
SYNCHRONIC ASPECTS of DATA TYPES :

Construction of a non-algorithmic solution of the

Banker's problem.

Piero R. Torrigiani

Gesellschaft fiir Mathematik und Datenverarbeitung mbH Bonn

Institut f~r Informationssystemforschung

Schloss Birlingh0ven - Postfach 1240

D-5205 St. Augustin I

Abstract

By means of two simple data structures, namely the "cell" and the

"interrupt", increasingly complex structures are defined. The speci-

fication of these structures is given in a novel extension of the path

notation which allows to study the synchronic characteristics of the

types we define. These structures are shown to be sufficient to speci-

fy a non-algorithmic solution to dynamic - Banker's like allocation

problems.

O. Introduction

The specification of systems involving concurrency is a hard task.

Among the available tools, we shall use the object-oriented notation

for path expressions presented in [I] : it uses a SIMULA like "class"

concept and the syntactic extensions of the path notation introduced

by P.E. Lauer and the author in the l-st part of [9" Interesting

characteristics of this notation appear when they are used for the

description of synchronic aspects of data structures. In this pa~er,

by means of composition and modification of two simple structures, we

construct a non-algorithmic solution to the problem of dynamically

allocating units of a resource. The solution is non-algorithmic in the

sense that it is described by a system rather than by an algorithm: no

computation is performed in order to decide the order of allocation

for concurrent requests, nor any global state of the system drives any

decision making. An algorithmic representation is implicitly motivated

561

by considerations that have to do with a ~articular implementation.

This, invariably obscures the concurrency which is inherent to the prob-

lem and which might be present in the solution. Hence we feel that it is

important to obtain as a first step, a representation which is in the

form of an abstract, concurrent system. For example, in the case of the

Banker's ~roblem a solution in the form of an algorithm, imposes a glob-

al synchronization or the reGuests for resources, which originate from

essentially concurrent ~rocesses. This restriction arises from the na-

ture of the scheme used for describing the solution. In our representa-

tion, this restriction will be absent.

In the next sections the notation is shortly introduced and explained

through those examples which will be then used in the last section to

construct the solution to the Banker's problem.

1. The notation

Programs in our notation consist of class definitions, class instantia-

tions, paths and processes. As we are interested in the synchronic as-

pects of the structure defined by the classes, their definition will be

only in terms of path expressions [3]; the paths defining a structure

will state the possible orders of operations that an instantiated class

~rovides to its environment i.e. to the processes and to the other sys-

tem components. Some operations defined into a class may be ,possibly

used only for internal synchronisation, hence they should not be known

to the environment; this is obtained by means of a special declaration,

called operation part, in the class where all exportable operations of

the class (separated by commas) are listed and specified.

Informally we can say that paths (and eventually processes) are grouped

together into a class to which a name is given; a use of this name in

the body of a program generates an instance of that class which is also

thereby given a name; the generation of an instance of a class consists

in replacing the instantiation or call of that class by a copy of the

paths (and eventually processes) which constitute it, after properly

prefixing the instance-name to the occurrences of operation names in

these paths (and processes). The generation of instances is assumed to

take place at compilation time; after compilation programs will appear

in the usual path notation. The semantic of path programs is given in

terms of transition nets in [4] and we will show the nets that our pro-

grams produce. (In the figures showing the nets, the double lines be-

long to the processes, the dotted lines include instances of classes

and exportable operations. When unnecessary the internal paths of in-

stances are not shown). The grammar defining our notation can be found

562

in the appendix A2 in [I]

2. Examples

Some examples should serve as introduction to the notation. In fig. I

we see that the class specifies a very simple data structure consisting

of a single "cell" where two operations are defined as exportable name-

ly "deposit" and "remove"; the path which associates these operations

(fig. 2) states that every "remove" on any instance .of that cell must

follow a previous "deposit" on the same instance of that cell, and that

the first operation, again on any instance must be a "deposit". Mutual

exclusion between processes accessing (both for reading and writing) is

thus achieved together with the fact that no information will be lost.

Various extensions of this structure can be found in [2] where path

programms are given which define various buffers and buffer usage.

Other applications of our notation are studied in [5,6,7] .

