WHY RECURSION?

Jeffrey S. Rohl

Department of Computer Science
University of Western Australia

Abstract

Recursion as a programming technique has been with us for over two decades now, and yet it still retains a certain mystery. In this paper we consider the objections to it and the claims for it.

1. INTRODUCTION

Many programming texts use Euclid's algorithm for calculating the highest common factor (HCF) of two integers p and q as one of their simple examples. The description of the algorithm usually goes something like this: "To find the HCF first divide p by q and calculate the remainder, r. If $r=0$ then q is the HCF; otherwise repeat the process with q and r taking the place of p and q." From this description an iterative solution along the lines of Fig. 1 is usually presented (though if the example comes early it is expressed as a program rather than a procedure of course).

```
function \(H C F(p, q:\) integer \()\) : integen;
    var \(r\) : integer;
    begin
    \(r:=p \bmod q ;\)
    while \(r<>0\) do
            begin
            \(p:=q ;\)
            \(q:=r ;\)
            \(r:=p \bmod q\)
            end;
HCF : \(=q\)
end
```

Fig. 1 A nonrecursive version of the HCF procedure
Yet the description given almost begs for the recursive procedure such as that of Fig. 2.

```
function \(H C F(p, q\) : integer \()\) : integer;
    var \(r\) : integer;
    begin
    \(r:=p \bmod q ;\)
    if \(r=0\) then \(H C F:=q\) else \(H C F:=\operatorname{HCF}(q, r)\)
```

Fig. 2 A recursive version of the HCF procedure

Why then does the first solution seem nore natural to writers and teachers? The simple (simplistic?) answer is that most writers and teachers either learned to program in the fifties or early sixties when recursion was just beginning to appear, or were themselves taught by people reared in that period. There seems to be a collective feeling for iterative solutions as against recursive ones, though this feeling is certainly buttressed by cogent arguments.

2. THE OBJECTIONS

What are these arguments against recursion? There seem to be four, which we discuss in tum.
(a) It is expensive of space: This is quite a strong argument since each invocation of the recursive procedure requires an activation record consisting of links, parameters and local variables. Let us make the simplifying assumption that all these quantities require a word each and that there are two links. Then the recursive procedure for $H C F$ gives $5 n$ words, where n is the number of recursive invocations, whereas the non-recursive version reguires a constant 3. Whether this is important depends very much on the value of n. It so happens that for this example n must be small: if F_{i} is the $i^{\text {th }}$ Fibonacci number then it is bounded by $u-3$ where F_{u} is the largest Fibonacci number represented by a variable of type integer. Similar statements apply to other numerical procedures such as that for factorial.

If on the other hand, the procedure is processing the elements of a list or an array, then n is usually related to the number of elements in this list or array, and this might be quite large; and in a program manipulating a small number of large lists it could be quite crucial. The decision on whether or not to use recursion in this situation is quite a nice one especially where the non-recursive procedure requires a stack.

When we move onto more complex data structures such as a tree, the space required by activation records is less significant since n is generally related to the height of the tree which, for reasonably balanced trees, is a logarithmic function of the number of nodes. The same is true but even more so for more general trees, including the search trees of combinatorial problems.
(b) It is expensive of time: This objection has in general lost much of its validity. If a compiler writer implements procedure calls, not by a short sequence of open code but by a call to a subroutine, then calling procedures is expensive, and the complaints about the time penalty of recursion are based on experience with these compilers.

If we consider any procedure written both recursively and non-recursively we find that, in general, the same operations take place and that in general they take place in the same order. The difference lies in the control. structures: a recursive call or a traverse of a loop. Although the procedure call is the more expensive, the significance of this becomes correspondingly less as the body of the procedure becomes more complex. The HCF example is probably the most unsympathetic from the recursive point of view since the body is very small. Fig. 3 gives an analysis, in terms of the number of iterations/recursions n, of the operations involved.

	Weight	Non-recursive (Fig.1)	Recursive (Fig.2)
Assignments	1	$3 n+2$	$2 n+2$
Mod	4	$n+1$	$n+1$
Comparisons	1	$n+1$	$n+1$
Procedure calls	5	1	$n+1$
Farameters passed	1	2	$2 n+2$
Weighted figure		$8 n+14$	$14 n+14$

Fig. 3 An analysis of the HCF procedures
The weights used to produce the weighted average are rather arbitrary (and reflect the writer's feeling of what they should cost!) On the CYBER they are reasonably accurate. The times to calculate the ECF of F_{24} and F_{23}, so that $n=21$, were 700μ secs and 1120μ secs respectively (to some rather variable accuracy). This then sets an upper limit on the time penalty of recursion.

