
SEMANTICS FOR LISP

WITHOUT REFERENCE TO AN INTERPRETER

W. M. Lippe F. Simon

Abstract: The goal of the paper is to show that copy-rule

semantics can handle higher order functionals in

the sence of FUNARGs in LISP. A language LISP/N,

which is derived from pure LISP, is introduced and

the semantics are defined without reference to an

interpreter; its definition is essentially based on

a copy-rule for LISP/N.

Institut fSr Informatik und Praktische Mathematik

Universit~t Kiel

OlshausenstraBe 40 - 60

D-23OO Kiel I

241

I. INTRODUCTION

The definition of the program~ming language LISP by an interpreter

[Mcp. 13 and p. 70/7]] has several deficiencies~ Both interpreters

are written in a subset of LISP, wherefore several authors [Weg, Sto,

Gor] doubt whether this metacircular definition is a true definition

for LISP. McCarthy [Sto] admits that the understanding of the inter-

preters is based on intuition and experience.

The semantics definition for LISP is purely operational and implies

several major differences to the semantics for ALGOL-like programming

languagess where it is well known how to establish a formal semantics

definition e. g. [Ho, La]. M. J. Gordon gives a formalization of the

operational semantics for LISP and proves it to be equivalent to a

non-standard denotational semantics definition [Go]. LISP has been

derived from l-calculus but it cannot be considered merely as a

machine implementation of l-calculus, nor as an interpretation of

l-calculus schemata. On the other hand it is possible to construct a

well defined LISP-interpreter by means of software engineering,

starting from a- and D-reductions in l-calculus [Per, Gr, Ro]. Our

goal is to introduce copy-rule semantics for LiSP-like languages.

Our work started from an observation by M. J. Fischer [Fi] concerning

the run time storage management for LISP: In principle only a stack,

well known from ALGOL-like languages, is necessary (deletion strategy);

there is no need for a heap (retention strategy). In [Si, Si/Tr, Si I]

it has been shown that LISP is essentially an ALGOL-like programming

language. In this paper we are going to define an ALGOL-like syntax

and semantics for LISP that reflect the important features of LISP,

whereas some of the "exotic" ones are dropped. We call this language

LISP/N; the suffix /N has been chosen to remind of "call by name".

The semantics of LISP/N are defined without reference to an inter-

preter, its definition is essentially based on a copy-rule for LISP/N.

This copy-rule is slightly more sophisticated than the well known

ALGOL 60-copy-rule in order to handle unrestricted higher order

functionals (FUNARGs), in particular procedures occurring as values

of (function) procedures.

At last we want to make some remarks on the design of LISP/N. We

refer to the second of the two interpreters given by McCarthy [Mc],

the one used for practical purposes in LiSP-systems, but we drop

all features belonging to LISP 1.5 and not to pure LISP, e. g. PROG,

242

FEXPR, APVAL etc. [Si I]. This interpreter properly handles upward

and downward FUNARGs, i. e. procedures passed from or to procedures,

and it is more rigid concerning correct parameter transmissions. With

our definition of LISP/N we are only going to model pure LISP, but it

should not be too difficult to extend LISP/N such that important

members of the LISP-familiy like LISP 1.5, LISP 1.6 or INTERLISP are

covered.

The language MLISP [Smi] is one of the early attempts to use an

ALGOL-like notation for LISP-programs. In modern LISP-systems like

VLISP and INTERLISP, there is a strong tendency to weaken the language

constructs of mure LISP in such a way that a programmer is able to

write his programs in an AI~OL-like style. A careful analysis of

different versions of LISP-interpreters by Steele and Sussman [St/Su]

shows that the ALGOL binding mechanism for variables (static scoping)

is the suitable one for LISP; the role of dynamic scoping [Mc p. 13]

is restricted to express certain structured forms of side effects.

Like all ALGOL-like languages LISP/N has a compiler which translates

LISP/N-programs into executable machine code for a real computer

(or an abstract machine). In larger LISP-systems there usually exist

compilers, but these ones are only able to compile certain "modular"

parts of LiSP-programs into machine code; for difficult situations

they rely on run time support by the LISP-interpreter, c. f. LISP 1.6,

INTERLISP.

If we consider LISP as an ALGOL-like language, we also have to accept

some important differences between LISP/N and pure LISP. In pure LISP

free variables may occur and they are bound to values by dynamic

scoping. In LISP/N there are so called "global formal" parameters

i. e. a formal procedure parameter that is global with respect to a

given procedure. These parameters, only possible within procedures

with nestings ~ 2, are bound to values by static scoping and they

allow a simulation of most free variables occurring in practical

programs.

