
SCHEDULING DEPENDENT TASKS FROM AN INFINITE STREAM

IN SYSTEMS WITH NONPREEM~PTIBI~ RESOURCES

Wojciech Cellary

Institute of Control Engineering

Technical Univerity of Poznan

60-965 Poznan , POLAND

ABSTRACT. An infinite stream of independent jobs composed of sets of

dependent tasks, which are being fed into a uniprocessor computer sys-

tem with nonpreemptible resources is considered. A joint approach is

presented, to optimization of a given system performance measure,

namely mean flow time of jobs, and the solution of the system perfor-

mance failure problems, namely the determinacy of the set of tasks,

deadlock and permanent blocking. For deadlock avoidance the approach

is applied which radically reduces overhead involved without losi~

the benefit of improved resource utilization.

I. INTRODUCTION

In this paper we will consider an infinite stream of jobs which are

being fed into a system. The jobs are independent of each other, i.e.

there are no precedence constraints put on the order of their execution.

Howev@r, we will allow every job to be a set of dependent tasks. Thus,

from the operating system point of view, we deal with the infinite

stream of dependent tasks.

As is well known, this is an important assumption commonly met in

practice. First, usually programs associated with a complex job are

prepared in the form of subroutines which can be executed in parallel

with some precedence constraints. Second, it is possible to detect in

a continuous program, some program blocks which can be executed in

parallel. This problem was considered in [1,2] . Of course, in general,

522

the division of a job into tasks improve system efficiency.

We will consider a uniprocessor computer system with many units of

nonpreemptible resources of one kind. As is known, in such systems two

general problems must be taken into account. The first one is the op-

timization of a given system performance measure like for example mean

flow time. The second one is the solution of the system performance

failure problems, namely the determinacy of the set of tasks, deadlock,

and permanent blocking.

Commonly, these ~¢o general problems are solved separately. On the

one hand, there are some approaches to the solution of the particular

system performance failure problems EI,2,6,7,8,9,10J which do not take

into account any system performance measure. On the other hand, there

exist well known algorithms for scheduling tasks on processors tending

to optimize a given system performance measure, which either do not

take into account any additional resources, ar allow the usage of ad-

ditional resources under such restrictions that the problem of system

performance failures does not arise. These analyses only admit a hierar-

chical operating system structure. At the lower level, nonpreemptible

resources are allocated with regard to system performance failures.

Then, at the higher level, tasks with granted additional resource

requests are scheduled to optimize a given system performance measure.

Let us note, that such approach concerns only the optimal allocation

of processor time but not the usage of additional resources.

However, in the last year some papers have appeared dealing with

joint approach to the solution of the system performance failure problem

and the optimization of a given system performance measure L3,4,5j ,

that is approaches to all system performance failures which explicitely

take into account a given system performance measure. In particular,

in E51 algorithms for task scheduling in systems with many nonpreemp-

tible resources of one kind were considered, when an infinite stream

of independent tasks is being fed into the system; these algorithms

tend to minimize mean flow time. For the solution of the deadlock prob-

lem, they use a new approach to deadlock avoidance presented first in

~Sj and modified in [5] - This paper develops the results obtained in

15j, since it concerns stream of dependent tasks, and the minimization

of the mean flow time of jobs instead of tasks. As we have mentioned,

such model is more realistic in practice and moreover, allows system

efficiency to be improved.

In Section 2 of this paper we select approaches to the solution of

the peformance failure problems.

523

In the third Section, Bome definitions are introduced, and tests

used in the deadlock avoidance method are presented. These tests remain

generally the same as those presented in L5] , but their presentation

is necessary for other parts of this paper.

In the next Section we distinguish all situations which can occur

in the system from the resource allocation point of view, and present

algorithms for their servicing. The last Section contains some conclu-

sions.

2. SELECTED APPROACHES TO THE SOLUTION OF SYSTEM PERFORMANCE FAILUP~

PROBLEMS

In this section we will select approaches to the solution of system

performance failure problems. Let us start with the problem of the

determinacy of the set of tasks.

As is known, the set of tasks is called non-determinate if the

results produced by independent tasks depend on the speed and order in

which these tasks are executed E71 . The determinacy problem concerns

the cases, when independent tasks read from and write to common storage

locations. In our system this problem concerns tasks composing one job,

since we asume /which is usually done in practice/ that the storage

locations reserved by any two jobs are mutually exclusive of each other.