In more complex cases where the non-recursive procedure has to maintain a stack, the balance changes and the speed of the algorithms becomes more nearly equal. Indeed there is evidence (Fike 1975), (Rohl 1976) that a recursive procedure can be the more efficient.
(c) I can't understand it: There are those who have no need for recursion and for them the whole of this discussion is simply irrelevant. There are many others, however, for whom recursion would be useful if only they could understand it. Their inability to understand is a severe problem, and an indictment of those of us whose job it is to teach them and have failed. It is perhaps significant that none of the introductory texts on Pascal (assuming here that Wirth [1976] and Alagic \& Arbib [1978] are not introductory) give the subject more than a cursory treatment.

Once recursion is mastered, it is difficult to believe that some nonrecursive procedures are easier to understand than their recursive equivalents. Consider a procedure for producing a copy of a list, assuming the definitions:

```
type listptr = hnode;
    node \(=\) record
        item: itemtype;
        next : listptr
        end
```

where itemtype is left unspecified.
Fig. 4 gives a non-recursive version adapted from the function given by Alagic and Arbib.

```
procedure copyll : listptr; var \(\ell 1\) : listptr);
    var \(p\), pred : Ristptr;
    begin
    if \(l=\) nil then \(l l:=\) nil
    else
        \(\frac{\text { begin }}{\text { new(l } 1) ; ~}\)
        \(\ell 1 \uparrow\).item \(:=\ell \uparrow\).item;
        pred \(:=\ell 1 ; \ell:=\ell \uparrow\).next;
        while \(\ell<>\) nil do
                \(\frac{\text { begin }}{\text { new(p); }}\)
                pred \(\uparrow\).next : \(=p\);
                \(\mathrm{p} \uparrow\).item : \(=\ell \uparrow . \mathrm{item} ;\)
                pred \(:=p ; \ell:=\ell \uparrow\).next
                end;
            predt.next := nil
            end
    ena
```

Fig. 4 A non-recursive procedure for copying a list
Is this procedure really easier to understand than the recursive one given in Fig. 5?

```
procedure copy(l : listptr; var l1 : listptr);
    begin
    \frac{\mathrm{ If }}{\mathrm{ else }}l=n\mp@code{niI}\mathrm{ then ll := nil}
        begin
        \ell1\uparrow.item:= \ell\uparrow.item;
        copy(lr.next, li\uparrow.next)
        end
    end
```

Fig. 5 A recursive procedure for copying a list
For those uninitiated in recursion it may be, so that it seems that the solution is an educational one. We must see to it that the mode of thought involved in recursion is explained and that significant procedures are written using it.
(d) The language I use doesn't allow it: It is certainly true that fortran forbids recursion and that most assembly languages give no help in its implementation. However, the problem of mechanistically converting recursive procedures to non-recursive ones has received a lot of attention. (See Griffiths [1975] for linear recursion, Knuth [1974] and Bird [1977] for binary recursion, and Rohl [1977] for recursion in combinatorial problems.) Thus it is possible to regard recursion as a design tool even where it may not be available as an implementation tool.

3. THE CIATMS

The discussion so far has only been a partial answer to the four objections. We consider now four advantages.
(a) In appropriate situations it more naturally matches the problem: we have already given the example of a list copying procedure. Since the recursive version of that procedure is vulnerable to the space argument, we give another example: that of adding an element to a binary search tree. Fig, 6 gives a recursive version assuming the definitions:

```
type treeptr = \uparrownode;
    itemtype = record
                        key: keytype;
                        info : infotype;
                        end;
        node = record
            left: treeptr;
            item : itemtype;
            right : treeptr
            end;
```

where infotype is left unspecified.

```
procedure insert(newitem : itemtype; var \(t\) : treeptr);
    begin
    if \(t=\) nil then
        begin
            new(t);
            with \(t \uparrow\) do
            begin
            item: = newitem;
            left : = nil; right \(=\) nil
            end
            end
    else with ti do
            if newitem.key = item.key
            then writeln('item already on tree')
            else if nowitem.key < item.key
                then insert (newitem, left)
            else if newitem, key \(>\) item, key then]
            insert(newitem, right)
end
```