There are no mode specifications required in pure LISP, so several

dangerous errors cannot be recovered by the interpreters given in

[Mc]. In LISP/N completely specified modes, finite or infinite, are

defined by mode equations put in front of the program, but they are

so simple that we don't run into problems as in ALGOL 68. As a

consequence of the static mode checks in LISP/N-programs there is

243

no wrong procedure call occuring at run time. So we don't need

parameter checks at run time.

It is known that "call by value" as o~mputation rule does not always

coincide with "call by name" c. f. ALGOL 60. Since we wanted to intro

duce copy-rule semantics in LIS~ we decided to have "call by name"

In the particular situation of LISP, where we don't have assignment

statements, the differences that may be introduced by "call by value"

are rather irrelevant for practical programming. In [Fr/Wi] it is

shown how multiple computations of the same "call by name"-parameter

can be avoided using ~'call by need".

Parameter transmissions with "call by name" are the main reason why

in LISP/N the run time storage for procedure activation records may

be organized as a stack. In principle only this stack is necessary

as run time store [Si]. The heap, keeping data (s-expressions), is

a concession to achieve a compact representation of s-expressions,

since nobody would accept lots of procedure calls as encodings of

s-expressions.

II. LISP/N

We only have s-expressions as values. An atomic s-expression is a

finite sequence of capitals and digits, beginning with a capital.

If s I and s 2 are s-expressions then s 3 = (sl.s2) is a s-expression

as well. Furthermore we have the following abbreviations called list

notations:

(Sl- (s 2 (Sn. NIL)--.))= (s I s 2 ... Sn), n ~ I

NIL = () is a special s-expression corresponding to the empty list.

244

In LISP/N we have five standard-procedures:

car(s) =Df

cdr(s) =Df

s I if s = (Sl.S 2)

undef, else

s if s = (sl.s2)

under, else

c°ns(s1's2) =Dr (st"s2)

T

atom(s) =Df F

if s is an atomic s-expression

else

eq(sl 's2) =Df

"T

F

if Sl,S 2 are atomic

s-expressions and s I = s 2

if Sl,S 2 are atomic

s-expressions and s I # s 2

undef, else

T and F are special s-expressions corresponding to the Boolean values

true and false.

The set of syntactical LISP/N-programs is generated by a context-free

grammar [Li/Si]. Informally a LISP/N-program is derided into 3 parts:

the mode declaration part, the procedure declaration part and the main

program. The main program consists of exactly one expression which

defines the result of the program - a s-expression. The body of a pro-

cedure consists of a procedure declaration part (nested declarations)

and a single expression. The mode declaration part is a system of

equations which defines the modes of all procedures declared in the

program. It is required that every procedure has a complete mode

declaration. We don't have the mode 'formal'

Starting with s-expressions as values and the five standard-procedures

as operators expressions are defined similar to arithmetic expressions

in ALGOL 60. According to the definition of LISP we have to introduce

a second type of expressions which ranges over procedures (FUNARGs).

~) She productions are given in appendix A.

245

Example I:

beq,in mode mf = proc (mr) mr;

mode mr = ~r0c (s-expr) s-expr;

mf : twice (mr:f) mr; {mr : p (s-expr:x) szexpr;

p};
{f(f(x)) };

end

twice (cdr) ((A B C))

The result of this program is computed by the following sequence of

procedure calls: twice (cdr) ((A B C))÷p((A B C))+cdr(cdr(A B C))+(C).

Example 2:

begin mode m = proc (s-expr,s-expr) sqex~[;

m : reverse (sTexpr:x , s-ex~r:y) s zex~r;

{if atom(x) then y else reverse(cdr(x),cons(car(x),y)) fi};

reverse((A B C D)~NIL)

end

This program is the well known reverse-function for LISP-lists.

Similar to ALGOL [La] we can establish a binding relation ~ between

applied and defining occurrences of identifiers in a syntactical

program Z. A syntactical program is called closed, if the relation

is a function, totally defined on the set of all occurrences of iden-

tifiers in ~. The property to be a closed program is decidable and 6

is a computable function.

We want to define, when a closed program is called a compilable

program. Informally this means that any applied occurrence of an

identifier satisfies a static type checking procedure with respect

to the mode declaration part of the programm. The complete definition

is given in [Li/Si].

