SCHEDULING DEPENDENT TASKS FROM AN INFINITE STREAM

IN SYSTEMS WITH NONPREEMPTIBLE RESOURCES

Wojciech Cellary

Institute of Control Engineering
Technical Univerity of Poznan

60~965 Poznan , POLAND

ABSTRACT, An infinite stream of independent jobs composed of sets of
dependent tesks, which are being fed into a uniprocessor computer sys-
tem with nonpreemptible resources is considered. A joint approach is
presented, to optimization of a given system performance measure,
namely mean flow time of Jobs, and the solution of the system perfor-
mance failure problems, namely the determinacy of the set of tasks,
deadlock and permanent blocking. For deadlock avoidance the approach
ig applied which radically reduces overhead involved without losing
the benefit of improved resource utilization.

1. INTRODUCTION

In this paper we will consider an infinite stream of jobs which are
being fed into a system. The jobs are independent of each cther, i.e,
there are no precedence constraints put on the order of their execution.
However, we will allow every job to be a get of dependent tasks. Thus,
from the operating system point of view, we deal with the infinite
stream of dependent tasks.

As is well known, this is an importent assumption commonly met in
practice. First, usually programs associated with a complex job are
prepared in the form of subroutines which can be executed in parallel
with some precedence constraints. Second, it is possible to deteect in
a continuous program, some program blocks which can be executed in
parallel, This problem was considered in [1,2] . Of course, in general,

522

the division of a job into tasks improve system effieciency.

We will consider a uniprocessor computer system with many units of
nonpreemptible resources of one kind, As is known, in such systems two
general problems must be taken into account., The first ome is the op-
timization of a given system performance measure like for example mean
flow time, The second one is the solution of the system performance
failure problems, namely the determinacy of the set of tasks, deadlock,
and permenent blocking.

Commonly, these two general problems are solved separately. On the
one hand, there are some approaches to the solution of the particular
system performance failure probleus [1,2,6,7,8,9,10] which do not take
into account any system performance measure. On the other hand, there
exist well known algorithms for scheduling tasks on processors tending
to optimize a given system performance measure, which either do not
take into account any additional resources, ar allow the usage of ad~
ditional resources under such restrictions that the problem of system
performance failures does not arise. These analyses only admit a hierar-
chical operating system structure. At the lower level, nonpreemptible
resources are allocated with regard to system performance failures.
Then, at the higher level, tasks with granted additional resource
requests are scheduled to optimize a given system perforwmance measure.
Let us note, that such approach concerns only the optimal allocation
of processor time but not the usage of additional resources.

However, in the last year some papers have appeared dealing with
joint approach to the solution of the system performance failure problem
and the optimization of a given system performance measure [3,4,5] N
that is approaches to all system performance failures which explicitely
take into account a given system performance meagure. In particular,
in [5] algorithms for task scheduling in systems with many nonpreemp-
tible resources of one kind were considered, when an infinite stream
of independent tasks is being fed into the system; these algorithms
tend to minimize mean flow time. For the solution of the deadlock prob-
lem, they use a new approach to deadlock avoidance presented first in
[8] and modified in [5] . This paper develops the results cbtained in
[5], since it concerns stream of dependent tasks, and the uinimization
of the mean flow time of jobs instead of tasks. As we have mentioned,
such model is more realistic in practice and moreover, allows system
efficiency to be improved.

Tn Section 2 of this paper we select approaches to the solution of
the peformance failure problems.

523

In the third Section, some definitions are introduced, and tests
used in the deadlock avoidance method are presented. These tests remain
generally the same as those presented in fS] s but their presentation
is necessary for other paris of this paper.

In the next Section we distinguish all situations which can occur
in the system from the resource allocation point of view, and present
algorithms for their servicing, The last Section contains some conclu-
sions.

2., SELECTED APPROACHES TC THE SOLUTION OF SYSTEM PERFORMANCE FAILURE
PROBLEMS

In this section we will select approaches to the solution of system
performance failure problems. Let us start with the problem of the
determinacy of the set of tasks.

As is known, the get of tasks is called non-determinate if the
results produced by independent tasks depend on the speed and order in
which these tasks are executed [7] . The determinacy problem concerns
the cases, when independent tasks read from and write to common storage
locations, In our system this problem concerns tasgks composing one job,
since we asume /which is usually done in practice/ that the storage
locations reserved by any itwo jobs are mutually exclusive of each other.
The solution of this problem conmsists in the introduction of the ad-
ditional, proper precedence constraints among tasks, Algorithms deter-
mining which precedence constraints should be added in the set of *tasks
are presented in [7] . As we have mentioned, in our approach, we assume
arbitrary precedence constraints among tasks composing a job. Thus, we
allow for the solution of the determinacy problem.

Let us pass now to the deadlock problem. As ig well known, deadlock
is the system state in which the progress of some tasks is blocked in-
defitely because each task holds nonpreemptible resources that must be
acquired by others in order to proceed, From three general approaches
to deadlocks, detection and recovery, prevention, and avoidance, we
have selected the avoidance approach since it is characterized by the
highest system throughput. Moreover, a cost /i.e., overhead involved/
paid in this approach, which is relatively high can be significantly
reduced [8] .

