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ABSTRACT 

Recursion as a programming technique has been 
with us for over two decades now, and yet it still 
retains a certain mystery. In this paper we consider 
the objections to it and the claims for it. 

1. INTRCDUCTION 

Many programming texts use Euclid's algorithm for calculating the highest 
comn~n factor (HCF) of two integers p and q as one of their simple exaraples. 
The description of the algorithm usually goes something like this: "To find 
the HCF first divide p by q and calculate the renminder, 6. If r = 0 then 
q is the HCF; otherwise repeat the process with q and r taking the place of 
p and q." From this description an iterative solution along the lines of 
Fig. 1 is usually presented (though if the example comes early it is expressed 
as a program rather than a procedure of course). 

f u n c t i o n  HCF(p,q : i n t e g e r )  
v a t  r : i n t e g e r ;  
be~in 
r : = p ~ q ;  
while r <> 0 do 

p := q; 
q := r ;  
r :-- p mod q 
end ;  

HCF := q 
end  

: i n t e g e r ;  

Fig. 1 A nonrecursive version of the HCF procedure 

Yet the description given almost begs for the recursive procedure such as that 
of Fig. 2. 

f u n c t i o n  HCF(p,q : i n t e g e r )  : i n t e g e r ;  
v a r  r : i n t e g e r ;  
begin 
r := p mod q ; 
i f  r ~ t h e n  HCF := q e l s e  HCF := HCF(q,r)  
end  

Fig. 2 A recursive version of the HCF procedur e 
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Why then does the first solution seem more natural to writers and teachers? 
The simple (simplistic?) answer is that most writers and teachers either 
learned to program in the fifties or early sixties when recursion was just 
beginning to appear, or were themselves taught by people reared in t_hat period. 
There se~ns to be a collective feeling for iterative solutions as against 
recursive ones, though this feeling is certainly buttressed by cogent 
arg~nents. 

2. ~{E OBJECTIONS 

What are these arguments against recursion? There seem to be four, which 
we discuss in turn. 

(a) It is expensive of space: This is quite a strong argrm~nt since each 
invocation of the recursive procedure requires an activation record consisting 
of liras, parameters and local variables. Let us make the simplifying 
assumption that all these quantities require a word each and that there are 
two links. Then the recursive procedure for HCF gives 5n words, where n is 
the number of recursive invocations, whereas the non-recursive version requires 
a constant 3. 9~ether this is important depends very much on the value of n. 
It so happens that for this example n must be small: if F i is the i th Fibonacci 
number then it is bounded by u-5 where F u is the largest Fibonacci number 
represented by a variable of type integer. Similar statements apply to other 
ntm~rical procedures such as that for factorial. 

If on the other hand, the procedure is processing the elements of a list 
or an array, then n is usually related to the number of elements in this list 
or array, and this might be quite large; and in a program manipulating a 
small ntm~er of large lists it could be quite crucial. The decision on 
whether or not to use recursion in this situation is quite a nice one especially 
where the non-recursive procedure requires a stack. 

When we move onto more complex data structures such as a tree, the space 
required by activation records is less significant since n is generally related 
to the height of the tree which, for reasonably balanced trees, is a logarithmic 
function of the number of nodes. The same is true but even more so for more 
general trees, including the search trees of combinatorial problems. 

(b) It is expensive of time: This objection has in general lost much of its 
validity. If a compiler writer impl~ments procedure calls, not by a short 
seqt~nce of open code but by a call to a subroutine, then calling procedures 
is expensive, and the complaints about the time penalty of recursion are 
based on experience with these compilers. 

If we consider any procedure written both recursively and non-recursively 
we find that, in general, the same operations take place and that in general 
they take place in the same order. The difference lies in the control 
structures: a recursive call or a traverse of a loop. Although the procedure 
call is the more expensive, the significance of this becomes correspondingly 
less as the body of the procedure beccmes more ~lex. The HCF example is 
probably the most ~thetic from the recursive point of view since the 
body is very small. Fig. 3 gives an analysis, in terms of the number of 
iterations/recursions n, of the operations involved. 
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Assists 
Mod 
Co~aarisons 
Procedure calls 
Parameters passed 

Weight ~n-recurs~e 
(Fig.l) 

Recursive 
(Fig.2) 

3n+2 
n+l 
n+l 

1 
2 

2n+ 2 
n+l 
n+l 
n+l 

2n+2 

Weighted figure 8n + 14 14n + 14 

Fig. 3 An analysis of the HCF procedures 

The weights used to produce the weighted average are rather arbitrary (ar~ 
reflect the writer's feeling of what they should cost!) On the CYBER they are 
reasonably accurate. The times to calculate the FieF of F24 and F23 , so that 
n = 21, were 700 ~secs and 1120 ~secs respectively (to some rather variable 
accuracy). This then sets an upper limit on the time penalty of recursion. 

