
PROCEEDINGS OF THE SYMPOSIUM ON
LANGUAGE DESIGN AND PROGRAMMING METHODOLOGY
SYDNEY, 10-11 SEPTEMBER, 1979

WHY RECURSION?
Jeffrey S. Rohl

Department of Computer Science
University of Western Australia

ABSTRACT

Recursion as a programming technique has been
with us for over two decades now, and yet it still
retains a certain mystery. In this paper we consider
the objections to it and the claims for it.

1. INTRCDUCTION

Many programming texts use Euclid's algorithm for calculating the highest
comn~n factor (HCF) of two integers p and q as one of their simple exaraples.
The description of the algorithm usually goes something like this: "To find
the HCF first divide p by q and calculate the renminder, 6. If r = 0 then
q is the HCF; otherwise repeat the process with q and r taking the place of
p and q." From this description an iterative solution along the lines of
Fig. 1 is usually presented (though if the example comes early it is expressed
as a program rather than a procedure of course).

f u n c t i o n HCF(p,q : i n t e g e r)
v a t r : i n t e g e r ;
be~in
r : = p ~ q ;
while r <> 0 do

p := q;
q := r ;
r :-- p mod q
end ;

HCF := q
end

: i n t e g e r ;

Fig. 1 A nonrecursive version of the HCF procedure

Yet the description given almost begs for the recursive procedure such as that
of Fig. 2.

f u n c t i o n HCF(p,q : i n t e g e r) : i n t e g e r ;
v a r r : i n t e g e r ;
begin
r := p mod q ;
i f r ~ t h e n HCF := q e l s e HCF := HCF(q,r)
end

Fig. 2 A recursive version of the HCF procedur e

72

Why then does the first solution seem more natural to writers and teachers?
The simple (simplistic?) answer is that most writers and teachers either
learned to program in the fifties or early sixties when recursion was just
beginning to appear, or were themselves taught by people reared in t_hat period.
There se~ns to be a collective feeling for iterative solutions as against
recursive ones, though this feeling is certainly buttressed by cogent
arg~nents.

2. ~{E OBJECTIONS

What are these arguments against recursion? There seem to be four, which
we discuss in turn.

(a) It is expensive of space: This is quite a strong argrm~nt since each
invocation of the recursive procedure requires an activation record consisting
of liras, parameters and local variables. Let us make the simplifying
assumption that all these quantities require a word each and that there are
two links. Then the recursive procedure for HCF gives 5n words, where n is
the number of recursive invocations, whereas the non-recursive version requires
a constant 3. 9~ether this is important depends very much on the value of n.
It so happens that for this example n must be small: if F i is the i th Fibonacci
number then it is bounded by u-5 where F u is the largest Fibonacci number
represented by a variable of type integer. Similar statements apply to other
ntm~rical procedures such as that for factorial.

If on the other hand, the procedure is processing the elements of a list
or an array, then n is usually related to the number of elements in this list
or array, and this might be quite large; and in a program manipulating a
small ntm~er of large lists it could be quite crucial. The decision on
whether or not to use recursion in this situation is quite a nice one especially
where the non-recursive procedure requires a stack.

When we move onto more complex data structures such as a tree, the space
required by activation records is less significant since n is generally related
to the height of the tree which, for reasonably balanced trees, is a logarithmic
function of the number of nodes. The same is true but even more so for more
general trees, including the search trees of combinatorial problems.

(b) It is expensive of time: This objection has in general lost much of its
validity. If a compiler writer impl~ments procedure calls, not by a short
seqt~nce of open code but by a call to a subroutine, then calling procedures
is expensive, and the complaints about the time penalty of recursion are
based on experience with these compilers.

If we consider any procedure written both recursively and non-recursively
we find that, in general, the same operations take place and that in general
they take place in the same order. The difference lies in the control
structures: a recursive call or a traverse of a loop. Although the procedure
call is the more expensive, the significance of this becomes correspondingly
less as the body of the procedure beccmes more ~lex. The HCF example is
probably the most ~thetic from the recursive point of view since the
body is very small. Fig. 3 gives an analysis, in terms of the number of
iterations/recursions n, of the operations involved.