In the previous example nothing has been said about a fair use of the

cell; fairness is by itself an interesting problem and the notation we

use for our class definition has been proved useful in this sense~,~

We have to mention that our approach is more similar to ideas concern-

ing the use of arbiters than to those where fairness is obtained by the

use of no arbiters [8,~ i.e. we are going to have no restriction on

the relative speeds of a limited non-fixed number of "parallel" proc-

esses and we are going to have an arbitration hypothesis to be used in

conflict resolution; (cf. [I] 3-rd part):

"If two or more operations in a path are mutually excluded those which

are shared by processes have priority (of activation) over the others".

This hypothesis doesn't solve the starvation of the previous example as

it doesn't distinguish between processes in a conflict; in the next

section this problem is shortly described.

3. Sequencing through data definition.

Data structures can be defined in such a way that their operations pro-

vide the means for sequencing processes on other data. Figure 3 shows

the structure needed for the "fair" sequentiali~ation of an operation

on a cell.

For those who are already familiar with the macro path notation, the

that example should be quite clear. In any case, we wish to recall

how the arbitration hypothesis is needed for the correct behaviour of

this scheme; i.e. in order to guarantee that, for I~ j~ k, the conflict

between "INT(j).skip" and "INT(j).accepted"will be always solved in

favour of the last after "INT(j).request" took place. (see fig. 3,4).

It is important to notice that now we have the means to distinguish

~3

class cell;

operation deposit, remove endoD;

~ath deposit; remove end;

endclass;

cell X;

process...;X.deposit;.., end;

~rocess...;X.deposit;.., end;

Drocess...;X.remove; end;

I--.

II II
II II

564

with th~ help of indices the processes themselves.
Other discipline of sequentialization of operations, e.g. priority

sequentialization, have been considered extensively in [I] ; here we

need only to consider the following path, which, when substituted in

the sequencer would yield a simple priority scheme:

~ath (INT(1).skip

;(INT(i).skio i), (INr(i).accepted;INT(i).served) 2,k,I),

(INT(1).accepted;INr(1).served) end~

class interrupt;

ooeration ski~, request, accepted, served endoD;

pat h skin, (request;accepted;served) end;

endclass;

class sequencer (k: integer);

array interrupt INT (k);

cell X;

oneration deposit (i: integer) = INT(i).request;INT(i).aecepted;

X.deposit;INT(i).served,

remove = X.remove endoD;

path lINT(j) .skip,
end INT~j). accepted ~ INT (J). served)

endclass;

sequencer SEQ(2);

process...;SEq.deoosit(1);...end;

process...;SEQ.deposit(2);...end;

Fig. 3

II

~1

! ~-
I"-

n-
'~

~-
'~

-~
L'

~
~

~
~-1

~

I_
,

,
,7

-
I

I
I

i

,x<
>

i
',~

'!
!'

I
X

.
re

m
ov

e
I

I~
',

I
...

...
...

.
I

L_
_w

.
_1

I.
m

I,

int
err

uA
l_l

_N
_T

_1
2_

.) ..
.

.

IN
T(

2)
.

II

11

qV
T(

2J
.s

er
ve

d

_J

0
3

O
1

566

4. The pipeline

An interesting way of connecting cells into a buffer is a scheme where

the cells are organised in such a way that every successive deposit

must be preceded by the remove of the preceding cell; this fact implies

that more processes may be concurrently depositing and removing without

interferring with each other if they access, both for depositing and

for removing, the cell of the buffer in the same order, and each of them

in alternation, and by doing so the order with which they activate the

first deposit is preserved up to the last remove. The data structure

with this a synchronic characteristic has been called a pipeline~

in fig. 5-6 we show how it will be used to define a "fair" queue~

The path replicator in the definition of "queue" specifies the inter-

connections of the ceils "W" to create a pipeline, while the path syn-

chronize the "sequencer" with the pipeline. All the com~utation de-

noted by "comp" will be performed by the orocesses in a mutally exclu ~

sire manner; the order of "comn" will be the same order of activation

of "SEO.deposit" (any of them), hence, as the sequencer guarantees

that all ~rocesses will eventually succeed in activating one of such

operations, no process will starve. Incidentally one can note how this

scheme resembles a monitor with a queue associated with the "wait"

o~eration, and observe that the sequencing mechanism is here explicitly

specified and that it is independent of the "duration" of the protected

computation denoted by "comp".

class queue (k: integer);

arr~ (ceil)w (k);
sequencer SEQ (k);

operation enQueue (i: integer) = SEO.deposit(i); SEQ.remove;