In more cc~plex cases where the non-recursive procedure has to maintain a 
stack, the balance changes and the speed of the algorithms becomes more nearly 
equal. Indeed there is evidence (Fike 1975), (Rohl 1976) that a recursive 
procedure can be the more efficient. 

(c) ! can't understard it: There are those who have no need for recursion 
and for them the whole of this discussion is simply irrelevant. There are 
many others, however, for whom recursion would be useful if only they could 
understar~ it. Their inability to understand is a severe problem, and an 
indictment of those of us whose job it is to teach them and have failed. It 
is perhaps significant that none of the introductory texts on Pascal (assuming 
here that Wirth [1976] and Alagic & Arbib [1978] are not introductory) give 
the subject more than a cursory treatment. 

Once recursion is mastered, it is difficult to believe that scme non- 
recursive procedures are easier to ur~erstand than their recursive equivalents. 
Consider a procedure for producing a copy of a list, asstm~ing the definitions: 

t ype  l i s t p t r  = +node; 
- -  node = r e c o r d  

ZJtemtype ; 
ne~t  : l i s t p t r  
end 

where i/cemtype is left unspecified. 

Fig. 4 gives a non-recursive version adapted frc~ the function given by 
Alagic and Arbib. 
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procedure copy(1  : l i s t p t r ;  var 11 ~ listpt~]; 
va]~ p, pred : l i s t p t r ;  
begin 
if 1 = nil then 11 : = nil 

else 
in 

1 1 + o i t ~  := l + . i t ~ ;  
pred := 11; 1 := l + . n e z t ;  
while 1 < > nil do 

begin 

p r e d i . n e ~ t  := p; 
p + . i t ~  := l + . i t e m ;  
pred := p; 1 := l + . n e ~ t  
end; 

p r e d + ? ~ x t  := n i l  
end 

end 

Fig. 4 A non-recursive procedure for copying a list 

Is this procedure really easier to understand than the recursive one 
given in Fig. 5? 

procedure copy(1  : l i s t p t r ;  var 11 : l i s t p t r ) ;  
~ i n  
i f  1 = n i l  t h e n  11 := n i l  
else 

b~in 
newlY1 ) ; 
~1+.i tem := l + . i t e m ;  
c o p y ( l + . n e ~ ,  11+.nex t )  
end  

end 

Fig. 5 A re~siv e procedure for copying a list 

For those un~tiated in recursion it may be, so that it seems that the solution 
is an educational one. We must see to it that the mode of thought involved in 
recursion is explained and that significant procedures are written using it. 

(d) The language I use doesn't allow it: It is certainly true that Fortran 
forbids recursion and that most assembly languages give no help in its 
implementation. However, the problem of mechanistically converting recursive 
procedures to non-recursive ones has received a lot of attention. (See 
Griffiths [1975] for linear recursion, Knuth [1974] and Bird [1977] for binary 
recursion, and Rohl [1977] for recursion in combinatorial proble~ms.) Thus it 
is possible to regard rec~ursion as a design tool even where it may not be 
available as an implementation tool. 

3. THE <XltIM~ 

The discussion so far has only been a partial answer to the four objections. 
We consider now four advantages. 
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(a) In appropriate situations it more naturally matches the problem: we 
have already given the example of a list copying procedure. Since the 
recursive version of that procedure is vulnerable to the space argument, we 
give another example: that of adding an element to a binary search tree. 
Fig. 6 gives a recursive version assuming the definitions: 

type t r e e p t r  = +node; 
i t emtype  = record 

ey~. keytype; 
in fo  : in fo type;  
end; 

node = record 
~ .  t r e e p t r ;  
i tem : i temtype;  
r i g f~  : t r e e p ~  
end; 

where i n fo t ype  is left unspecified. 

procedure i;~ert(newitem : itemtype; var t : treeptr); 
begin 
if t = nil then 

begin 
nTY); 
with t+ do 
--~gIE 

itS:= newitem; 
l e f t  "= n i l ;  r i g h t  = n i l  
end 

end 
else w--i--th 

if 

end 

else 

else 

t+ do 
- -  n~w~em, key = i tem.  key 

then writ~£n( ' i tem ~6ready on t r e e ' )  
i f  newiiem.key < i t em.key  
then inser t (newi tem,  l e f t )  
T i f -na~i tem.key  > i t em.key  then} 
~ e r t ( n ~ i t e m ,  r ight )  