Fig. 6 A recursive procedure for inserting an element in a tree
The recursive procedure enables us to avoid the trailing pointer problem and Barron's photasis problem, as a comparison with Fig. 7 graphically illustrates.

```
procedure insert(newitem : itemtype; var \(t\) : treeptr);
    var \(t 1\), \(t 2\) : treeptr;
            branch : ( \(\ell\), ri);
            found : Boolean;
begin
    new( 22\()\); t2t.right := t;
    \(t 1:=t\); \(t:=t 2\); branch \(:=r\);
    found := false;
    while \((t 1\langle>\) nil) and not found do
        with \(t 14\) do
            begin
            友2: t 1 ;
            if newitem.key \(=\) item.key then
                begin
                    writeln ('item already on tree');
                    found : = true
                    end
            else if newitem.key < item.key then
                        begin
                        t1:= t1 1 . left; branch \(:=\ell\)
                        end
            else iif newitem.key > item.key then\}
                        begin
                        \(\overline{t 1}:=t 1 \uparrow\) right; branch : \(=r\);
                    end
            end;
    if \(t 1=\) nil then
        begin
        new(t)];
        with \(t 1+\) do
            \(\frac{\text { begin }}{\text { item }}:=\) newitem;
            leót \(:=\) nil; right \(:=\) nil
            end
        if branch \(=\ell\) then t2A. left \(:=t 1\)
            else t2^. right: = t1;
        end;
    \(t:=\) tt.right
    end
```

Fig. 7 A non-recursive procedure for inserting an element in a tree
(b) In many situationssuch procedures are easier to prove: For a linear recursive procedure, its proof is almost trivial, since the structure of the procedure mirrors directly the mathematical formulation. The proof process is essentially that of the induction used in the proof of the underlying mathematics. Perhaps we are saying that it is the proof of the mathematics rather than the proof of the program that is important.

We give now a more difficult procedure, one for generating permutations in pseudo-lexicographical order, which we shall also use in later sections. We call the procedure everyman because every man and his brother seem to have discovered it. It assumes the definitions:

```
type mark \(=\{a n y\) enumeration or subrange \(\} ;\)
    range \(=1 . . \max ;\)
    marksarray \(=\) array [range] of mark;
```

where max is the cardinality of mark, and uses $:=:$ as an interchange operator.

```
procedure everyman(m : marksarray; n : range);
```

 procedure perm (\(k\) : range);
 var \(i\) : range;
 begin
 for \(i:=k\) to \(n\) do
 begin
 \(\overline{m[k]}:=: m[i]\);
 if \(k=n-1\) then \(\{p r o c e s s\}\)
 else perm \((k+1)\);
 \(\overline{m[k]}:=: m[\ell]\)
 end
 end;
 $\frac{\text { begin }}{\operatorname{perm}(1)}$
end

Fig. 8 The everyman procedure for generating permutations
The proof is simple. Suppose that a call $\operatorname{perm}(k+1)$
(i) Leaves the marks in $m_{1} \rightarrow m_{k}$ untouched;
(ii) Ensures that all permatations of the marks in $m_{k+1} \rightarrow m_{n}$ are produced in turn;
(iii) Returns $m_{k+1} \rightarrow m_{n}$ to its original state.

This is trivially true when $k+1=n-1$.
Then a call perm $(k):$
(i) Leaves the marks in $m_{1} \rightarrow m_{k-1}$ untouched since the procedure does not reference them;
(ii) Ensures that all the permutations of the marks $m_{k} \rightarrow m_{n}$ are produced in turn because all possible choices for $m_{k}\left(a v a i l a b l e\right.$ in $\left.m_{k} \rightarrow m_{n}\right)$ are chosen and perm ($k+1)$ called after each choice;
(iii) Returns $m_{k} \rightarrow m_{n}$ to its original state.

Since everyman calls perm(1) it follows that all permutations of the marks in m are produced.

The proof is not always so easy, of course. We leave the reader to prove a related algorithm due to Heap [1963] given in Fig. 9.

```
procedure Heap(m : marksarray; \(n\) : range);
procedure perm(k : range);
    var \(i, p\) : range;
    begin
    if \(k=n-1\) then \(\{\) process \}
    else perm \((k+1)\);
    for \(i:=k+1\) to \(n\) do
        begin
                        if \(o d d(n-k)\) then \(p:=i\) else \(p:=n\);
                        \(m[p]:=: m[k]\);
        if \(k=n-1\) then \(\{p r o c e s s\}\)
            else perm \((k+7)\)
            end
        end;
\(\frac{\text { begin }}{\text { perm(1) }}\)
end
```