[W(i).deposit;W(i).remove a; 0 1 ~,k-~,1] , W(k).d~oosit

dequeue = W (k) . remove endop;

/?oath W(i).remove;W(i*t).deDos~t end; ~ l t , k - l , ~
~ath SEq.remove;W(q).de~osit end;

endclass ;

queue Q (2) ;

• o •

process... ;Q.enqueue (I) ;"comp";Q.dequeue ;...end;

process... ;Q.enqueue (2) ;"comp" ;Q.dequeue ;...end;

FiLl

567

r _

I

~1 H
t l I I

-~?__~ ~__~_

r . I - - -

LI:---
crueue a T 2 7 - -

t l
I I

"I
..J

Fi~. 6

568

5. The stack

Another data structure which is commonly used is the stack; as we did

in the case of the queue we will not concentrate at all on the type of

recorded data that the stack will contain and we will not hence define

a stack of integers or reals or so; our main goal will be ~he definition

of the synchronic aspects of any stack. The path in the stack definition

states all ~ossible sequences of pushes and pops that can happen to an

empty stack of length k; i.e. ~see also fig. 7,8) every push can be

followed by a pop or by another push if the previous one was not the

k-th one, and every pop can be followed by a push or another pop if

the previous one was not the first one, and that initially the first

push is the only possibility. In that path the replicator is used in

its general form; again for the sake of simplicity we just present

what that math corresnonds to when the class is instantiated with k

equals, e.g., three:

path Z(1).deposit; (Z(2).deposit; (Z(3).deposit;Z(3).remove)

Z(2).remove) ; Z(1).remove end;

6. Counters

Both the pipeline and the stack can be used to define counters. We shall

distinguish between two tyoes of counters depending on the usage. The

first type of a counter will keep track of the number of times some

process has prevented some other process from accessing some common

resource. The second type of a counter will show the number of units of

a common resource that are available. We will use the pipeline scheme

in order to define the first type of counter. (fig. 9,]0). The stack

provides the structure for the other type of counter. The cells "R"

provide the operations of reading and resetting. (fig. 11,12).

class stack (k: intege_Krj;

array (cell) Z(k);

_operatj:on push = [Z (i) . d e p o s i t ~) , @ I I , k , 1] ,
pop = [Z (i) . remove ~ , @ l 1 , k , 1] endop_~;

~ath Z (I) .deposit;

..... [z(i).doposit; [] z(i .remove * ; I',k,1]
Z (I) .remove end;

endclass;

Fig. 7

569

r - - m

5. pop

Z(1). remove

rcellZ(l)
I
I

5. push

deposit

Z(2). remove I! I IZ(2). deposit

I
!cell

Z(3). remove

L_

-7(3). deposit

stock S (3J

Fig. 8

570

ceilW(1)
I - I ,]qCP. increment

i I
I I

i L - _ _]

cell W(2)

W (2). deposif

I I
I I

W(2). remove

k ~___~Z'_J
CR [reset_begi!~, reset_

c-I
I I i- K deposit

~ l l I

L .

--q
I ~ ~ ~ |

,i' I! ~.]" , I remove II
- .

_A

m _ _ . J

c o u n t e r _ u p _ t o CP (2)

571

class counter up to (k: inte<er);

arra__y (cell) W (k);

cell V;

operation reset_begin = V.denosit,

reset end = V.remove

increment = W(l).deposit endon;

[~ath W(i).deposit;reset end* ;W(i).remove end~; ~ I1,k,1];

[path ~(i).remove;reset;reset_end~ ;W(i÷1).deDosit end ~;[~11,k-1,1]}

path V.deposit;W(k).remove~ ;V.remove end;

endclass;

~ . 10

class readable_counter (k: integer):

arra X (cell) '*J(k);

arra X (cell) R(k-1);

operation increment = [!*i(i).deposit O, ~I l,k,1],

decrement= [wCi) remove

read(l: integer) = R(l+1).denosit endoD;

path (R(k+1).deposit;R(k+l).remove)~

[(W(i).remove;((R(i).deposit;R(i).remove)~) ~ ;W(i).deDosit)

~, I k , l , - l] end;
endclass;