Fig. 6 A recursive procedure for inser~ng a n element in a tree 

The recursive procedure enables us to avoid the trailing poin ter  problem and 
Barron's protasis problem, as a comparison with Fig. 7 graphically illustrates. 
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procedure i n s e r t ( n ~ i t e m  : i t emtype ;  var t : t ~ e e p t r ) ;  
vat t l ,  t2  : t r e e p t r ;  

branch : (1, r ) ;  
found : Boolean; 

); t 2 i . r i g h t  := t ;  
t l  := t ;  t := t2;  branch := r; 
found :-- f a l se ;  
while ( t l  < > nil) and not found do 

with t1+ do 
begin 

t l ;  
i f  newitem, key = i t em .  key then  

w - ~ l n (  ' i t em a l ready  on £ree  ~ I; 
found := t r u e  
end 

e l s e  i f  n ~ i t e m . k e y  < i t e m . k e y  then  
b e g i n  
t l  := t l i . l e f t ;  branch := 1 
end 

e l s e  I - Z  n ~ i t e m ,  key > i t em.  key then} 
begin 
t-]--Ci.= t1+ . r igh t ;  branch := r; 
end 

end; 
i f  t l  = n i l  t hen  

begin 

with t1+ do 
-- begin- 

i t em := n ~ i t e m ;  
l e f t  := n i l ;  r i g h t  := n i l  
end 

i f  ~-~nch = 1 then  t 2 i . l e f t  := t l  
- -  e l s e  t2+.rig-F~--:= t l ;  
end ; -- 

t := ~ . # J ~ g h t  
end 

Fig. 7 A non-recursive procedure for ~serting an element in a tree 

(b) In many situations such procedures are easier to prove: For a linear 
recursive procedure, its proof is almost trivial, since the structure of the 
procedure mirrors directly the mathematical formulation. ~e proof process is 
essentially that of the induction used in the proof of the underlying 
mathematics. Perhaps we are saying that it is the proof of the mathematics 
rather than the proof of the program that is important. 

We give now a more difficult procedure, one for generating permutations 
in pseudo-lexicographical order, which we shall also use in later sections. 
We call the procedure ev6%yman because every man and his brother seem to have 
discovered it. It assumes the definitions: 
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t~pe  mark = {any enumeration or subrange) ; 
range = I . .  max; 
marksarray = a r r a y  [ra W e] o f  mark; 

where max is the cardinality of mark, and uses :=: as an interchange operator. 

procedure everyman(m : marksarray; n : range);  

p r o c e d u r e  perm(k " range);  
v a t  i : range; 
b~in 
for i := k to n do 

begin 
m - ~  :=: m[i]; 
i f  k = n-1 then  {process}  
el---se perm ( k+-77~ 

:=" m[i] 
e n d  

end; 

begin 
p~-----T; J 
end 

Fig. 8 The everyman procedure for generating permutations 

The proof is simple. Suppose that a call perm(k+1) 
(i) leaves the marks in m I ÷ m~ untouched; 

(ii) Ensures that all permutations of the marks in ink+ I 
produced in turn; 

(iii) Returns ink+ I ÷ m n to its original state. 
This is trivially true when k+ I -- n-I. 

Then a call perm(k): 
(i) 

(ii) 

÷ m n are 

(iii) 

Since everyman calls p~m(7) it follows that all penautations of the 
marks in m are produced. 

Leaves the marks in m/ ÷ m k_ I untouched since the procedure does 
not reference the; 
Ensures that all the permutations of the marks m k + m n a r e  produced 
in turn because all possible choices for m k (available in m k ÷ ran) 
are chosem, and perm (k+1) called after each choice; 
Returns m k ÷ m n to its original state. 

