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ABSTRACT. An infinite stream of independent jobs composed of sets of 

dependent tasks, which are being fed into a uniprocessor computer sys- 

tem with nonpreemptible resources is considered. A joint approach is 

presented, to optimization of a given system performance measure, 

namely mean flow time of jobs, and the solution of the system perfor- 

mance failure problems, namely the determinacy of the set of tasks, 

deadlock and permanent blocking. For deadlock avoidance the approach 

is applied which radically reduces overhead involved without losi~ 

the benefit of improved resource utilization. 

I. INTRODUCTION 

In this paper we will consider an infinite stream of jobs which are 

being fed into a system. The jobs are independent of each other, i.e. 

there are no precedence constraints put on the order of their execution. 

Howev@r, we will allow every job to be a set of dependent tasks. Thus, 

from the operating system point of view, we deal with the infinite 

stream of dependent tasks. 

As is well known, this is an important assumption commonly met in 

practice. First, usually programs associated with a complex job are 

prepared in the form of subroutines which can be executed in parallel 

with some precedence constraints. Second, it is possible to detect in 

a continuous program, some program blocks which can be executed in 

parallel. This problem was considered in [1,2] . Of course, in general, 
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the division of a job into tasks improve system efficiency. 

We will consider a uniprocessor computer system with many units of 

nonpreemptible resources of one kind. As is known, in such systems two 

general problems must be taken into account. The first one is the op- 

timization of a given system performance measure like for example mean 

flow time. The second one is the solution of the system performance 

failure problems, namely the determinacy of the set of tasks, deadlock, 

and permanent blocking. 

Commonly, these ~¢o general problems are solved separately. On the 

one hand, there are some approaches to the solution of the particular 

system performance failure problems EI,2,6,7,8,9,10J which do not take 

into account any system performance measure. On the other hand, there 

exist well known algorithms for scheduling tasks on processors tending 

to optimize a given system performance measure, which either do not 

take into account any additional resources, ar allow the usage of ad- 

ditional resources under such restrictions that the problem of system 

performance failures does not arise. These analyses only admit a hierar- 

chical operating system structure. At the lower level, nonpreemptible 

resources are allocated with regard to system performance failures. 

Then, at the higher level, tasks with granted additional resource 

requests are scheduled to optimize a given system performance measure. 

Let us note, that such approach concerns only the optimal allocation 

of processor time but not the usage of additional resources. 

However, in the last year some papers have appeared dealing with 

joint approach to the solution of the system performance failure problem 

and the optimization of a given system performance measure L3,4,5j , 

that is approaches to all system performance failures which explicitely 

take into account a given system performance measure. In particular, 

in E51 algorithms for task scheduling in systems with many nonpreemp- 

tible resources of one kind were considered, when an infinite stream 

of independent tasks is being fed into the system; these algorithms 

tend to minimize mean flow time. For the solution of the deadlock prob- 

lem, they use a new approach to deadlock avoidance presented first in 

~Sj and modified in [5] - This paper develops the results obtained in 

15j, since it concerns stream of dependent tasks, and the minimization 

of the mean flow time of jobs instead of tasks. As we have mentioned, 

such model is more realistic in practice and moreover, allows system 

efficiency to be improved. 

In Section 2 of this paper we select approaches to the solution of 

the peformance failure problems. 
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In the third Section, Bome definitions are introduced, and tests 

used in the deadlock avoidance method are presented. These tests remain 

generally the same as those presented in L5] , but their presentation 

is necessary for other parts of this paper. 

In the next Section we distinguish all situations which can occur 

in the system from the resource allocation point of view, and present 

algorithms for their servicing. The last Section contains some conclu- 

sions. 

2. SELECTED APPROACHES TO THE SOLUTION OF SYSTEM PERFORMANCE FAILUP~ 

PROBLEMS 

In this section we will select approaches to the solution of system 

performance failure problems. Let us start with the problem of the 

determinacy of the set of tasks. 

As is known, the set of tasks is called non-determinate if the 

results produced by independent tasks depend on the speed and order in 

which these tasks are executed E71 . The determinacy problem concerns 

the cases, when independent tasks read from and write to common storage 

locations. In our system this problem concerns tasks composing one job, 

since we asume /which is usually done in practice/ that the storage 

locations reserved by any two jobs are mutually exclusive of each other. 