The solution of this problem consists in the introduction of the ad-

ditional, proper precedence constraints among tasks. Algorithms deter-

miningwhich precedence constraints should be added in the set of tasks

are presented in ~Tj • As we have mentioned, in our approach, we assume

arbitrary precedence constraints among tasks composing a job. Thus, we

allow for the solution of the determinacy problem.

Let us pass now to the deadlock problem. As is well known, deadlock

is the system state in which the progress of some tasks is blocked in-

defitely because each task holds nonpreemptible resources that must be

acquired by others in order to proceed. From three general approaches

to deadlocks, deteetion and recovery, prevention, and avoidance, we

have selected the avoidance approach since it is characterized by the

highest system throughput. Moreover, a cost /i.e., overhead involved/

paid in this approach, which is relatively high can be significantly
reduced E8~ .

The main idea of deadlock avoidance consists in the application of

a so called safety test to examine, on the basis of prior knowledge of

the task resource claim, i.e. the strict upper bound on the resource

524

requests of a task, whether the granting of a given request involves

deadlock danger or not. For this examination a so called safe sequence

of tasks is created. The number of resources free at any moment /i.e.,

not allocated to any task/ must be enough to enable the remaining

requests of the first task in the safe sequence to be granted. The sum

of the resources free and allocated to the first task must be enough

for granting the remaining requests of the second task in the safe sequen-

ce, and so on. It is proved Eg~ that if a safe sequence of tasks can

be created then no tasks are deadlocked. The safety test consists in

simulating request granting and an attempt to create a safe sequence

containing a task that requests resources, in order to answer the ques-

tion whether this request can be really granted or not.

The large overhead involved in avoidance methods results from the

necessity to apply the safety test in every case of resource request

and almost every case of resource release, and from the number of tasks

making up every safe sequence. A way of significantly reducing overhead

without losing the benefit of improved resource utilization is the ap-

plication of the necessary condition for deadlock as an admission test.

Such an approach was presented in E8! . The admission test precludes

many unsafe resource allocation states and as a result, significantly

reduces the number of applications of the safety test. A valuable pro-

perty of the admission test is that it depends entirely on claims which

are constant, and not on numbers of resources allocated to tasks which

vary. Thus,application of this test is reduced to the moment when a new

task enters the system or a task is completed. The safety and admission

tests presented in ~8 i concern testing resource allocation states. They

were modified in E5! to test state transition, and thus testing is re-

duced to comparison of only two numbers. These tests will be presented

in the next section.

The last but not least system peformance failure problem is per-

manent blocking° As is well known, this problem concerns tasks whose

resource requests will never be granted because of a steady stream of

requests from other tasks which are always granted before those of a

blocked task. In our strategy for solving this problem we will consider

the blocking of whole jobs. We asume knowledge of the "blocked-free"

time for every Job and periodically examine whether the time elapsed

since the arrival of a job exceed its blocked-free time. If so, the

minimum number of resources is reserved, for the completion of every

task composing the blocked job. This approach to the permanent blocking

problem may be considered also as an optimization of the secondary sys-

tem performance measure, namely lateness after blocked-free time.

525

3. BASIC DEFINITIONS

Every task T in the system will be characterized by the following.

I o . Claim - C(T) - which represents the strict upper bound on

resources used simultaneously;

2 ° . Rank - R(T) - which represents the difference between the

claim of task T and the number of resources currently allocated

to T;

3 °. Priority - ~(T) - calculated as follows.

Let J(T) be a set of tasks composing a job which contains task

T, let S(T) be the set of smccessors of task T, and let T(T)

denotes the remaining performance time of task T, i.e., the

run-time needed by task T to completion.

Then ~he priority of task T

)' 2
T SCT) Ti~ JCT)

Let us briefly discuss this formula.

The component - 10 × ~(T~ concerns the priorities of
Ti£ J(T)

jobs, i.e. it decides about the precedence of the choice in the case

of tasks that belong to different jobs. In general, the job with the

shortest remaining performance time will be taken first for servicing,

so that the number of jobs residing in the system will be minimized

as well as the mean flow time of jobs.

On the contrary, the component ~, ~(T~ + ~(T) of priority
Ti~ S(T)

~(T) decides about the precedence of the choice in the case of tasks

composing the same job, since the values of remaining component are

equal for all tasks composing a job. In this case the higher priority

is associated with the task whose completion allows, in accordance

with precedence constraints, for the starting of the subset of tasks

with the greatest, global performance time. An example of task priori-

ties in a job is presented in Fig. I.