The proof is not always so easy, of course. We leave the reader to 
prove a related algorithm due to Heap [1963] given in Fig. 9. 
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p r o c e d u r e  Heap{m : m ~ k s a r r a y ;  n : range);  

procedure perm(k : range);  
var  i ,  p : range; 
b e g i n  
i f  k = n-1 t h e n  {process}  
ei---se perm (k+1]? 
for '  i := k + I t o  n d o  

b e g i n  
i f  odd(n-k)  t h e n  p := i e l s e  p := n; 
m[---p] : = :  m [ k ] ; - -  
i f  k = n-1 t h e n  {process}  
el---se pe~u~ (k+TT-- 
end  

end; 

begin 
p~m(7} 
end 

Fig. 9 Heap's algorithm for generating permutations 

A non-recursive version of everyman is given in Fig. i0 and the reader 
is encouraged to prove it directly. 

procedure ev6rymanIm : mo~ksarray;  n : range);  
var  r : array[range]  o f  range; 

k : range; 
comple te ,  downagain : Boolean; 

begin 
k : = l ;  
i [ I ]  :-- k; 
comple te  := f a l s e ;  
repeat 

m[k] :=: m[i[k]]; 
while k<>n-7 do 

begin 
~ . - - k  + I; 
i [ k ]  := k; 
m[k] :=: m[i[k]]  
end; 

process ;  
downagain :-- f a l s e ;  
repeat 

T=: m[i[k]] ;  
i f  i [ k ]  <> n t h e n  

begin 
i [ -~  := i [ k ]  ÷ I; 
downagain := t r u e  
end 

else 
- -  i f  k -- I t h e n  comple te  := t r u e  

el---se k :----~-/]- 
u n t i l  downagain o r  comple te  

~antii comple te  

Fig. 10 A ~n-recursive version of everyman 
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(c) In many situations such procedures are easy to analyse: We illustrate 
this by reference to the ev~tyman procedure again. Let us ignore for the 
nxmrent the details of what we choose to ~easure, and assume that: 

a is the count inside the loop at level n-1 
b is the count outside the loop at level n-I 
C is the count inside the loop at the other levels, 
d is the count outside the loop at the o t h e r  levels. 

If T k is the count for a conplete activation at level k then we have: 

T k = (n -k+1)* (Tk+1+c)  + d , k ~ n-1 

= 2 x a + b , k = n-1  

From this we can calculate TI as: 

TI = n x 

= n X 

[a + 

b x i  2! 
c × {~!+ ~ !  + 

a × (-{-,+ ¼, + 

[a + 

(b+c) × ~-, + 

(c+d} ×-}, + 

(c+d) ± + 4: 

ii 

+ 

...) + 

...)] 

Fig. Ii gives an analysis of every?nan with respect to some higher-level constructs. 

Weight 

Assigrm~nts 1 

Arithmetic 1 

Subscripts 1 

Conparisons 1 

Loop entries 1 

Loop traverses 3 

Parameters 1 

Co!is 5 

Parameters Terms 

b+c c~ c+d 
i a b c d a 2! 3! 4! Total 

i i0 ~17n! 6 0 6 0 6 3 1 

1 0 2 0 1 1 ± i 2~n! 
3 12 

8 0 8 0 8 4 ! 13 , 
3 

1 1 I ~ 1 7  ! 
1 0 1 0 1 2 6 24 

± i z 17 1 
0 1 0 1 0 2 T 2-? ~n. 

1 0 I 0 1 I I I -17 
2 6 2 4  
! 1 1 17 1 

0 0 1 0 0 2 G 24 -~n.  
i ! .  ~ . 17_, 

0 0 1 0 0 ? 6 2z~ ~" 

I I I Weighted 

Fig. ii An analysis of e v e r y m a n  
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From a detailed aPmlysis such as this we can determine the effects of 
proposed transformations on a procedure to improve its performance. With 
eve~y~n, for example, we could consider, among others, the following 
possibilities: 

(i) During all interchanges at one level the same ele/nent (the initial 
ink) takes place in all interchanges, and reinterchanges. We could 
save on both assists and subscriptings by storing this value 
locally outside the loop so that the interchange within the loop 
required only two assignments instead of three. Further we could 
avoid restoring m k in the interchange sequence since on the next 
traverse it ~uld be immediately overwritten. That is, we could 
replace the loop of ev~yman by: 

t e m p  := m[k];  
f o r  i := k t o  n do 

begin 
m-T~T-: = m [i] ; m [i] : = t emp;  
i f  k = n-1  t h e n  { p r o c ~ s }  
el--se perm ( k+ 1;77--- 
m-ET := m~]  
end; 

m[k] ~-- t e m p  

(ii) The interchange and reinterchange that takes place on the first 
traverse of each loop is redundant since it sit,ply interchanges m k 
with itself. We could recognise this by dealing with it outside 
the loop and reducing the number of traverses by one. Note that 
this means that a new derivation must take place. The new result 
is: 

T I = n! × [la+b+c) × ! 2: 

+ d × ±  3, 

+ dx± 4! 