The solution of this problem consists in the introduction of the ad- 

ditional, proper precedence constraints among tasks. Algorithms deter- 

miningwhich precedence constraints should be added in the set of tasks 

are presented in ~Tj • As we have mentioned, in our approach, we assume 

arbitrary precedence constraints among tasks composing a job. Thus, we 

allow for the solution of the determinacy problem. 

Let us pass now to the deadlock problem. As is well known, deadlock 

is the system state in which the progress of some tasks is blocked in- 

defitely because each task holds nonpreemptible resources that must be 

acquired by others in order to proceed. From three general approaches 

to deadlocks, deteetion and recovery, prevention, and avoidance, we 

have selected the avoidance approach since it is characterized by the 

highest system throughput. Moreover, a cost /i.e., overhead involved/ 

paid in this approach, which is relatively high can be significantly 
reduced E8~ . 

The main idea of deadlock avoidance consists in the application of 

a so called safety test to examine, on the basis of prior knowledge of 

the task resource claim, i.e. the strict upper bound on the resource 
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requests of a task, whether the granting of a given request involves 

deadlock danger or not. For this examination a so called safe sequence 

of tasks is created. The number of resources free at any moment /i.e., 

not allocated to any task/ must be enough to enable the remaining 

requests of the first task in the safe sequence to be granted. The sum 

of the resources free and allocated to the first task must be enough 

for granting the remaining requests of the second task in the safe sequen- 

ce, and so on. It is proved Eg~ that if a safe sequence of tasks can 

be created then no tasks are deadlocked. The safety test consists in 

simulating request granting and an attempt to create a safe sequence 

containing a task that requests resources, in order to answer the ques- 

tion whether this request can be really granted or not. 

The large overhead involved in avoidance methods results from the 

necessity to apply the safety test in every case of resource request 

and almost every case of resource release, and from the number of tasks 

making up every safe sequence. A way of significantly reducing overhead 

without losing the benefit of improved resource utilization is the ap- 

plication of the necessary condition for deadlock as an admission test. 

Such an approach was presented in E8! . The admission test precludes 

many unsafe resource allocation states and as a result, significantly 

reduces the number of applications of the safety test. A valuable pro- 

perty of the admission test is that it depends entirely on claims which 

are constant, and not on numbers of resources allocated to tasks which 

vary. Thus,application of this test is reduced to the moment when a new 

task enters the system or a task is completed. The safety and admission 

tests presented in ~8 i concern testing resource allocation states. They 

were modified in E5! to test state transition, and thus testing is re- 

duced to comparison of only two numbers. These tests will be presented 

in the next section. 

The last but not least system peformance failure problem is per- 

manent blocking° As is well known, this problem concerns tasks whose 

resource requests will never be granted because of a steady stream of 

requests from other tasks which are always granted before those of a 

blocked task. In our strategy for solving this problem we will consider 

the blocking of whole jobs. We asume knowledge of the "blocked-free" 

time for every Job and periodically examine whether the time elapsed 

since the arrival of a job exceed its blocked-free time. If so, the 

minimum number of resources is reserved, for the completion of every 

task composing the blocked job. This approach to the permanent blocking 

problem may be considered also as an optimization of the secondary sys- 

tem performance measure, namely lateness after blocked-free time. 
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3. BASIC DEFINITIONS 

Every task T in the system will be characterized by the following. 

I o . Claim - C(T) - which represents the strict upper bound on 

resources used simultaneously; 

2 ° . Rank - R(T) - which represents the difference between the 

claim of task T and the number of resources currently allocated 

to T; 

3 °. Priority - ~(T) - calculated as follows. 

Let J(T) be a set of tasks composing a job which contains task 

T, let S(T) be the set of smccessors of task T, and let T(T) 

denotes the remaining performance time of task T, i.e., the 

run-time needed by task T to completion. 

Then ~he priority of task T 

)' 2 
T SCT) Ti~ JCT) 

Let us briefly discuss this formula. 