Fig. 11

7. A more complex__example

With the apparatus we have we are ready to construct a system for the

dynamic allocation of a resource to concurrent processes. It is worth

remembering that the current programming languages (e.g. Concurrent

Pascal) do not give the programmer tools for constructing solutions to

this kind of ~roblems, in snite of the extensions that have been re-

cently proposed.~1,]2] . A nice example of this kind of a problem is

well-known Banker's problem which is due to Dijkstra. The solutions that

have been DroDosed SO far D3,14,1~ are basically sequential solutions

to a ~roblem which inherently involves concurrency. Briefly stated~

these solutions analyze the "present" states of a fixed number of con-

current processes to determine if there is a "sequence in which" these

572

r e # R (4)
i]

R(4). deposit ~ RC decrement
C C ' . ' - - - - - - ~ , , - ~ (') . . ~ ,

. r - 3 I I - ' .

r ~ - - - - - - - - - - - - - - " r - I - - - i - - - - m - r - ' ~ [- ~ R C e o d (3) t I I • c e l l R (3) , Ilwc3J ,~,o,,t I Ilwc3J ~ m o w I! ,
I . i I I , I I J

IT------ ~ LJ_ _ _ 4_ _ _ .I_~,,~I~_ _ _ _ _I. _i

~~1R(3). deposit ~ ~ 1 I

~!.-\-o-:I~ co,, ~2j :
i ~R#3). ~m ve l't'i r-l- --l- - --~ .'~-~ ,-I
LI&_ IV ~ ~ r ~ ~ / i ll~, !~o~,, i', ',l~~ov~ I, ,

r'- - ' 1 L I - - - - - ' ~ - - - - - I - - J = , ' ~ - - - - - - - - - I " ~

~R(2J. ,emow ~ - . F -- - - T - - T . . ~ - - - ' - .

RC. r&~-dT lT - - - L ! " _ _ . ~ , J L z ~ - _ _ ' L ;
cellR(1) I, T !.j l _ _ _ 1

F-I L 7"
~ R (l J . deposit ~C.increment
L~F---- -~

R C . r e o d (0)

- - - r e a d a b l e _ c o u n t e r R C 7 3 7

FAi g . 12

573

"processes can be completed, one at a time if necessary".(~ p.]24).

Consequently, a state in the Banker's problem is defined to be "safe if

it is possible for the Banker to enable all his present customers to

complete their transactions within a finite time." ([]5] p.43). This

means that in these solutions what is guaranteed is that the present

customers will complete their transactions. We shall now develop a

solution to the Banker's problem which will permit an arbitrary and

varying number of customers to concurrently enter and leave the "problem

space". Our solution will also guarantee freedom from starvation. We

shall build stepwise a system which will be by construction always in

a safe state. (We will not allow any process to ask for loans bigger

than the capital of the bank). In order to do so let us make first some

simple observations: a) we have to avoid deadlock, b) we have to avoid

starvation. It is true that b) implies a), but the converse, in general,

is not true. Deadlock is consequence of "wrong" choices, and it can be

solved by forcing the banker to make the "right" ones; but because of

the unknown rate of requests of loans the right choice could indefinite-

ly favour some processes over others violating b). Let us first observe

the program shown in figure 13. It shows a bank and its customers; the

state of the vault of the bank is represented by the readable counter C.

Access to the vault (both for getting and giving back units, i. e.

C.decrement and C.increment respectively) is protected by the interrupts

RO (ReQuest) and RL (ReLease), which may be viewed as the ~cash-counters"

of the bank. The Banker's behaviour is shown in figure 14.a. He applies

a deadlock-free sequentialization of the operations on the vault. In

simple words, one could imagine our banker sitting on the token in

figure 14.a and moving from window to window in the bank serving the

customers; from this figure we can see easily that he tries first his

best to collect money into the vault, and only when he cannot do it any

longer, looks at how much he has got and accordingly moves to the

"correct" counter and accomplishes the requests of his customers. The

Banker gives a single unit (enables C.decrement through the activation

of RQ(j).accepted for some j) to exactly one of those who asks for an

amount less than or equal to his current cash creating a new situation

where for sure a customer (possibly the same one) will get units

guaranteeing that at least one customer will get his last unit and will

give the loan back. In fact in that program the long path is a modifica-

tion of the ~ath of the sequencer; here first of all there are two arrays

of interrupts to be visited: the "RL" ones used for incrementing the

counter, and the "RO" ones used for decrement it (cf. the operation

part); secondly we observe that the main cycle of the path is the one

on the "RL" interrupts, which are visited in a priority manner

574

c l a s s bank (k: i n t e g e r) ;

a r r a y (i n t e r r u p t) RO,RL (k) ;

r e a d a b l e c o u n t e r A (k) ;

o p e r a t i o n get l o a n (i : i n t e g e r) =

R Q (i) . r e q u e s t ; R Q (i) . a c c e p t e d ; C . d e c r e m e n t ; R O (i) . s e r v e d ,

g ive back (i : i n t e g e r) =

RL(i).request;RL(i).accepted; gO.increment ~; ~ j I l , i , l] ;
R L (i) . s e r v e d

endo~ ;

path [(RL(I).skip [; [(C.read (1-I)