(iii) 

(iv) 

Note, toot that the processing tin/st now take place at two different 
places in the text, which itself may inply some cost. 
The test for determining when the recursion is to terminate is 
constant within the loop. It may be taken outside by splitting the 
loop into two and using the test to determine which loop is to be 
obeyed. Further the loop at the bottom level is obeyed only once 
and can be replaced by its body. 
We could stop the recursion one level later as in Wirth. This 
involves a third analysis which we leave to the reader. 

Fig. 12 gives the results of the analysis of the above suggestions 
together with t/a~s in msecs of running the~ on a CYBER 73 for n = 6. 
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Basic procedure 

Mod (i) 

Mod (i) ÷ (ii) 

i Mod(i) ÷ (iii) 

Mod (i) + (iv) 

Weighted 
Parameters 

a b c d 

19 1 26 1 

13 5 20 5 

13 14 14 15 

- 16 18 15 

- 1 18 14 

Tota l  Time 

38 ~! 130 

3~n! 108 

23 8~n! 

20 -~n! 

28-~n: 

Fig. 12 An analysis of ir~pro~ts to everyman 

77 

67 

i01 

(d) They are adaptable: This is rather a difficult claim to justify yet it 
is interesting to note how often workers express their amazement that minor 
changes to a program can produce a highly desirable variant. Here we will 
simply illustrate by means of the classical n-quee~ p~oblem: that is, the 
problem of determining how n queens may be placed on an n × n chessboard so 
that no queen is under attack from any other. If we represent the solution 
as an array m where m i gives the column in which the queen on row i is placed, 
then since there can only be one queen in each row and one queen in each 
column, it follows that m must be a pe/m~tation of the integers I to n. 

Thus a permutation generation procedure can be adapted to solve the 
n-queens problem by testing each permutation to see whether it corresponds 
to a board in which no queen is under threat along the diagonals. Further 
we can test partial pernmtations as they are generated to see whether the 
queen, represented by the latest element to be added to the permutation, is 
under attack since, if it is, there is no point building on the partial 
permutation. Fig. 13 gives a procedure based on ev~yman which uses the 
traditional technique for testing the diagonals. 

Furthermore, similar analyses (or the same ones stopping earlier) enable 
us to determine whether the same techniques are more or less efficacious if 
we want the permutations to be r at a time rather than n at a time. This is 
relevant to adaptations of the procedure for, say, topological sorting or 
other procedures where inspection of the first r elements of a permutation 
may enable all (n-r+1 ] ! permutations starting with those r elements to be 
removed from consideration without being generated. 
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p r o c e d u r e  queens Cn : range) ;  
c o n s t  maxl = { the  va lue  o f  max - I};  

max2 = { t h e  va lue  o f  2 × max}; 
t y p e  mark = I . .  max; 
v a t  m : a r r a y [ r a n g e ] o f  mark; 

upl  : array[ -maxl  -?7. maxT] o f  Boolean; 
upr : a r r a y [ 2  . .  max] o f  Boo-Zean; 

procedure perm{k : range) ;  
v a r  i ,  mi : range; 

temp : m ~ k ;  
beg in  
k-~p := m[~]; 
for i := k to n do 

begin 
~ . =  m[i];  
i f  up l  [k-mi] and upr [k+mi] : = t h e n  

u p ~ - m i ]  := f a l s e ;  upr[k+mi] 
m[k] := mi; re[i] := temp; 
i f  k = n-1 t hen  

i f  upl[n-m[n]] and 

:= f a l s e ;  

upr[n+m] n] ] t hen  process  
end 

e l s e  ~ { k+ I ) ; 
m-EiT:= ~ ;  
upl[k-mi]  := t r u e ;  upr[k+mi] := t r u e  
end  

end; 
m[k] ~-- temp 
end; 

begin 
for i := I to n do m[i] := i; 
for i := 1-n to n-1 do upl[i] 
for i := 2 to-~ × n ~ upr[i] 

end 

:-- t r u e ;  
:= t r u e ;  

Fig. 13 The n-queens problem 

4. CONCLUSIONS 

The reader will have noticed that the claims for recursion have generally 
been prefaced by the phrase "in many situations". The paper does not claim 
that recursion should be used for everything (though the author still nurtures 
the dream of teaching an introductory progra~g course this way). We 
simply want to say that recursion is a very powerful tool on the appropriate 
occasion and that it should not be dismissed as too esoteric for practical use. 
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