The component - 10 × ~(T~ concerns the priorities of 
Ti£ J(T) 

jobs, i.e. it decides about the precedence of the choice in the case 

of tasks that belong to different jobs. In general, the job with the 

shortest remaining performance time will be taken first for servicing, 

so that the number of jobs residing in the system will be minimized 

as well as the mean flow time of jobs. 

On the contrary, the component ~, ~(T~ + ~(T) of priority 
Ti~ S(T) 

~(T) decides about the precedence of the choice in the case of tasks 

composing the same job, since the values of remaining component are 

equal for all tasks composing a job. In this case the higher priority 

is associated with the task whose completion allows, in accordance 

with precedence constraints, for the starting of the subset of tasks 

with the greatest, global performance time. An example of task priori- 

ties in a job is presented in Fig. I. 

Summarizing, every task in the system will be characterized by 

its claim, rank and priority. Moreover, we assume that every job in 

the system is characterized by a blocked-free time which is a time 

elapsed from job arrival, after which the Job is Ireated as permanently 

blocked. 
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Fig. I° An example of task priorities. 
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Now let us divide tasks residing in the system into certain classes. 

A task which has at least one resource allocated to it will be 

denoted by a £2~2E- A task all o£ whose predecessors are completed, 

and which are passed successfully through the admission test, but holds 

no resources will be denoted by a c_and~da~e. Candidates and those com- 

petitors Whose last resource request did not pass successfully through 

the safety test will be denoted by waiters. Finally, tasks all of whose 

predecessors are completed, but which did not pass successfully through 

the admission test will be denoted by ~£~ential candidates. 

Let us pass now to the safety and admission tests [5] • First, let 

us define the ~E£~2~2~ of a task T,which consists in allocation a resour- 

ce to task T and decrementing its rank by one. The allocation state of 

a task can be described by the number of promotions starting from the 

fictitious initial state in which no resources are allocated to it 

/i.e., R(T) = 0~T) / up to its current rank. Let the number of resour- 

ces be equal to t. The allocation state of the system can be stored in 

a vector denoted by x , where x k is the total number of promotions of 

all competitors from rank = k to rank = k-1 , /k=1,...,t/. 

As an example let us consider the following system: 

t = 6 CLAIM = ( 3 , 4 , 5 )  RANK = ( 2 , 1 , 4 )  

then 

= ( 0 , 1 , 2 , 1 , 1 , 0 )  , 

since task T I was promoted from rank = 3 to rank = 2; task T 2 from 

rank = 4 to rank = 3, from rank = 3 to rank = 2, and from rank = 2 to 

rank = I; and task T 3 was promoted from rank = 5 to rank = 4. 

For the formulation of the safety and admission tests let us define 

the following vectors: 

= (t,t-l,t-2,o..,1) ; 

= (ql,q2,...,qt) , 

where 
t 

qk = t - k + I - Z_u xj ; 
j=k 

= (Sl,S2,...,st) , 
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and pointers : 

Iq= 

I s = 

where 
t 

Sk = t - k + I - j~k y j =  , 

and yj is the number of tasks whose 

claim = j ; 

I rain {k) , if there exists such a k that qk = 0 ; 
qk=O 

t+1 , otherwise ; 

( min {k) , if there exists such a k that s k = O ; 

i Sk=O 

L t+1 , otherwise. 

In our example : 

= (6,5,4,3,2,1) , 

= (1,0,0,1,1,1) , 

= (5,2,1,1,1,1) , 

Iq = 2 , 

I s = 7 • 

The safety and admission tests can be formulated as follows [51 . 

Theorem I. Let the initial state be safe. A state transition is safe 

if and only if 

R(~)< lq 

where R T is the rank of a task which request a resource. 

Theorem 2. Let the initial state be safe. If the state remains safe 

after the addition of a task T to the set of candidates, then 

0(~) < I s 

where C(T) is the claim of task T. 
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4. TASK SCHEDULING AND RESOURCE ALLOCATION ALGORIT}~S 

In this section we present algorithms for all the situations of 

resource allocation in the system, that require specific servicing. 