Summarizing, every task in the system will be characterized by

its claim, rank and priority. Moreover, we assume that every job in

the system is characterized by a blocked-free time which is a time

elapsed from job arrival, after which the Job is Ireated as permanently

blocked.

526

©
~(T~):2

T~ 7"5

4

©
2

poin'~ in time

job arrival

Completion of 7"1

comple~[on of T 2

comp/e~[on of T 3

comp/e~/'on of T#

comp/el[on of 7" 5

I completion of T 6

T3

T4

T~

- 1o ~ Z_ T C r /) Z r " (~) ÷ r " (~) ~-(r , .)
r i ~](r,) rj ~s(~.)

- 2 Q Q + 2 0 - 1 8 0

- 1 8 0 + 18 - 1 6 2

- 1 5 0 + I1 - 1 3 9

- 1 5 0 + 8 - 1 4 2

- 1 0 0 + 8 - 3 2

- /OO + 6 - 94

- I I 0 * I I - 99

"40 + 4. - 36

-20 +2 -18

Fig. I° An example of task priorities.

527

Now let us divide tasks residing in the system into certain classes.

A task which has at least one resource allocated to it will be

denoted by a £2~2E- A task all o£ whose predecessors are completed,

and which are passed successfully through the admission test, but holds

no resources will be denoted by a c_and~da~e. Candidates and those com-

petitors Whose last resource request did not pass successfully through

the safety test will be denoted by waiters. Finally, tasks all of whose

predecessors are completed, but which did not pass successfully through

the admission test will be denoted by ~£~ential candidates.

Let us pass now to the safety and admission tests [5] • First, let

us define the ~E£~2~2~ of a task T,which consists in allocation a resour-

ce to task T and decrementing its rank by one. The allocation state of

a task can be described by the number of promotions starting from the

fictitious initial state in which no resources are allocated to it

/i.e., R(T) = 0~T) / up to its current rank. Let the number of resour-

ces be equal to t. The allocation state of the system can be stored in

a vector denoted by x , where x k is the total number of promotions of

all competitors from rank = k to rank = k-1 , /k=1,...,t/.

As an example let us consider the following system:

t = 6 CLAIM = (3 , 4 , 5) RANK = (2 , 1 , 4)

then

= (0 , 1 , 2 , 1 , 1 , 0) ,

since task T I was promoted from rank = 3 to rank = 2; task T 2 from

rank = 4 to rank = 3, from rank = 3 to rank = 2, and from rank = 2 to

rank = I; and task T 3 was promoted from rank = 5 to rank = 4.

For the formulation of the safety and admission tests let us define

the following vectors:

= (t,t-l,t-2,o..,1) ;

= (ql,q2,...,qt) ,

where
t

qk = t - k + I - Z_u xj ;
j=k

= (Sl,S2,...,st) ,

528

and pointers :

Iq=

I s =

where
t

Sk = t - k + I - j~k y j = ,

and yj is the number of tasks whose

claim = j ;

I rain {k) , if there exists such a k that qk = 0 ;
qk=O

t+1 , otherwise ;

(min {k) , if there exists such a k that s k = O ;

i Sk=O

L t+1 , otherwise.

In our example :

= (6,5,4,3,2,1) ,

= (1,0,0,1,1,1) ,

= (5,2,1,1,1,1) ,

Iq = 2 ,

I s = 7 •

The safety and admission tests can be formulated as follows [51 .

Theorem I. Let the initial state be safe. A state transition is safe

if and only if

R(~)< lq

where R T is the rank of a task which request a resource.

Theorem 2. Let the initial state be safe. If the state remains safe

after the addition of a task T to the set of candidates, then

0(~) < I s

where C(T) is the claim of task T.

529

4. TASK SCHEDULING AND RESOURCE ALLOCATION ALGORIT}~S

In this section we present algorithms for all the situations of

resource allocation in the system, that require specific servicing.

These algorithms, in reference to task scheduling, are generalizations

of those in [51 •

Situation I : The occurence of a r e q u e s t _f_r£m a c£mpetitor or the

arrival of a new candidate.