[; (R Q (j) . s k i p , (R Q (j) . a c c e p t e d ; R Q (j) . s e r v e d))

(R L (i) . a c c e p t e d ; R L (i) • s e r v e d)) I k , t , - l] end;

e n d c l a s s ;

bank B (3) ;

. . ,

p r o c e s s . . . ; B . g e t _ l o a n (3) ; g . g e t _ l o a n (2) ; B . g e t l o a n (I) ; . . .

• . . ;B. g ive_back (3) ; . . . e n d ;

p r o c e s s . . . ; B . g e t _ l o a n (2) ;B. g e t _ l o a n (I) ; . . .

. . . ;B .g ive b a c k (2) ; . . . e n d ;

n r o c e s s . . . ; B . g e t l o a n (1) ; . . . ; B . g i v e _ b a c k (1) ; . . . e n d ;

Fig. 13

(cf. section 3); when all "RL.skio"'s are activated in a row all "read"

will be enabled and depending on the contents of the counter the "QR"

interrupts are visited one after the other starting from the i-th one

if the counter's content was i. See also figure 14.a,14.b. Due to the

fact that the processes are concurrent with one another it may happen

(in the "worst" case) that only the process asking for a loan of one

unit goes on making the others waiting forever; in fact the other two

nrocesses conflict with each other on the request of the secon unit,

and the three of them conflict on the third. Again in simple words we

could say that at the counter it is true that our Banker sees only one

customer at a time and it is true that he (the Banker) is not serving

a "wrong" customer, but only from his noint of view: i.e. he is sure

he will always have enough money to proceed in his task, but the con-

fusion at the cash-counters may be such that the Banker is actually

serving a "wrong" customer from a customers' noint of view; e.g. at the

(

~
,~

t
~

~
~

-~
~

4

~
t~

tj~
,,

f ~
;,

.r,
~o

~
'i,

'
li~,

,~.~
uo~

, ::::i
 I

"
i

VL
~l

i

"',
-4

,

',m
 ~

ra

',
X

ra
 '-

'
a',

ra

l

~"

'r~
~.

-~
-~

r,
-,

>"

;-
'--

-'.
~

...
...

...
..

-
,,i

i!~

~,,
 ,

,.
11

-
trr

-,q

{I-
'i]

~m

_
j]-

]

: ..
....

.. I
....

....
 }

~
X

i

t~
L_

_J
--

-
i

i-f
'-

I
j lR

Q(
!).

~q
ue

st
I I

T4
~r

-F
~f

-l~
E)

lira

(2)
, r

eq
ue

st 1
 !

7n
T~

r-~
pT

RO
72

)

I

~f
nT

eT
ru

pT
-t~

)

I P

"1
 cb

o
t

576

H , i~4,
', I~I', "

N , ~ '

~i!!ll
- ~I}:

'~© ~'

l l l l

I

Lr~d--GLb ~_ counter

L
w

v

b.
L
v

I - .--1 "

.

li i ~ i~. IIII

,,I~I- ~ IIII
i ~ . =

I I i I t l t J

-,'3
I

:@ !

1

I
J

~]1 .-~ ~-

L ~ _ _ _ _ . J

F i g . 14.bb

577

~l u__eue QR(3)

I I I
i t ~

I N~3Ld--~---nl
Ill I l l

, po/3S.request ! ,
I ' I
I__Ln.terLup_t_ R~ (3) i

I
1 l , I

t a~2Ld_e~.~_. !
IF, - - -, '11

~ r r _ ~ R_~_~

u_.eue QR (1)

I I I I
I [l I
l OR(l) d__equ.e_ue !