These algorithms, in reference to task scheduling, are generalizations 

of those in [51 • 

Situation I : The occurence of a r e q u e s t  _f_r£m a c£mpetitor or the 

arrival of a new candidate. 

In this situation we must examine whether the request can be gran- 

ted safely or not. As result from Theorem I this examination consists 

in the comparison of only two numbers R(T) and Iq . If it is successfull, 

the resource is allocated, and the following algorithm is performed to 

calculate the new values of ~, Iq and R(T). 

lq, i := I; 

while i ~ R(T) d__qo 

begin 

qi := qi - I; 
i :=i+I 

end; 

while qIq> O and 

R ( T )  :=  R { T }  - 1;  

!q~ t do !q "= lq + I; 

As an example let us consider the system sta~e: 

t =6  O~ATM = ( 4 , 2 , 6 )  ~ = ( 3 , 1 , 4 )  

then 

~; = (6,5,4,3,2,1) , 

= ( 2 , 1 , 1 , 0 , 0 , 0 )  , 

lq = 4 . 

in accordance with Theorem I, we can grant only the request of 

either task T I or T 2 . The allocation of a resource to task T 3 could 

cause deadlock, since even after the completion of T2, there may be 
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not enough resource to complete either T I or T 3 . After granting the 

request of T I we obtain: 

~iNK = ( 2,1,4 ) , 

= (1,0,0,0,0,0) , 

Iq = 2. 

If a request cannot be granted safely, the competitor is included 

in the set of waiters and must wait for the release of resources. 

The arrival of a new candidate is equivalent to its first request, 

and as a result to a request from a competitor. 

Situation 2 : The release of resources. 

In this situation, first, the new resource alocation state must 

be calculated. We use the following algorithm. 

Al60rithm 2 

Let A be the number of released resources. 

i := 1; 

while i~R T do 

begin 

qi := qi + A; 
i:=i+1 

end; 

Iq, R T := R T + A; 

while A~0 do 

begin 

qi := qi + A; 
i := i + I; 

A "- A 1 

while qIq>O and Iq~t kd° Iq := lq + I; 

For example let us consider the release of one resource /A=I/ by task 

T 3 in the following system: 

t=6 CLAIM = C4,2,6) RANK = (3,1,4) 
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= (2,1,1,0,0,0) , 

Iq = 4 • 

After the execution of Algorithm 2 we obtain : 

RANK = ( 3,1,5 ) , 

a. = ( 3 , 2 , 2 , 1 , 1 , 0 )  , 

lq = 6 . 

After updating the resource allocation state we should try to 

grant the requsts of waiters, which up to now could not be granted 

because of the state transition safety test. 

A~orithm3 

I °. Search for waiters with ranks less than lq. If no such task 

can be found, stop the algorithm. 

2 °. Choose the task with maximum ~(T) and grant its request 

/use Algorithm I/. 

3 ° . Repeat from step I ° . 

In the first step of Algorithm 3, we search for tasks whose requests 

can be granted safely. The searching procedure can be improved if we 

keep the set of waiters ordered in ascendi~ rank order. Set us note 

that this algorithm is applied only for waiters and not all the tasks 

whose precedence constraints are fulfilled. Thus, the number of examined 

tasks is greatly reduced. Horeover, it is easy to prove that this al- 

gorithm will have to repeated at most as many times as the number of 

released resources. 

Situation 3 : The arrival of a new ootential candidate. 

In this situation we must chock whether the new potential candidate 

can be moved to the set of candidates or not, using the admission test. 

Horeover, if the new potential candidate did not pass successfully 

through the admission test, we will try to replace a candidate, with 

an appropriate claim and lower oriority, in the sot of candidates by 

a new potential candidate. Such replacement is beneficial for mean 

flow time, and is always possible since candidates do not have resources 

allocated to them. 
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For servicing of this situation, we will formulate two admission 

tests: the first calculated for the set of competitors /s , Is/ and 

the second for both competitors and candidates /s , Is*/. The use of 

these tests will be presented in Algorithm 5. However, first let us 

formulate an algorithm used for updating values of s and I s after 

addition/deletion of a task to/from the set of competitors as well as 

s and Is* after the addition/deletion of task to/from the set either 

of competitors or candidates. 