In this situation we must examine whether the request can be gran-

ted safely or not. As result from Theorem I this examination consists

in the comparison of only two numbers R(T) and Iq . If it is successfull,

the resource is allocated, and the following algorithm is performed to

calculate the new values of ~, Iq and R(T).

lq, i := I;

while i ~ R(T) d__qo

begin

qi := qi - I;
i :=i+I

end;

while qIq> O and

R (T) := R { T } - 1;

!q~ t do !q "= lq + I;

As an example let us consider the system sta~e:

t =6 O~ATM = (4 , 2 , 6) ~ = (3 , 1 , 4)

then

~; = (6,5,4,3,2,1) ,

= (2 , 1 , 1 , 0 , 0 , 0) ,

lq = 4 .

in accordance with Theorem I, we can grant only the request of

either task T I or T 2 . The allocation of a resource to task T 3 could

cause deadlock, since even after the completion of T2, there may be

530

not enough resource to complete either T I or T 3 . After granting the

request of T I we obtain:

~iNK = (2,1,4) ,

= (1,0,0,0,0,0) ,

Iq = 2.

If a request cannot be granted safely, the competitor is included

in the set of waiters and must wait for the release of resources.

The arrival of a new candidate is equivalent to its first request,

and as a result to a request from a competitor.

Situation 2 : The release of resources.

In this situation, first, the new resource alocation state must

be calculated. We use the following algorithm.

Al60rithm 2

Let A be the number of released resources.

i := 1;

while i~R T do

begin

qi := qi + A;
i:=i+1

end;

Iq, R T := R T + A;

while A~0 do

begin

qi := qi + A;
i := i + I;

A "- A 1

while qIq>O and Iq~t kd° Iq := lq + I;

For example let us consider the release of one resource /A=I/ by task

T 3 in the following system:

t=6 CLAIM = C4,2,6) RANK = (3,1,4)

531

= (2,1,1,0,0,0) ,

Iq = 4 •

After the execution of Algorithm 2 we obtain :

RANK = (3,1,5) ,

a. = (3 , 2 , 2 , 1 , 1 , 0) ,

lq = 6 .

After updating the resource allocation state we should try to

grant the requsts of waiters, which up to now could not be granted

because of the state transition safety test.

A~orithm3

I °. Search for waiters with ranks less than lq. If no such task

can be found, stop the algorithm.

2 °. Choose the task with maximum ~(T) and grant its request

/use Algorithm I/.

3 ° . Repeat from step I ° .

In the first step of Algorithm 3, we search for tasks whose requests

can be granted safely. The searching procedure can be improved if we

keep the set of waiters ordered in ascendi~ rank order. Set us note

that this algorithm is applied only for waiters and not all the tasks

whose precedence constraints are fulfilled. Thus, the number of examined

tasks is greatly reduced. Horeover, it is easy to prove that this al-

gorithm will have to repeated at most as many times as the number of

released resources.

Situation 3 : The arrival of a new ootential candidate.

In this situation we must chock whether the new potential candidate

can be moved to the set of candidates or not, using the admission test.

Horeover, if the new potential candidate did not pass successfully

through the admission test, we will try to replace a candidate, with

an appropriate claim and lower oriority, in the sot of candidates by

a new potential candidate. Such replacement is beneficial for mean

flow time, and is always possible since candidates do not have resources

allocated to them.

532

For servicing of this situation, we will formulate two admission

tests: the first calculated for the set of competitors /s , Is/ and

the second for both competitors and candidates /s , Is*/. The use of

these tests will be presented in Algorithm 5. However, first let us

formulate an algorithm used for updating values of s and I s after

addition/deletion of a task to/from the set of competitors as well as

s and Is* after the addition/deletion of task to/from the set either

of competitors or candidates.

Let T be the new potential candidate.

A!~0rithm 4

Boolean variable AD equal to true denotes addition, false -

- deletion;

Is, i := I;
while i~O T d__oo

i_f (AD) then s i := s i - I else s i := s i + 1

end;

while S I s ~ 0 and I s ~ t do I s := I s + 1;

The algorithm for the admission of a new potential candidate is as

follows.

A~£rithm 5

1 ° .

2 ° ,

3 0 .

If O(T)~ Is. , move T to the set of candidates and use

Algorithm 4 for the calculation of the new values of s*

and Is. ; then stop the algorithm.

If C(T)~ I s stop the algorithm.

From among candidates with claims greater than or equal to

C T find task T r with priority ~(T r) at the minimum. If

no such task can be found, or ~(Tr)~lV(T) then stop the

algorithm; otherwise replace T r by T in the set of candidates

and update the values of ~* and Is. using Algorithm 6. Then

stop the algorithm.