Fig. 9 Heap's algorithm for generating permutations
A non-recursive version of everyman is given in Fig. 10 and the reader is encouraged to prove it directly.

```
procedure everuman(m : marksarray; n : range);
    var i : array[range] of range;
        k : range;
        complete, downagain : Boolean;
begin
k:=1;
i[1]:= k;
complete := false;
repeat
    m[k] :=: m[i[k]];
    while k<>n-1 do
        begin
        k:=k}+1
        i[k]:= k;
        m[k] :=:m[i[k]]
        end;
    process;
    downagain := false;
    repeat
    m[k]:=: m[i[k]];
        if }i[k]<> n then
        begin
                i[k]:= i[k] + 1;
                downagain := true
                end
            else
                if}k=1\mathrm{ then complete := true
    until downagaín or complete
until complete
end
```

(c) In many situations such procedures are easy to analyse: We illustrate this by reference to the everyman procedure again. Let us ignore for the moment the details of what we choose to measure, and assume that:
a is the count inside the loop at level $n-1$
6 is the count outside the loop at level $n-1$
c is the count inside the loop at the other levels,
d is the count outside the loop at the other levels.
If T_{k} is the count for a complete activation at level k then we have:

$$
\begin{aligned}
T_{k} & =(n-k+1)^{*}\left(T_{k+1}+c\right)+d & , k \neq n-1 \\
& =2 \times a+b & , k=n-1
\end{aligned}
$$

From this we can calculate T_{1} as:

$$
\left.\begin{array}{rl}
T_{1}=n \times & {[a+} \\
& b \times \frac{1}{2}! \\
& c \times\left(\frac{1}{2}!+\frac{1}{3}!+\ldots\right)+ \\
& \left.d \times\left(\frac{1}{3!}+\frac{1}{4}!+\ldots\right)\right] \\
=n \times & {[a+} \\
& (b+c) \times \frac{1}{2}!+ \\
& (c+d) \times \frac{1}{3!}+ \\
& (c+d) \frac{1}{4!}+ \\
\vdots
\end{array}\right]
$$

Fig. 11 gives an analysis of everyman with respect to some higher-level constructs.

Fig. 11 An analysis of everyman

From a detailed analysis such as this we can determine the effects of proposed transformations on a procedure to improve its performance. With everyman, for example, we could consider, anong others, the following possibilities:
(i) During all interchanges at one level the same element (the initial m_{k}) takes place in all interchanges, and reinterchanges. We could save on both assigments and subscriptings by storing this value locally outside the loop so that the interchange within the loop required only two assignments instead of three. Further we could avoid restoring m_{k} in the interchange sequence since on the next traverse it would be immediately overwritten. That is, we could replace the loop of everyman by:

```
temp :=m[k];
for \(i:=k\) to \(n\) do
        begin
        \(\overline{m[k]}:=m[i] ; \quad m[i] \quad:=\) temp;
        if \(k=n-1\) then (process)
        else perm \((k+1)\);
        \(m k 丁:=m[k]\)
        end;
\(m[k]:=\) temp
```

(ii) The interchange and reinterchange that takes place on the first traverse of each loop is redundant since it simply interchanges m_{k} with itself. We could recognise this by dealing with it outside the loop and reducing the number of traverses by one. Note that this means that a new derivation must take place. The new result is:

$$
\begin{aligned}
T_{1}=n! & \times\left[(a+b+c) \times \frac{1}{2}!\right. \\
& +d \times \frac{1}{3}! \\
& +d \times \frac{1}{4!} \\
& \vdots
\end{aligned}
$$

Note, too, that the processing must now take place at two different places in the text, which itself may imply some cost.
(iii) The test for determining when the recursion is to terminate is constant within the loop. It may be taken outside by splitting the loop into two and using the test to determine which loop is to be obeyed. Further the loop at the bottom level is obeyed only once and can be replaced by its body.
(iv) We could stop the recursion one level later as in Wirth. This involves a third analysis which we leave to the reader.

Fig. 12 gives the results of the analysis of the above suggestions together with times in msecs of running them on a CYBER 73 for $n=6$.