Let T be the new potential candidate. 

A!~0rithm 4 

Boolean variable AD equal to true denotes addition, false - 

- deletion; 

Is, i := I; 
while i~O T d__oo 

i_f (AD) then s i := s i - I else s i := s i + 1 

end; 

while S I s ~  0 and I s ~  t do I s := I s + 1; 

The algorithm for the admission of a new potential candidate is as 

follows. 

A~£rithm 5 

1 ° . 

2 ° , 

3 0 . 

If O(T)~ Is. , move T to the set of candidates and use 

Algorithm 4 for the calculation of the new values of s* 

and Is. ; then stop the algorithm. 

If C(T)~ I s stop the algorithm. 

From among candidates with claims greater than or equal to 

C T find task T r with priority ~(T r) at the minimum. If 

no such task can be found, or ~(Tr)~lV(T) then stop the 

algorithm; otherwise replace T r by T in the set of candidates 

and update the values of ~* and Is. using Algorithm 6. Then 

stop the algorithm. 
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i := C(T) + I; 

while i~C(T) do 

begin 

i := i + I 

end; 

Is. := i; 

while s I ~0 do := + I; s* ~ Is* Is* 

Situation 4 : ~ ~£~&£!!aB 2~ ~ ~a~ai!~2~. 

In this situation we should: 

I ° . Update values of q, Iq, s, Is, s*, Is. using Algorithms 

2 and 4. 

2 °. Try to move a potential candidate to the set of candidates 

/it can be proved that there will be at most one such 

potential candidate/ - using Algorithm 7. 

3 ° . Add the tasks whose precedence constraints are now fulfilled 

to the set of ootential candidates - using Algorithms 

for servicing Situation 3. 

4 °. Try to allocate resources released by the completed com- 

petitor using Algorithms for servicing Situation 2. 

m Z 

I ° . Search for a potential candidate T with C(T)~Is. and 

with ~(T) at the maximum. If no such task can be found, 

stop the algorithm. 

2 ° . Move T to the set of candidates and use Algorithm 4 for 

calculating new values of ~* and Is.. Then, stop the 

algorithm. 

Situation 5 : The detection of a permanently blocked ~£b. 

In this situation we must activate a special strateg~ of resource 

allocation to grant the requests of tasks composing the blocked job. 

This strategy consists in the division of system resources into two 
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parts: the one part ensures the completion of a blocked job, and the 

remaining resources are used for servicing requests from other jobs. 

The servicing of the blocked job and remaining Jobs is independent, 

and performed in accordance with Situations I to 4 but for a reduced 

number of resources. 

The first problem in Situation 5 which can be distinguish is the 

determination of the number of resources necessary for the blocked job. 

It can be shown that this number is equal to the maximum rank of tasks 

which are not yet being completed, composing the permanently blocked 

job. Let us note that the rank of a task which is not a competitor is 

equal to its claim. This number should be updated after the completion 

of every task composing the blocked job, since it should be at the 

minimum. 

The next step of the permanent blocking prevention strategy consists 

in waiting for the completion of all competitors. Then, as was mentioned 

above, the resources are divided and servicing of the blocked job is 

performed independently. 

It could seem that the completion of all competitors should not be 

necessary. However, we want to preclude a situation in which the 

remaining after division resources are allocated to tasks which cannot 

complete because of the lack of resources, and thus block these resources 

during permanently blocked job servicing. 

Let us note that the strategy presented here is less conservative 

than Holt's well known strategy ~O] , since it allows the parallel 

servicing of the blocked and non-blocked jobs. 

5. CONCLUSIONS 

The two general problems of task scheduling in systems with non- 

preemptible resources: first, the optimization of a given system per- 

formance measure, and second the solution of the system performance 

failures problems /determinacy of the set of tasks, deadlock and per- 

manent blocking/, are commonly solved separately. The algorithms presen- 

ted in this paper represent a joint approach to both of these problems, 

which may lead to better results, being obtained. They deal with the 

case of infinite stream of dependent tasks and thus concern a wide class 

of practical situations. The algorithms are presented in the form which 

allows for direct implementation in operating systems. 
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