246

llI. THE COPYRULE

The basic idea behind copy-rule semantics cons~ts of two steps. First

we assume that for every LISP/N program z without any procedure calls

(except car, cdr, ..., eq) we can construct an input/output function

f !E n ÷ E, where n is the number of inputs to ~ and E is the set of

all s-expressions. This may be achieved e. g. by denotational,

algebraic or axiomatic methods. In the second step we consider

LISP/N-programs in general, i. e. with procedure calls. The con-

struction of input/output functions for such programs is essentially

based on a copy-rule for LISP/N and the previous step. In the most

simple case the iterated application of the copy-rule to a program

with procedure calls generates a finite set {71, ~2' ...,~ k } of

programs without any procedure calls and the input/output function of

=0f. is f -j=1 ~j

The main part of a program z is that part of the <main program> of

which is outside of all procedures declared within this <main program>.

If we have a conditional statement then we distinguish between the

if-Part, then-part and else-part in the following manner:

if then else fi.
4-- ', '' -- - - "

if-part thenfpart else[part

Let f(a~ 'a°n) ... (a~,...,anr) be a procedure statement. If r = 0
o r

then we have a procedure statement with an eventually empty parameter

list similar to ALGOL 60. If r > 0 then f is a higher order functional.

We say that a procedure statement resp. a procedure expression

occurs on an actual parameter position in a call of f, if e appears

in one of the actual parameters a~, O ~ j ~ r, I ~ i nj.

We are now ready to define a copy-rule for LISP/N in a similar way as

for ALGOL 60. If the expression being the main program of a given

program ~ is a procedure call, then the copy-rule defines how to

replace this call by a modified body of the called procedure. So

by application of the copy-rule to ~ we get a program ~'. Notice that

new procedure declarations may occur in the main part of 7'. The main

difference between the ALGOL 60-and the LISP/N-copy-rule comes from

247

the extended procedure concept in LISP/N where we have procedures

occuring as results of (function)-procedures.

Definition I:

Let ~ be a compilable program. A program z' is called to result from

by application of the copy-rule (~ ~') if the following holds:

o a°) r r
Let f (al,..., ~ ... (a1,...,a m) be a procedure statement in the

main part of z~ not occurring on an actual parameter position in a

call of a non-standard procedure.

:x I mf :x n) mf ; {0} Let mf : f (mf] n n+1

be the associated procedure declaration. Then

O O r r

f (a I a n) ... (al,...,a m)

is replaced by a generated block {o'} where ~' is the modified body o:

O O r r
7: ...mf:f(mf1:x] mf :Xn)m f ;{~}i...;f(a] an)... (a] am) ;°.

n n+1 "- - -,- - _

z':...mf:f(mfl :x I mf :Xn)m f ;{o};... }'{ ~' -'}}..
n n+1

The modifications of ~ are:

i) (Substitution)

The formal parameters x i occurring in o are replaced by the

corresponding actual parameters a~.

ii) (Propagation of parameter lists)

If r > 0 then all procedure identifiers p and all procedure

statements p' (b~ b~)... (b I b.) in the <expression> of

the procedure body {o}, except those which occur on actual

parameter positions and those which occur in if-parts, are
r r

r e p l a c e d b y p (a I a) . ° . (a 1 a m)

, ~ t b t I I r ,a~) resp. p (b , b~)... (bl, m,) (a al)... (a I

iii) (Renaming)

All identifiers which are local to o' are admissible renamed

by identifiers which do not yet occur in 0'.

Let ~ resp., be the transitive and transitive-reflexive

closures of ~--

248

Remark :

The copy-rule allows to expand a procedure call f(a 1,...,a n)

in the following contexts:

I~ ...; f(a I a n) ... or

2 ; car(f(a I an)) ... or

3 ; cdr(f(a] an)) ... or

4 ; eq(x, car(f(al,...,an))) ...

whereas the copy-rule may not be applied in these cases:

a) ...; g(x I f(a I ,a n) x m) ... or

b) ...; cdr(g(x I f(al, an) Xm)) ... or

c) ... ; g(x] cdr(f(a I an)) x m) ...

Example 3:

To illustrate the copy-rule we consider example I. Notice that the

propagation of parameter list ((A B C)) by modification ii) causes

a call of the procedure p' in the modified body of the procedure twice

begin ... mf : twice(mr:f)mr;{mr:p(s-expr:x)s-expr;{f(f(x))};p];

twice (cdr) ((A B C)) end
T

... {mlr:p'(s-expr:x')s-expr;{cdr(cdr(x'))}; p'((i B C))} ...
T

... {Jdr(cdr((i B C) }

A program ~ is called original if it is not derived by application

of the copy-rule.