73

Assists
Mod
Co~aarisons
Procedure calls
Parameters passed

Weight ~n-recurs~e
(Fig.l)

Recursive
(Fig.2)

3n+2
n+l
n+l

1
2

2n+ 2
n+l
n+l
n+l

2n+2

Weighted figure 8n + 14 14n + 14

Fig. 3 An analysis of the HCF procedures

The weights used to produce the weighted average are rather arbitrary (ar~
reflect the writer's feeling of what they should cost!) On the CYBER they are
reasonably accurate. The times to calculate the FieF of F24 and F23 , so that
n = 21, were 700 ~secs and 1120 ~secs respectively (to some rather variable
accuracy). This then sets an upper limit on the time penalty of recursion.

In more cc~plex cases where the non-recursive procedure has to maintain a
stack, the balance changes and the speed of the algorithms becomes more nearly
equal. Indeed there is evidence (Fike 1975), (Rohl 1976) that a recursive
procedure can be the more efficient.

(c) ! can't understard it: There are those who have no need for recursion
and for them the whole of this discussion is simply irrelevant. There are
many others, however, for whom recursion would be useful if only they could
understar~ it. Their inability to understand is a severe problem, and an
indictment of those of us whose job it is to teach them and have failed. It
is perhaps significant that none of the introductory texts on Pascal (assuming
here that Wirth [1976] and Alagic & Arbib [1978] are not introductory) give
the subject more than a cursory treatment.

Once recursion is mastered, it is difficult to believe that scme non-
recursive procedures are easier to ur~erstand than their recursive equivalents.
Consider a procedure for producing a copy of a list, asstm~ing the definitions:

t ype l i s t p t r = +node;
- - node = r e c o r d

ZJtemtype ;
ne~t : l i s t p t r
end

where i/cemtype is left unspecified.

Fig. 4 gives a non-recursive version adapted frc~ the function given by
Alagic and Arbib.

74

procedure copy(1 : l i s t p t r ; var 11 ~ listpt~];
va]~ p, pred : l i s t p t r ;
begin
if 1 = nil then 11 : = nil

else
in

1 1 + o i t ~ := l + . i t ~ ;
pred := 11; 1 := l + . n e z t ;
while 1 < > nil do

begin

p r e d i . n e ~ t := p;
p + . i t ~ := l + . i t e m ;
pred := p; 1 := l + . n e ~ t
end;

p r e d + ? ~ x t := n i l
end

end

Fig. 4 A non-recursive procedure for copying a list

Is this procedure really easier to understand than the recursive one
given in Fig. 5?

procedure copy(1 : l i s t p t r ; var 11 : l i s t p t r) ;
~ i n
i f 1 = n i l t h e n 11 := n i l
else

b~in
newlY1) ;
~1+.i tem := l + . i t e m ;
c o p y (l + . n e ~ , 11+.nex t)
end

end

Fig. 5 A re~siv e procedure for copying a list

For those un~tiated in recursion it may be, so that it seems that the solution
is an educational one. We must see to it that the mode of thought involved in
recursion is explained and that significant procedures are written using it.

(d) The language I use doesn't allow it: It is certainly true that Fortran
forbids recursion and that most assembly languages give no help in its
implementation. However, the problem of mechanistically converting recursive
procedures to non-recursive ones has received a lot of attention. (See
Griffiths [1975] for linear recursion, Knuth [1974] and Bird [1977] for binary
recursion, and Rohl [1977] for recursion in combinatorial proble~ms.) Thus it
is possible to regard rec~ursion as a design tool even where it may not be
available as an implementation tool.

3. THE <XltIM~

The discussion so far has only been a partial answer to the four objections.
We consider now four advantages.

75

(a) In appropriate situations it more naturally matches the problem: we
have already given the example of a list copying procedure. Since the
recursive version of that procedure is vulnerable to the space argument, we
give another example: that of adding an element to a binary search tree.
Fig. 6 gives a recursive version assuming the definitions:

type t r e e p t r = +node;
i t emtype = record

ey~. keytype;
in fo : in fo type;
end;

node = record
~ . t r e e p t r ;
i tem : i temtype;
r i g f~ : t r e e p ~
end;

where i n fo t ype is left unspecified.

procedure i;~ert(newitem : itemtype; var t : treeptr);
begin
if t = nil then

begin
nTY);
with t+ do
--~gIE

itS:= newitem;
l e f t "= n i l ; r i g h t = n i l
end

end
else w--i--th

if

end

else

else

t+ do
- - n~w~em, key = i tem. key

then writ~£n(' i tem ~6ready on t r e e ')
i f newiiem.key < i t em.key
then inser t (newi tem, l e f t)
T i f -na~i tem.key > i t em.key then}
~ e r t (n ~ i t e m , r ight)

Fig. 6 A recursive procedure for inser~ng a n element in a tree

The recursive procedure enables us to avoid the trailing poin ter problem and
Barron's protasis problem, as a comparison with Fig. 7 graphically illustrates.