[i':'-" - - - -7"11
' I

l..s~_±~._m.~_± ~ o. _ _) J

reudubte_ counter C [3)
I

[ihterrup-'F'~L"[37"l
I I
I IRU3). request] l

I~1 !II
I ~L-[37"d~q'Je-~E '1

I r]I I
It I

queue OL (3)

r- in~r- i~pT~Eig77

!J~,J.~c%ll

III,' Ijl
l aLTl)-de~uEu~ I

Ir II I

l j
queue OL-~)

L _ _ _
bonk_of f ice B ' / ~ - J

[interrupt ~L-('27]
I I
I IRU2Z~que~ti !

~ - ~ = , z = ~
',U U~

1[]
II I',
, i_.__. 11
' QL(2). enqueue
l_ "
queue OL ~ /

F!g. lS

578

second cash-counter (at the Rq(2).interrupt) there may be the customer

who already got his first unit and the one who has not got anything yet

and is asking for his first (of two) unit; this last one can be fast

enough to always win the conflict at that cash-counter hence letting

the other one starve. In order to avoid this conflict we can use "fair"

queues on the requests for the second and third unit. By the way if we

put long enough queues for all requests (and for all giving back pos-

c lass bank_off ice(k ,m: i n t e g e r) ;

a r r ay (i n t e r r u p t) RQ,RL (k);

a r r ay (queue) qR(m-1),QL(mvl) (k);
readable counter C (k);

o p e r a t i o n queue_for_loan o f (i , j : i n t e g e r)

endoD;

~ath [(R~(i).
[; (RQ (j)

oath qR(i)

path OL(i)

endc lass ;

bank o f f i c e B (3 ,6) ;
° , ,

process .

prQcess.
process.

process .
Drocess.
process.

[QR(1) .enqueue (j) ;QR(1) .dequeue ;RQ(1) . r eques t ;
RQ(1) .accepted;C.decrement;Rq(1).served 5; ~] i,1 , -~ ,

give b a c k (i , j : i n t e g e r) =
Q L (i) . e n q u e u e (j) ; Q L (i) . d e q u e u e (j) ; R L (i) . r e q u e s t ;

RL(i).accepted; [C.increment~; z I,i,1] ; Rl(i).served

(RL (i), accepted;RL (i) • served)) 1 k ,I,-I] end;

ski~ [; [(C.read(l-1)

.skip, (RQ (j) .accepted; RQ (j) . served))

,1,-ga, lk+1,l,-1J z Ik,),
. remove;RO(i) . reques t end;

. remove ; LQ (i) . request end ; i I,k,1 ;

;B.queue ~or loan o f (3 ,]) "
;B .queue_for_ loan_of (3 ,2) ; .
;B.queue for l o a n _ o f (2 , 3) ; .
;B.queue for l o a n _ o f (2 , 4) ; .
;B .queue_ fo r_ loan_of (] , 5) ; .
;B.queue f o r _ l o a n _ o f (I , 6) ; .

;B.give back(3,1)...end;

;B.give_back(3,2)...end;

;B.give_back(2,3)...end;

;B.give back(2,4)...end;

;B.give back(],5)...end;

;B.give_back(1,6~...end;

Fig. i!