533

i := C(T) + I;

while i~C(T) do

begin

i := i + I

end;

Is. := i;

while s I ~0 do := + I; s* ~ Is* Is*

Situation 4 : ~ ~£~&£!!aB 2~ ~ ~a~ai!~2~.

In this situation we should:

I ° . Update values of q, Iq, s, Is, s*, Is. using Algorithms

2 and 4.

2 °. Try to move a potential candidate to the set of candidates

/it can be proved that there will be at most one such

potential candidate/ - using Algorithm 7.

3 ° . Add the tasks whose precedence constraints are now fulfilled

to the set of ootential candidates - using Algorithms

for servicing Situation 3.

4 °. Try to allocate resources released by the completed com-

petitor using Algorithms for servicing Situation 2.

m Z

I ° . Search for a potential candidate T with C(T)~Is. and

with ~(T) at the maximum. If no such task can be found,

stop the algorithm.

2 ° . Move T to the set of candidates and use Algorithm 4 for

calculating new values of ~* and Is.. Then, stop the

algorithm.

Situation 5 : The detection of a permanently blocked ~£b.

In this situation we must activate a special strateg~ of resource

allocation to grant the requests of tasks composing the blocked job.

This strategy consists in the division of system resources into two

534

parts: the one part ensures the completion of a blocked job, and the

remaining resources are used for servicing requests from other jobs.

The servicing of the blocked job and remaining Jobs is independent,

and performed in accordance with Situations I to 4 but for a reduced

number of resources.

The first problem in Situation 5 which can be distinguish is the

determination of the number of resources necessary for the blocked job.

It can be shown that this number is equal to the maximum rank of tasks

which are not yet being completed, composing the permanently blocked

job. Let us note that the rank of a task which is not a competitor is

equal to its claim. This number should be updated after the completion

of every task composing the blocked job, since it should be at the

minimum.

The next step of the permanent blocking prevention strategy consists

in waiting for the completion of all competitors. Then, as was mentioned

above, the resources are divided and servicing of the blocked job is

performed independently.

It could seem that the completion of all competitors should not be

necessary. However, we want to preclude a situation in which the

remaining after division resources are allocated to tasks which cannot

complete because of the lack of resources, and thus block these resources

during permanently blocked job servicing.

Let us note that the strategy presented here is less conservative

than Holt's well known strategy ~O] , since it allows the parallel

servicing of the blocked and non-blocked jobs.

5. CONCLUSIONS

The two general problems of task scheduling in systems with non-

preemptible resources: first, the optimization of a given system per-

formance measure, and second the solution of the system performance

failures problems /determinacy of the set of tasks, deadlock and per-

manent blocking/, are commonly solved separately. The algorithms presen-

ted in this paper represent a joint approach to both of these problems,

which may lead to better results, being obtained. They deal with the

case of infinite stream of dependent tasks and thus concern a wide class

of practical situations. The algorithms are presented in the form which

allows for direct implementation in operating systems.

535

REFERENCES

I. Baer, J.L., A survey of some theoretical aspects of mul~iprocessing,

Computing Surveys vol. 5, No I, 1973.

2. Bernstein, A.J., Analysis of programs for parallel processing, IEEE

Trans. Comp. vol EC-15, 1966, No 5.

3. Cellary, W., On resource allocation policies in uniprocessor systems

with nonpreemptible resources, ETA SZTAKI Tanulmanyok 69, 1977.

4. Cellary, W., Resource allocation strategies in computer systems with

nonpreemptible resources, Foundations of Control Engineering, vol. 2,

No 3, 1977.

5. Cellary, W., Task scheduling in systems with nonpreemptible resources,

in: H. Beilner and E. Gelenbe, Hedelling and Performance Evaluation

of Computer Systems, /Proc. of the III International Symposium/,

North Holland Publishing Co., 1977.

6. Coffman, E.G., Jr., N.J. Elphick, A° Shoshani, System deadlocks,

Computing Surveys vol. 2, No 3, 1971°

7. Coffman, E.G., Jr., P.J. Denning, Operating Systems Theory, Prentice

Hall, Englewood Cliffs, N.J., 1973.

8. Habermann, A.N., A new approach to avoidance of system deadlocks,

Revue Francaise d'Automatique, Informatique et Recherche Op~rationelle

9. sept B-3, 1975

9. Habermann, A.N., Prevention of system deadlocks, Comm. ACM vol 12,

No 7, 1969.

10. Holt, R.C., Comments on prevention of system deadlocks, Comm. A~,

vol. 14, No I, 1971.