Definition 2:

Let ~ be an original program, then E =Df {Z' / ~ ~ ~'} is called

the execution of ~. The set

T {~' / ~'sE and ~ has at most one innermost
=Df

generated block}

is called the execution tree of 7.

Example 4:

In this program it is shown how the copy-rule handles nested

procedure declarations (p2), procedure expressions (p2) and

procedure calls with "fat" actual parameters (pl).

/
..

.
{
a
t
o
m
(
(
A

.
B
)
)

}

.
.
.

.
.
.

{
m
3

:
p
2
'

(
s
-
e
x
p
r
:
z
'
)
m
2
;
{
i
_
f
f

h
l

(
z
'
)

t
h
e
n

h
2

e
l
s
e

h
4

f
ii

};

i_
_[
f
h
l

(
(A

.

B
)
)

t
h
e
n

p
2
'

(
(
B

.
A
)
)

(
(
A

.
B
)
)

e
l
s
e

p
q

(
h
3

(
(
A

.
B
)
)

,
(B

.

A
)
)

f~
i}

.
~.

I
F

F
.
.
.

{
i
f

h
1
(
(
B

.
A
)
)

t
h
e
n
'
h
2
(
(
A

.
B
)
)

'
~
e
l
s
e
'
h
4
(
(
A

.
B
)
)
I

f
i
}

.
.
.

o
.°

{

a
to

m
((

B

.
A

))
}

.

.
.

.
.

.

{
c

o
n

s(
A

,(
A

.

g
))

}

.
.

.
.

.
.

{

c
a

r(
(A

o

B
))

}

°°
.

~
h

.
.
.

{
m
3

:
p2

"(
s-

ex
pr

:z
")

m2
;{

if
__

h]

(z
")

t
h
e
n

h
2

e
l
s
e

h
4

f_
~i
];

~
P

•
.

~
Ip

I<

-
h
l

(
h
3

(
(A

.

B)

)
)

t
h
e
n

2
"

(
(B

A
)

)
(
h
3

(
(A

B
)

)
),
 e

l
s
e

(
h
3

(
h
3

(
(A

.

B)

)
)
,
(B

.
A)
JJ
 f_
Ai
}

i
ff

T
l

..
.

{
a

to
m

(h
3

((
A

.

B
))

)}

..
.

l
"

..
.

{
a

to
m

({
c

d
r(

(A

°
B

))
}

)}

..
.

~
O

C
O

250

begin mode ml = proc (sqexpr,s-expr) s-exor;

mode m2 : proc (s-expr) s-exDr;

mode m3 = proc (s-expr) m2;

ml : pl (s-expr:x, s-expr:y) s-exBr;

{m3 : p2 (s-exmr:z) m2; {if hi(z) then h2 else h4 fi};

i_~f hi(x) then p2(y) (x) else p1(h3(x),y) f_~i);

m2 : hl (s-exor:xl) s-expr; {atom(xl));

m2 : h2 (s-exp_r:x2) s-exmr; {cons(A,x2)};

m2 : h3 (s--expr:x3) s-expr; {cdr(x3)};

m2 : h4 (s-exp_[r:x4) s-exDr; {car(x4)];

pl ((A . B),(B . A))

end

An initial segment of the infinite execution tree is given in fig. I.

Modifications according to ii) of the copy-rule are marked.

IV. SEMANTICS DEFINITION

We are going to define the semantics of a program ~ with procedure

calls by programs without procedure calls. These programs are

essentially those of E resp. T . The construction of an input/output

function for ~ depends on the following facts:

Theorem

Let ~ be a compilable LISP/N-program. Then (E, ~) is a lattice.

The proof [Li/Si] is based on these le~mata:

Lentma I :

If the diagrantm /\

holds for the programs ~, ~', ~'' then either ~' and ~'' are identical

or there is a unique program ~''' with

/\
~r ~ ~r t ~

, r r ~ ~ Y

251

Lemma 2 :

If the diagramm / - , , ,

~I ~ I[i

holds then either ~' and ~'' are identical or there exist programs

m ' with

Z ~

\

"%

\ /
n\ ~' ,/ m

7[~ I

o

To define the semantics of a LISP/N-program we consider programs

without procedures first. A compilable LISP/N-program W without

procedures can be understood as a function

fw I En ~ E

where n is the number of inputs to ~ and E denotes the set of all

s-expressions. In general f~ will be only partially defined, because

may run into an infinite loop or terminate irregular for certain

input-data.