7@

procedure i n s e r t (n ~ i t e m : i t emtype ; var t : t ~ e e p t r) ;
vat t l , t2 : t r e e p t r ;

branch : (1, r) ;
found : Boolean;

); t 2 i . r i g h t := t ;
t l := t ; t := t2; branch := r;
found :-- f a l se ;
while (t l < > nil) and not found do

with t1+ do
begin

t l ;
i f newitem, key = i t em . key then

w - ~ l n (' i t em a l ready on £ree ~ I;
found := t r u e
end

e l s e i f n ~ i t e m . k e y < i t e m . k e y then
b e g i n
t l := t l i . l e f t ; branch := 1
end

e l s e I - Z n ~ i t e m , key > i t em. key then}
begin
t-]--Ci.= t1+ . r igh t ; branch := r;
end

end;
i f t l = n i l t hen

begin

with t1+ do
-- begin-

i t em := n ~ i t e m ;
l e f t := n i l ; r i g h t := n i l
end

i f ~-~nch = 1 then t 2 i . l e f t := t l
- - e l s e t2+.rig-F~--:= t l ;
end ; --

t := ~ . # J ~ g h t
end

Fig. 7 A non-recursive procedure for ~serting an element in a tree

(b) In many situations such procedures are easier to prove: For a linear
recursive procedure, its proof is almost trivial, since the structure of the
procedure mirrors directly the mathematical formulation. ~e proof process is
essentially that of the induction used in the proof of the underlying
mathematics. Perhaps we are saying that it is the proof of the mathematics
rather than the proof of the program that is important.

We give now a more difficult procedure, one for generating permutations
in pseudo-lexicographical order, which we shall also use in later sections.
We call the procedure ev6%yman because every man and his brother seem to have
discovered it. It assumes the definitions:

77

t~pe mark = {any enumeration or subrange) ;
range = I . . max;
marksarray = a r r a y [ra W e] o f mark;

where max is the cardinality of mark, and uses :=: as an interchange operator.

procedure everyman(m : marksarray; n : range);

p r o c e d u r e perm(k " range);
v a t i : range;
b~in
for i := k to n do

begin
m - ~ :=: m[i];
i f k = n-1 then {process}
el---se perm (k+-77~

:=" m[i]
e n d

end;

begin
p~-----T; J
end

Fig. 8 The everyman procedure for generating permutations

The proof is simple. Suppose that a call perm(k+1)
(i) leaves the marks in m I ÷ m~ untouched;

(ii) Ensures that all permutations of the marks in ink+ I
produced in turn;

(iii) Returns ink+ I ÷ m n to its original state.
This is trivially true when k+ I -- n-I.

Then a call perm(k):
(i)

(ii)

÷ m n are

(iii)

Since everyman calls p~m(7) it follows that all penautations of the
marks in m are produced.

Leaves the marks in m/ ÷ m k_ I untouched since the procedure does
not reference the;
Ensures that all the permutations of the marks m k + m n a r e produced
in turn because all possible choices for m k (available in m k ÷ ran)
are chosem, and perm (k+1) called after each choice;
Returns m k ÷ m n to its original state.

The proof is not always so easy, of course. We leave the reader to
prove a related algorithm due to Heap [1963] given in Fig. 9.

78

p r o c e d u r e Heap{m : m ~ k s a r r a y ; n : range);

procedure perm(k : range);
var i , p : range;
b e g i n
i f k = n-1 t h e n {process}
ei---se perm (k+1]?
for ' i := k + I t o n d o

b e g i n
i f odd(n-k) t h e n p := i e l s e p := n;
m[---p] : = : m [k] ; - -
i f k = n-1 t h e n {process}
el---se pe~u~ (k+TT--
end

end;

begin
p~m(7}
end

Fig. 9 Heap's algorithm for generating permutations

A non-recursive version of everyman is given in Fig. i0 and the reader
is encouraged to prove it directly.