	Weighted Parameters					
	a	b	c	d	Total	Time
Basic procedure	19	1	26	1	$38 \frac{1}{8} \mathrm{n}$!	130
Mod (i)	13	5	20	5	$30 \frac{17}{24} \mathrm{n}$!	108
$\operatorname{Mod}(\mathrm{i}) \rightarrow(\mathrm{ii})$	13	14	14	15	$23 \frac{5}{8} \mathrm{n}$!	77
$\operatorname{Mod}(\mathrm{i}) \rightarrow$ (iii)	-	16	18	15	$20 \frac{1}{8} n$!	67
$\operatorname{Mod}(\mathrm{i}) \rightarrow$ (iv)	-	1	18	14	$28 \frac{11}{12} \mathrm{n}$!	101

Fig. 12 An analysis of improvements to everyman
Furthermore, similar analyses (or the same ones stopping earlier) enable us to determine whether the same techniques are more or less efficacious if we want the permutations to be r at a time rather than n at a time. This is relevant to adaptations of the procedure for, say, topological sorting or other procedures where inspection of the first r elements of a permutation may enable all $(n-r+1)$! permutations starting with those r elements to be removed from consideration without being generated.
(d) They are adaptable: This is rather a difficult claim to justify yet it is interesting to note how often workers express their amazement that minor changes to a program can produce a highly desirable variant. Here we will simply illustrate by means of the classical n-queens problem: that is, the problem of determining how n queens may be placed on an $n \times n$ chessboard so that no queen is under attack from any other. If we represent the solution as an array m where m_{i} gives the column in which the queen on row i is placed, then since there can only be one queen in each row and one queen in each column, it follows that m must be a permutation of the integers 1 to n.

Thus a permutation generation procedure can be adapted to solve the n-queens problem by testing each permutation to see whether it corresponds to a board in which no queen is under threat along the diagonals. Further we can test partial permutations as they are generated to see whether the queen, represented by the latest element to be added to the permutation, is under attack since, if it is, there is no point building on the partial permutation. Fig. 13 gives a procedure based on everyman which uses the traditional technique for testing the diagonals.

```
procedure queens(n : range);
    Const max1 = {the value of max - 1};
        max2 = { {the value of 2 x max};
    type mark = 1 .. max;
    var m: array[range]of mark;
        up2 : array [-max] .. maxi] of Boolean;
        upr : array [2 .. max] of Boolean;
        i : integer;
procedure perm(k : range);
    var i, mi : range;
    temp : mark;
    begin
    temp:=m[k];
    for }i:=k\mathrm{ to }n\mathrm{ do
        begin}m[i]
        if up\ell[k-mi] and upr[k+mi]:= then
        begin
            upl[k-mi] := false; upr[k+mi] := false;
            m[k] := mi; m[i] := temp;
            if }k=n-1\mathrm{ then
                begin
                if upl[n-m[n]] and
                                    uph[n+m]n]] then process
                end
            else perm(k
            upl[k-mi] := true; upr[k+mi] := true
            end
        end;
    m[k] := temp
    end;
begin
for }i:=1\mathrm{ to n do m[i]:= i;
for }i:=1-n\mathrm{ to }\overline{n-1}\mathrm{ do upl[i]:= true;
for }i:=2\mathrm{ to }\mp@subsup{}{}{2}\timesn\mathrm{ do upr[i] := true;
perm(1)
end
```

Fig. 13 The n-queens problem

4. CONCLUSIONS

The reader will have noticed that the claims for recursion have generally been prefaced by the phrase "in many situations". The paper does not claim that recursion should be used for everything (though the author still nurtures the dream of teaching an introductory programming course this way). We simply want to say that recursion is a very powerful tool on the appropriate occasion and that it should not be dismissed as too esoteric for practical use.

5. ACKNONLEICEEMENT

I should like to thank M.S. Palm who tested, timed and instrumented all the procedures given here.

REFERENCES

1. ALAGIC, S and ARBIB, M.A. (1978): "The Design of Well-Structured and Correct Programs", Springer-Verlag.
2. BIRD, R.S. (1977): "Notes on Recursion Elimination", Comm ACM, Vol.20, p. 434.
3. FIKE, C.T. (1975): "A Permutation Generation Method", Computer Journal, Vol. 18, p. 21.
4. GRIFFITHS, M. (1975): "Requirements for and Problens with Intermediate Languages for Programing Language Implementation" (Lecture notes for the NATO International Sumer School, Marktoberdorf, W. Germany).
5. HEAP, B.R. (1963) : "Pemutations by Interchanges", Computer Journal, Vol. 6, pp 293-4.
6. KNUTH, D.E. (1974): "Stnuctured Programming with Goto statements", Computing Surveys, Vol. 6, p. 261.
7. ROHL, J.S. (1976) : "Programming Improvements to Fike's Algorithm for Generating Permutations", Computer Joumal, Vol 19, p. 156.
8. ROHL, J.S. (1977) : "Converting a Class of Recursive Procedures into Non-recursive Ones", Software - Practice \& Experience, Vol. 7, p. 231.
9. WIROH, N. (1976): "Algorithms + Data Structures = Programs", Prentice-Hall.