Now we consider a compilable LISP/N-program z with the execution E .

From ~'eE we get the program ~' without procedures if we eliminate

all procedure declarations and if we replace every remaining pro-

cedure statement by car(A), a syntactical representative for the

undefined value (i. e. ~). Notice that there are no procedure

expressions in ~'. Let ~' i z'', then we have functions

f~,, f~,, ~ [E n > E] with f~, ~ f~,,. By Theorem 2. we have seen

that (E,, ~) is a lattice. Therefore we can define the ~nput/outpu ~

function f s [E n > E] of the original program ~ by the union

f~ =Df ~J f%'

252

So we have defined the semantics of the original compilable program

by the function fT" On the other hand we can take the execution tree

T~ instead of E for the construction of f , because E is a distri-

butive lattice isomorphic to the lattice ~z of all finite subtrees of

T [La].

We have shown that copy-rule semantics can be defined for languages

with higher order functionals.

References

[Be] Berry,D.M.: Block Structure: Retention or Deletion. Proc. of

the Third Annual ACM Symp0 on Theory of Computing, 1971

[Bo/We] Bobrow,D.G.,Wegbreit,B.: A Model and Stack Implementation of

Multiple Environments. CACM 4~ 10, 1973

[Fi] Fischer,M.J.: Lambda Calculus Schemata. SIGPLAN Notices 7 (1),

1972

[Fr/Wi] Friedman,D.P.,Wise,D.S.: CONS should not Evaluate its

Arguments. Third ICALP, Edinburgh, 1976

[Gor] Gordon,M.J.C.: Models of Pure LISP (a worked example in

semantics). Dept. of Machine Intelligence, Univ. of Edinburgh,

Rep. 31, 1973

[Gr] Greussay,P.: Contribution ~ la d&finition interpr&tative et

l'implementation des l-langages. Th@se ~s Sciences,

Paris VII, 1977.

[Hes] Hesse,W.: Two-level Graph GrammarS. Technische Universit~t

M~nchen, TUM-INFO-7833, 1978

[Ho] Hoare,C.A.R.: An axiomatic basis~for computer programming.

CACM 12, 1969

[Ka/Li] Kaufholz,G.,Lippe,W.M.: A Note on a Paper of H. Langmaack

about Correct Procedure Parameter Transmission. Universit[t

des Saarlandes, Bericht Nr. A 74/06, 1974

[La] Langmaack,H.: On Correct Procedure Parameter Transmission

in Higher Programming Languages. Acta Informatica 2, 1973

[Li] Lippe,W.M.: Uber die Entscheidbarkeit der formalen Erreich-

barkeit von Prozeduren bei monadischen Programmen.

[Li/Si] Lippe,W.M.,Simon,F.: LISP/N - Basic Definitions and Properties

Bericht Nr. 4/79 des Instituts f~r Informatik und Praktische

Mathematik der Universit~t Kiel

[Mc] McCarthy,J.et.~.: LISP 1.5 Programmer's Manual.

MIT Press, Cambridge, Mass., 1966

253

[Mc I] McCarthy,J.: A New EVAL Function. MIT Artificial Intelligence

Memo No. 34

[McG] McGowan,C.L.: The "most-recent" Error: its Causes and

Correction. Proc. of an ACM Confo on Proving Assertions

about programs. SIGPLAN Notices Vol. 7. No. I, 1972

[Mo] Moses,J.: The Function of FUNCTION in LISP.

SIGSAM Bull. 15, 1970

[Per] Perrot,J.F.: LISP et l-calcul, in: B.Robinet (Ed.)

Lambda Calcul et S6mantique Formelle des Langages de

Progra~mation, Parist 1979

[Ro] Robinet,B.: Petit precis de lambda-calcul. Ecole de I'IRZA:

Implementation et Interpretation des LISP, Toulouse, 1978

[Sa] Sandewall. E.: A Proposed Solution to the FUNARG Problem.

Uppsaia Univ. Dept. of Comp. Sci., Rep. 28, 1970

[Schw] Schwartz,R.L.: A W-grammar Description of LISP.

