations. In other works on program

transformation systems, such as Standish et al. (1976), Bauer et al. (1979), and

Arsac (1979), the initial effort was put on the building of basic and effective

transformation rules, whereas growing attention is now paid to their logical in-

terpendence and structure. Metalevels have been introduced in the context of lo-

gical proof systems : see the strategies and tactics in Gordon, Milner et al.

(]978), the metatheories in Weyrhauch (1978), and the metafunctions in Boyer

and Moore (1979). These concepts help to specify and structure proof steps, but

are tied to specific proof systems and do not directly concern programming deci-

sions. In a similar vein, let us recall the growing rSle of "metaknowledge" for

324

heuristic automation ; see Feigenbaum (1977). In particular, Green and Barstow

(1978) represent prograr~ing knowledge by sets of production rules for use in

a synthesis system.

The formalization of design decisions has been studied

mainly for individual, concrete transformation rules : see, a.o., Cooper (]969)

and Huet and Lang(1979). However, Bentley and Shaw (1979) do abstractly specify

a decision to efficiently represent data structures. Finance (1979) proposes for-

malized compositions of abstract design decisions, albeit for specific methods.

The main problem in the approach we suggest is to discover

adequate hierarchical specifications of design methods and of their application.

The following tasks are indeed difficult : to abstract the essential specifica-

tions of a given decision ; to choose its component subdecisions ; to control

and to express successive approximations or backtracking when applying a given

method to a given problem ; to ensure or to prove the correctness of a proposed

design ; to decide on a sufficiently lucid style of program description. The la-

ter issue brings in the problem of how to implement design decisions on the basis

of their specifications, in other words how to derive metaprograms for program

design by human beings or automata. One way is to map the abstract specification

and composition rules into implementable ones, but this amounts to solving a

"metadesign" problem.

Our proposals can thus be seen as too general and over-

ambitious. Yet, the following benefits have already been felt in a number of ca-

se studies, including our own previous work. The structure and the expression

of design methods can be improved significantly. Their application on specific

problems can be better thought out. The deep structures of methods become more

transparent and may be compared more objectively. Program development does not

have anymore to be presented by chains of successive versions interspersed with

more or less well-founded hints, or by successive manipulations of formal texts.

Designs can be modified more systematically, and libraries or families of de-

signs become less unreasonable.

325

Acknowledgements. The suggestions presented here have been sharpened by discus-

sions at meetings of the French working party Anna Gram (analyse et programma-

tion), IFIP WG2.3, IFIP WG2.], and the workshop on program transformation systems.

REFERENCES

Arsac, J.J., Syntactic source to source transforms and program manipulation,

Comm. ACM 22, 43-53(1979).

Backus, J., Can programming be liberated from the von Neumann style? A functional

style and its algebra of programs, Comm. ACM 2], 613-641 (1978).

Balzer, R., Transformational implementation : an example, Information Sei. !nst~,

Univ. South. Calif., 1979.

Bauer, F. L. et al., Systematics of transformation rules, Proc. Summer School

Program Construction 78, LNCS 69, Springer, Berlin, 1979.

Bentley, T. L., and M. Shaw, An Alphard specification of a correct and efficient

transformation on data structures, Proc. Conf. Specifications of Reliable Softwa-

re, IEEE, 1979, 222-237.

Blikle, A., On the development of correct programs with the documentation, M79/25,

Electronics Res. Lab., Univ. Calif., Berkeley, 1979.

Boyer, R. S., and J. S. Moore, Metafunctions : proving them correct and using them

efficiently as new proof procedures, Computer Sci. Lab., SRI, Menlo Park, and

Syst~mes et Automatique , Univ. Ligge, 1979.

Broy, M., et al. Methodical solution of the problem of ascending subsequences

of maximum length within a given sequence, Information Processing Letters 8,

224-229(1979).

Cooper, D. C., Program scheme equivalences and second-order logic, in : B. Meltzer

and D. Michie (eds.), Machine Intelligence, vol. 4, pp. 3-15, University Press,

Edinburgh, 1969.

Dijkstra, E. W., Notes on structured programming, in : O. J. Dahl, E. W. Dijkstra

and C.A.R. Hoare, Structured Programming, Academic Press, London, 1972, pp. 1-82.

Dijkstra, E. W., Some beautiful arguments using mathematical induction, Acta In-

formatica 13, I-8(1980).

Feather, M. S., A system for program transformation, Working Paper, Univ. of

Edinburgh, 1979.

326

Feferman, S., Theories of finite type related to mathematical practice, in :

J. Barwise (Ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam,

1977, pp. 913-971.

~th
Feigenbaum, E. A., The art of artificial intelligence, Proc. ~ Int. Jt.

Conf. Artif. Intell., Carnegie-Mellon Univ., Pittsburgh, 1977, pp. 1014-]029.

Finance, J. P., Etude de la construction des programmes : mgthodes et langages

de spgcification et de r#solution de problgmes, Thgse Doct. Sci., Univ. Nancy I,

1979.

Gordon, M., R. Milner et al., A meta-language for interactive proof in LCF,

Proc. Conf. 5th Symp. Principles of Programming Languages, 1978,]19-130.

Green, C., and D. Barstow, On program synthesis knowledge, Artificial Intelli-

gence I0 (]978) 24]-280.

Huet, G., and B. Lang, Proving and applying program transformations expressed

with second-order patterns, Acta Informatica II, 31-55 (1978).

Jette, C. J., Heuristic control of design-directed program transformations, Proc.

AFIPS Natl. Conf., Vol. 48 (1979), lO71-1077.

Lakatos, I., Proofs and Refutations : The Logic of Mathematical Discovery,

University Press, Cambridge,]976.

Manna, Z., Properties of programs and first-order predicate calculus, J. ACM, 16,

244-255 (1969).

Manna, Z., and R. Waldinger, Synthesis : dreams = programs, IEEE Trans. Software

Eng. SE-5(1979) 294-328°.

Schwartz, J. T., Correct-program technology, Proc. School 77 Fondements de la

Programmation, IRIA, Le Chesnay, 1979, 229-269.

Standish, T. A., et al., Improving and refining programs by program manipulation,

Proc. ACM Natl. Conf. 1976, 509-5]6.

Weyrauch R., Prolegomena to a theory of formal reasoning, Report CS-78-687,

Computer Sci. Dept., Stanford Univ., 1978.

Zurcher, F. W., and B. Randell, Iterative multi-level modelling : a methodology

for computer system design, Proc. IFIP Congress 68, North-Holland, 1969, pp.

867-871.