procedure ev6rymanIm : mo~ksarray; n : range);
var r : array[range] o f range;

k : range;
comple te , downagain : Boolean;

begin
k : = l ;
i [I] :-- k;
comple te := f a l s e ;
repeat

m[k] :=: m[i[k]];
while k<>n-7 do

begin
~ . - - k + I;
i [k] := k;
m[k] :=: m[i[k]]
end;

process ;
downagain :-- f a l s e ;
repeat

T=: m[i[k]] ;
i f i [k] <> n t h e n

begin
i [-~ := i [k] ÷ I;
downagain := t r u e
end

else
- - i f k -- I t h e n comple te := t r u e

el---se k :----~-/]-
u n t i l downagain o r comple te

~antii comple te

Fig. 10 A ~n-recursive version of everyman

79

(c) In many situations such procedures are easy to analyse: We illustrate
this by reference to the ev~tyman procedure again. Let us ignore for the
nxmrent the details of what we choose to ~easure, and assume that:

a is the count inside the loop at level n-1
b is the count outside the loop at level n-I
C is the count inside the loop at the other levels,
d is the count outside the loop at the o t h e r levels.

If T k is the count for a conplete activation at level k then we have:

T k = (n -k+1)* (Tk+1+c) + d , k ~ n-1

= 2 x a + b , k = n-1

From this we can calculate TI as:

TI = n x

= n X

[a +

b x i 2!
c × {~!+ ~ ! +

a × (-{-,+ ¼, +

[a +

(b+c) × ~-, +

(c+d} ×-}, +

(c+d) ± + 4:

ii

+

...) +

...)]

Fig. Ii gives an analysis of every?nan with respect to some higher-level constructs.

Weight

Assigrm~nts 1

Arithmetic 1

Subscripts 1

Conparisons 1

Loop entries 1

Loop traverses 3

Parameters 1

Co!is 5

Parameters Terms

b+c c~ c+d
i a b c d a 2! 3! 4! Total

i i0 ~17n! 6 0 6 0 6 3 1

1 0 2 0 1 1 ± i 2~n!
3 12

8 0 8 0 8 4 ! 13 ,
3

1 1 I ~ 1 7 !
1 0 1 0 1 2 6 24

± i z 17 1
0 1 0 1 0 2 T 2-? ~n.

1 0 I 0 1 I I I -17
2 6 2 4
! 1 1 17 1

0 0 1 0 0 2 G 24 -~n.
i ! . ~ . 17_,

0 0 1 0 0 ? 6 2z~ ~"

I I I Weighted

Fig. ii An analysis of e v e r y m a n

80

From a detailed aPmlysis such as this we can determine the effects of
proposed transformations on a procedure to improve its performance. With
eve~y~n, for example, we could consider, among others, the following
possibilities:

(i) During all interchanges at one level the same ele/nent (the initial
ink) takes place in all interchanges, and reinterchanges. We could
save on both assists and subscriptings by storing this value
locally outside the loop so that the interchange within the loop
required only two assignments instead of three. Further we could
avoid restoring m k in the interchange sequence since on the next
traverse it ~uld be immediately overwritten. That is, we could
replace the loop of ev~yman by:

t e m p := m[k];
f o r i := k t o n do

begin
m-T~T-: = m [i] ; m [i] : = t emp;
i f k = n-1 t h e n { p r o c ~ s }
el--se perm (k+ 1;77---
m-ET := m~]
end;

m[k] ~-- t e m p

(ii) The interchange and reinterchange that takes place on the first
traverse of each loop is redundant since it sit,ply interchanges m k
with itself. We could recognise this by dealing with it outside
the loop and reducing the number of traverses by one. Note that
this means that a new derivation must take place. The new result
is:

T I = n! × [la+b+c) × ! 2:

+ d × ± 3,

+ dx± 4!

(iii)

(iv)

Note, toot that the processing tin/st now take place at two different
places in the text, which itself may inply some cost.
The test for determining when the recursion is to terminate is
constant within the loop. It may be taken outside by splitting the
loop into two and using the test to determine which loop is to be
obeyed. Further the loop at the bottom level is obeyed only once
and can be replaced by its body.
We could stop the recursion one level later as in Wirth. This
involves a third analysis which we leave to the reader.

Fig. 12 gives the results of the analysis of the above suggestions
together with t/a~s in msecs of running the~ on a CYBER 73 for n = 6.

81

Basic procedure

Mod (i)

Mod (i) ÷ (ii)

i Mod(i) ÷ (iii)

Mod (i) + (iv)

Weighted
Parameters

a b c d

19 1 26 1

13 5 20 5

13 14 14 15

- 16 18 15

- 1 18 14

Tota l Time

38 ~! 130

3~n! 108

23 8~n!

20 -~n!