Modeling and Measurement Note No. 34, Comp. Dept. School

of Eng. and Appl. Sci., UCLA, 1975

[Si I] Simon,F.: Zur Charakterisierung von LISP als ALGOL-~hnliche

Programmiersprache mit einem strikt nach dem Kellerprinzip

arbeitenden Laufzeitsystem. Dissertation, Kiel, 1978

[Si] Simon,F.: Cons-freies Prograntmieren in LISP unter deletion-

Strategie. in: Informatik Fachberichte, Bd. I, Springer

Verlag, 1976

[Si/Tr] Simon,F.,Trademann,P.: Eine Beziehung zwischen consfreiem

LISP und Stackautomaten. Journal of Information Processing

and Cybernetics (EIK), Voi.14, No. 12, 1978

[Smi] Smith,D.C.: MLISP. Stanford Artificial Intelligence Project

Memo AIM-135, Computer Science Department Report No. CS 179,

Oktober 1970

[Ste] Steele,G.J. Jr.: Macaroni is Better than Spaghetti.

Proc. of the Symp. on AI and Progr. Lang., ACM, 1977

[St/Su] Steele,G.J.'Jr.,Sussman,G.J.: The Art of the Interpreter or

the Modularity Complex. AI Memo No. 453, MIT AI-Lab., 1978

[Sto] Stoy,J.E.: Denotationai Semantics: The Scott-Strachey

Approach to Programming Language Theory. MIT Press

Series in Computer Science, Cambridge, Mass., 1977

[Weg] Wegner,P.: Three Computer Cultures.

254

Appendix A: Syntax of LiSP/N-programs

<program>::=beqin<mode decl. part><proc, decl. part><main program>end

<mode decl. part>::=<empty>/<mode decl.>;[<mode deel.>;]

<mode decl.>::=mode<midf.>=<struct, mode>

<midf.>::=<identifier>

<struct. mode>::=proc ()<result mode>/proc(<mode>[,<mode>])<result mode>

<result mode>::=<midf.>/void/s-expr

<mode>::=<midf.>/s_-expr

<proc. decl. part>::=<empty>/<proc, decl.>;[<proc, decl.>;]

<proc. declo>::=<midf.>:<identifier>(<form, par. list>)

<result mode>;<proc, body>

<form. par. list>::=<empty>/<mode>:<identifier>[,<mode>:<identifier>]

<proc. body>::=[<proc, decl. part><expression>}

<expression>::=<empty>/<Bool. expr.>/<s-expr, expr.>/<proc, expr.>/

<proc. st.>

<Bool. expr.>::=T/F~<identifier>/<proc, st.>/ atom(<s-expr, expr.> /

eq(<s-expr, expr.>,<s-expr, expr.>)/

i~f<Bool, expr.>then<Bool, expr.>else<Bool, expr.>f_~i

<s-expr. e'xpr.>::=<s-expr.>/<identifier>/<proc, st.>/

cons(<s-expr° expr.>,<s-expr, expr.>)/

cdr(<s-expr, expr.>)/car(<s-expr, expr.>)/

i f<Bool, expr.>then<s-expr, expr.>else<s-expr.expr.>f_ii

<proc. expr.>::=<identifier>/

i f<Bool, expr.>then<proc, expr.>else<proc, expr.>f_~i

<proc. st.>::=<identifier>(<act, par. list>)[(<act par. list>)]/

i_ff<Bool, expr.>then<proc, st.>else<proc, st.>f!i

<act. par. list>::=<empty>/<act, par>[,<act, par.>]

<act. par.>::=<Bool, expr.>/<s-expr, expr.>/<proc, expr.>/<proc, st>

<main program>::=<empty>/<s-expr, expr.>/<Bool, expr.>/

<proc. st.>/<gen, expr.>

r< <gen. block>::=l gen. block>}/<proc, body>

255

<gen. expr.>::=<gen, block>/

atom(<gen, expr.>)/

cdr(<gen, expr.>)/

car(<gen, expr.>)/

eq(<gen, expr.>,<gen, expr.>)/

eq(<gen, expr.>,<expression>)/

eq(<expression>,<gen, expr.>)/

cons(<gen, expr.>,<gen, expr.>)/

cons(<gen, expr.>,<expression>)/

cons(<expression>,<gen, expr.>)/

__if<gen- expr.>then<gen, expr.>else<gen, exmr.>f_~i/

i_ff<gen, expr.>then<gen, expr.>else<expression>fi/

i_ff<gen, expr.>then<expression>else<gen, expr.>f~i/

i~f<gen, expr.>then<expression>else<expression>fi/

i_ff<expression>then<gen, expr.>else<gen, expr.>f_~i/

i f<expression>then<gen, expr.>else<expression>f!i /

if<expression>then<expression>else<gen, expr.>f_~i

Remark

The bracket symbols [,] are used to denote finite repetitions of the

enclosed symbols resp. their omission.