579

sibilities) we can allow that more than one nrocess can concurrently

request the same ammount of units without this starvation. The program

is shown in fig. 16. The differences with the previous program consists

only in the introduction of the queues OR and OL of the obligation to

the processes to use their operations before interrupting the bank,

and of the paths which connect the queues to the interrupts. See also

figure 15. In that oro~ram whenever a process has been accepted the

first interrupt it is not yet guaranteed that all its other interrupts

will be accepted and served, not because of "unfair" conflict resolution

(this is in fact taken care of by the queues) but because the s~eeds

of the processes may be such that (after the initial situation) the

counter will never reach again high values; i.e. the Banker will never

have again the whole capital and will not be able to guarantee in a

finite time high requests. In order to avoid this it is necessary that

from time to time the bank office refuse to serve new customers and

terminates servin~ those who have already got part of the loan or which

are by the way "inside" the bank office. This must be done with some

care. If we simply "lock out" of the bank some new customers, when we

open it again no guarantee can be given to all that they can in fact

enter it before the new closing time! Actually the closing period is

going to be period in which new loans request should be waiting while

those which had been started are completed, hence all we need is some

more space to let the new coming customers wait and a way to distinguish

between new and old customers. This is achleved by substituting the

queues "QR" with a more complex mechanism composed by two fair queues,

one for the old and one for the new customers, and a special sequencer

composed out of two normal sequencers and two interrupts, the first of

which is connected to a counter, in such a way that all customers which

go through that interrupt will be counted and eventually blocked

up to when the reset on that counter is done, the programs in

figure 17,18 show this mechanism: the substitution of the queues with

the new ones in the bank of'fice produce the programm in figure 19 which

completely solves the problem. In fact in that programm one can notice

that only the "new" customers increment the counter, [cf. the operation

part of figure 79,18 and the naths in figure 77) that is every ~rocess

will be counted only once i.e. when he is going to obtain the first

unit of his loan; as the reset of all counters is done every time the

readable counter is found to held is maximum value, [after the activation

of C.read(k+1) and before visiting all OR queues: cf. the long path in

figure 21) the Banker let new customers wait only when he judges that

he served too many people without having had his whole capital back.

[This judgement is simply a function of the length of the counters).

580

class multiple_sequencer_and_counter(j,k,m: interger);

cell H; cell N;

array sequencer SEQ(k) (j);

array counter_up_to B(m) (j-l);

array interrupt NT(j);

operation reset_begin = N.de~osit,

reset end = N.remove,

de~osit(i,j) = SEQ(j).deposit(i); SEQ(j).remove;

NT(j).request; NT(j).accepted;

M.deposit ; NT(j). served,

remove = M.remove endow;

path [NT(i).skip, (NT(i).accepted;NT(i).served ~ ;

~ll,j,g end;

[path SEQ(i).remove;NT(i).request end ~ ; @ ll,j,l] ;

[~ath NT(i).request;B(i).increment end ~ ; @ II,j-1,~;

[hath N.deposit;P(i).reset begin;B(i).reset_end;N.remove end ~;

I];I i 1 , j - l ,g
endclass

H~. !1

class double_queue (k,m: integer);

array (cell) F (k-l); queue OOLD ~); queue QNEW (k);

multiple sequencer_and_counter HSEQ(2,k,m);

operation reset_begin = MSEQ.reset_begin;

reset end = }!SEO.reset end,

enqueue_and_count(i: integer) = ONEW.enqueue; ONEW.dequeues

MSEQ.deposit(l,i); MSEQ.remove; [F(1).deposit;F(l).remove~;

[] 1 1 , K - 2 , 1] ; F (k -1) .depos i t ,
enqueue (i : i n t e g e r) = QOLD.enqueue; qOLD.dequeue;

HSEQ. d e p o s i t (2, i) ;HSEQ. remove ;
[F($) . d e p o s i t ;F(1) .remove ~);

@ l] , k - 2 , 1] ; F (k - 1) . d e p o s i t ,
dequeue = F (k-l) .remove endop;

~ath SEO.remove;F(1).de~osit end;

[path F(i).remove;F(i*l).deposit endd~; @il,k-2,1];

endclass ;

581

c las s new_bank_off ice(k , l ,m:

a r r ay (i n t e r r u n t) RO,RL (k);

a r ray (double_queue) QR(I-I,m)

a r r ay (queue) QL(1-t) (k);
readable counter C (k);

c e l l R;

i n t e g e r) ;

(k) ;

operation queue_for_loan!of(i,j:integer) =
QR(i).enqueuejand count~j) QR(i).dequeue;RO(i).request;
RQ(i).accepted;C.decrement RQ(i).served;
[QR(1).enqueue(j);QR(1).remove;RQ(1).request;
RQ(1).accented;C.decrement RQ(1).served~; ~li-Ij11-lJ,

give_back(i,j:inte~er =
OL(i).enqueue(j);OL(i).dequeue(j); RL(i).request;
RL(i).accepted;[C.increment~;~l],i,] 3 ; RL(i).served

endon;

hath [(RL(i).skip

[; [(C . r e a d (1 - 1) [[; R . d e p o s i t ; R . r e m o v e ~ 1 2 k , l - l , k ÷ l , 1]

; (RQ(j) . sk ip , (RQ(j) .accepted RQ(j) •served))
),

(R L (i) . a c c e p t e d ; R L (i) . s e r v e d)) ~ k - l , l , - 1] end;
[p a t h QR(i) . remove;RQ(i) . reques t end;

path QL(i) . r emove ;LQ(i) . r eques t end;

path R . d e n o s i t ; O R (i) . r e s e t ~ b e g i n ; O R (i) . r e s e t end;R.remove end

II,k,1];
endc lass ;

bank o f f i c e B (5,6) ;
. . .

process.

process.
D r o c e s s .

process.
orocess.
nrocess.