28-~n:

Fig. 12 An analysis of ir~pro~ts to everyman

77

67

i01

(d) They are adaptable: This is rather a difficult claim to justify yet it
is interesting to note how often workers express their amazement that minor
changes to a program can produce a highly desirable variant. Here we will
simply illustrate by means of the classical n-quee~ p~oblem: that is, the
problem of determining how n queens may be placed on an n × n chessboard so
that no queen is under attack from any other. If we represent the solution
as an array m where m i gives the column in which the queen on row i is placed,
then since there can only be one queen in each row and one queen in each
column, it follows that m must be a pe/m~tation of the integers I to n.

Thus a permutation generation procedure can be adapted to solve the
n-queens problem by testing each permutation to see whether it corresponds
to a board in which no queen is under threat along the diagonals. Further
we can test partial pernmtations as they are generated to see whether the
queen, represented by the latest element to be added to the permutation, is
under attack since, if it is, there is no point building on the partial
permutation. Fig. 13 gives a procedure based on ev~yman which uses the
traditional technique for testing the diagonals.

Furthermore, similar analyses (or the same ones stopping earlier) enable
us to determine whether the same techniques are more or less efficacious if
we want the permutations to be r at a time rather than n at a time. This is
relevant to adaptations of the procedure for, say, topological sorting or
other procedures where inspection of the first r elements of a permutation
may enable all (n-r+1] ! permutations starting with those r elements to be
removed from consideration without being generated.

82

p r o c e d u r e queens Cn : range) ;
c o n s t maxl = { the va lue o f max - I};

max2 = { t h e va lue o f 2 × max};
t y p e mark = I . . max;
v a t m : a r r a y [r a n g e] o f mark;

upl : array[-maxl -?7. maxT] o f Boolean;
upr : a r r a y [2 . . max] o f Boo-Zean;

procedure perm{k : range) ;
v a r i , mi : range;

temp : m ~ k ;
beg in
k-~p := m[~];
for i := k to n do

begin
~ . = m[i];
i f up l [k-mi] and upr [k+mi] : = t h e n

u p ~ - m i] := f a l s e ; upr[k+mi]
m[k] := mi; re[i] := temp;
i f k = n-1 t hen

i f upl[n-m[n]] and

:= f a l s e ;

upr[n+m] n]] t hen process
end

e l s e ~ { k+ I) ;
m-EiT:= ~ ;
upl[k-mi] := t r u e ; upr[k+mi] := t r u e
end

end;
m[k] ~-- temp
end;

begin
for i := I to n do m[i] := i;
for i := 1-n to n-1 do upl[i]
for i := 2 to-~ × n ~ upr[i]

end

:-- t r u e ;
:= t r u e ;

Fig. 13 The n-queens problem

4. CONCLUSIONS

The reader will have noticed that the claims for recursion have generally
been prefaced by the phrase "in many situations". The paper does not claim
that recursion should be used for everything (though the author still nurtures
the dream of teaching an introductory progra~g course this way). We
simply want to say that recursion is a very powerful tool on the appropriate
occasion and that it should not be dismissed as too esoteric for practical use.

5. ACKN~ ,~X~MENT

I should like to thank M.S. Palm who tested, timed and ins~ted all
the procedures given ~_re.

83

REF~ES

1. ALAGIC, S and ARBIB, M.A. (1978) : "The Design of Well-Structured and
Correct Programs", Springer-Verlag.

2. BIRD, R.S. (1977): "Notes on Recursion Elimination", Ccmm AC~4, Vol.20,
p.434.

3. FIKE, C.T. (1975) : "A Permutation C~neration Mete", Cc~puter Journal,
Vol. 18, p.21.

4. C/LIFFITHS, M. (1975)- "Requir~ts for and Problems with Intermediate
Languages for Progra~g language Implementation" (LectUre notes for
the NATO International Sunr~r School, Marktoberdorf, W. Germany).

5. HEAP, B.R. (1963): "Permutations by Interchanges", Computer Journal,
Vol. 6, pp 293-4.

6. KNUTH, D.E. (1974): "Structured Progranrning with Goto Statements",
Cc~puting Surveys, Vol. 6, p.261.

7. ROHL, J.S. (1976): "Programming Inlorovements to Fike's Algorithm for
Generating Permutations", Cc~puter Journal, Vol 19, p. 156.

8. ROHL, J.S. (1977): "Converting a Class of Recursive Procedures into
Non-recursive Ones", Software - Practice & Experience, Vol. 7, p.231.

9. WIRTH, N. (1976) : "Algorithms + Data Structures = Programs",
Prentice-Hall.