;B .queue_for_ loan_of(3 ,1) ;

;B.queue fo r_ loan_o f (3 ,2) ;
;B.queue fo r_ loan_o f (2 ,3) ;
;B.queue fe r lo an o f (2 , 4) ;
;B.queue_for_loan o f (1 , 5) ;

;B.queue_for lo an o f (l , 6) ;

. . ; B . g i v e back(3,1)

. . ;B. give_back (3,2)

. . ; B. give_back (2,3)

. . ; B . g i v e back(2,4)
• . ;B .g ive back(1,5)
• . ;B. give_back (1,6)

. . end ;

. . end ;

. . end ;

. . end ;

. . end ;

. . end ;

Fi~• 19

582

8. Conclusions

Through the simple synchronic chaeacteristics of two structures, through

their collection into classes and their connection by paths, new struc-

tures have been defined whose synchronic properties define the use of

commonly used data types (queues, stacks, buffers) as well as of new

types (sequencers, etc.). With this technique a well known allocation

problem hag been solved, taking into account the specific difficulties

it involves: namely the avoidance of deadlock, and the avoidance of the

two types of starvation. The first type of starvation overcome by "fair"

sequentialization of equivalent conflicting o~erations, the second by

the proper use of counters which could also be adjusted (playing with

their length) to optimize the system behaviour accordingly to the ex-

pected request-distributions.

References

[1] P.R. Torrigiani, P.E. L~uer: An object oriented notation for path

expressions, in AICA 77, Vol.3, pp.349,371, Pisa, 1977.

[2] P.E. Lauer, P.R. Torrigiani: Towards a system specification langua-

ge based on paths and processes, Computing Laboratory, University

of Newcastle u~on Tyne, Technical Report Series, N., 1976.

[3] R. Campbell: Path Expres__~sions: a techniques for spec__ifying process

synchronization , Ph.D. Thesis, University of Newcastle upon Tyne,

August, 1976.

[~ P.E. Lauer, R. Campbell: Formal semantics for a class of high-level

primitives for coordinating concurrent ~rocesses, acta informatica 5,

]975, pp. 247,332.

[5] R. Devillers: Non starving solutions for the Dining Philosophers

problem, ASM/30, Computing Laboratory, University of Newcastle

upon Tyne, 1977.

[~ R. Devillers, P.E. Lauer: Some solutions for the Reader/Writer

problem, ASM/31, Computing Laboratory, University of Newcastle

upon Tyne, 1977.

[~ P.E. Lauer, H.W. Shields: Abstract s~ecification of resource ac-

cessing disciplines: adequacy, starvation, priority and interrupts,

583

~orkshoD on Global description methods for synchronization in real-

time applications, AFCET Paris, 1977.

~] K. Lautenbach: Ein kombinatorischer Ansatz zur Beschreibung und

Erreichung yon Fairness in Scheduling-Prohlemen, in ~Dplied Com-

puter Science, Hanser-Verlag, M~nchen, 1977.

E9] C.A. Petri: ~odellin~ as a communication discipline, in 3rd interna-

tional Symposiu_m on ~o_delling and Performance Evaluation of Com~uter

Systems, Bonn, Oct. 1877.

00~ R. Devillers, P.E. Lauer: A general mechanism for the local control

of starvation: application to the dining philosophers and to the

reader/writer problem, AS~/32, Computing Laboratory~ University of

Newcastle upon Tyne, 1977.

[11~ A. Silberschatz, R.B. Kieburtz, A. Bernstein: Extending Concurrent

Pascal to allow dynamic resource management, in Proceedings of the

2nd international conference on Software Engineering, San Francisco,

1976.

~ P. Ancillotti, M. Boari, N. Lijtmaer: Dynamic management in a

language for real time programming, in AICA 77, Vol.1, pp.335-348,

Pisa, Oct. 1977.

D~ E.W. De Bankiers Math. Techno- Dijkstra: Algorithme, EIqD116, Dep.

logical u., Eindhoven, The Netherlands, 1965.

b~ A.N. Habermann: Prevention of deadlocks, in CACH 12, N.7, system

1969.

5] P. Brinch Hansen: Operating System Principles, Prentice Hall Series

in Automatic Computation~ Englewood Cliffs, 1973.