The main idea of deadlock avoidance consists in the application of
a 80 called safety test to examine, on the basis of prior knowledge of
the task resource claim, i.e. the strict upper bound on the resource

524

requests of a task, whether the granting of a given request involves
deadlock danger or not. For this examination a so called safe sequence
of tasks is created. The number of resources free at any moment /i.e.,
not allocated to any task/ must be enough to enable the remaining
requests of the first task in the safe sequence o be granted. The sum
of the resources free and allocated to the first task must be enough
for granting the remaining requests of the second task in the safe sequen-
ce, and so on. It is proved [9] that if a safe sequence of tasks can
be created then no tasks are deadlocked. The safety test consists in
simulating request granting and an attempt to create a safe sequence
containing a task that requests resources, in order to answer the gques-
tion whether this request can be really granted or not.

The large overhead involved in avoidance methods results from the
necessity to apply the safety test in every case of resource request
and almost every case of resource release, and from the number of tasks
making up every safe sequence. A way of significantly reducing overhead
without losing the benefit of improved resource utilization is the ap-
plication of the necessary condition for deadlock as an admission test.
Such an approach was presented in [8] . The admission test precludes
many unsafe resource allocation states and as a result, significantly
reduces the number of applications of the safety test. 4 valuable pro-
perty of the admission test is that it depends entirely on claims which
are constant, and not on numbers of resources allocated to tasks which
vary. Thus application of this test is reduced to the moment when a new
tagk enters the gystem or a task is completed, The safetly and admigsion
tests presented in [8] concern testing resource allocation states. They
were modified in [5] to test state transition, and thus testing is re-
duced to comparison of only two numbers. These tests will be presented
in the next section.

The last but not least system peformance failure problem is per-
manent blocking. As is well known, this problem concerns tasks whose
resource requests will never be granted because of a steady stream of
requests from other tasks which are always granted before those of a
blocked task. In our sitrategy for solving this problem we will consider
the blocking of whole jobs. We asume knowledge of the #plocked-free”
time for every job and periodically exzamine whether the time elapsed
since the arrival of a job exceed iits blocked-free time. 1f so, the
minimum number of resources is regerved, for the completion of every
tagk composing the blocked job. This approach to the permanent blocking
problem mey be considered alsc as an optimization of the secondary sys-
tem performance measure, nemely lateness after blocked-free time.

525

3. BASIC DEFINITIONS

Every task T in the system will be characterized by the following.

1°, Claim - G(T) - which represents the strict upper bound on
resources used simultaneously;

2°, Rank - R(T) - which represents the difference between the
claim of task T and the number of resources currently allocated
to T3

5%, Priority - «{T) - calculated as follows,

Let J(T) be a set of tasks composing a job which contains task
T, let S{P) be the set of successors of taskx T, and let «{(7T)
denotes the remaining performance time of task 7, i.e,, the
run-time needed by task T fto completion,

Then the priority of tasgk T

T{T) = L fc('.ﬂi) + g(P) - 10%2 {r.) .
T, € s(m

X
€ 3(T)

Let us briefly discuss this formula.

]
The component =~ 10 % :E:: T(Ti) concerns the priorities of
Tie J{T)

jobs, i.e, it decides about the precedence of the choice in the case
of tasks that belong to different jobs. In general, the job with the
ghortest remaining performance time will be taken first for servieing,
go that the number of jobs residing in the system will be minimized
ag well as the mean flow time of jobs.

On the contrary, the component :E:: T(P.) + T(T) of priority
T,€8(m) ¢

m{T) decides about the precedence of the choice in the case of tasks
composing the same job, since the values of remeining component are
equal for all tasks composing a job., In this case the higher priority
is associated with the task whose completion allows, in accordance
with precedence constraints, for the starting of the gubset of tasks
with the greatest, global performance time. An example of task priori-
ties in a job is presented in Fig. 1.

Summarizing, every task in the system will be characterized by
its claim, rank and priority. Moreover, we assume that every job in
the system is characterized by a blocked-free time which is a time
elapsed from job arrival, after which the job ig ireated as permanently
blocked.

526

point in time 7 -0 < = T{7) =)+ (T) T(1)
G €jm €5(1)
job arrival i ~200 +20 - 180
completion of Ty] - 180 +18 - 162
completion of Iz 7 - 150 /i - 139
7 - 150 +8 -142
completion of Ty T4 - 100 +8 -92
T - 100 +6 - 54
completion of T P - 1710 +1f -99
completion of Ty s -40 +4. -36
complietion of Ty Ty - 20 +2 -8

Pig. 1. An example of task priorities.

527

Fow let us divide tasks regiding in the system into certain classes,

A task which has at least one regource allocated to it will be

- e o s e e o
Pepuiqrinpupeniuauph i
PApripmpLgaiad

e e e B o o T o e o

o o i 2

ce to task T and decrementing its rank by one. The allocation state of
a task can be described by the number of promotions starting from the
fiectitious initisal state in which no rescurces are allocated to it
/i.e., R(T) = (%) / up to its curremt rank. Let the number of resour-
ces be equal to t. The allocation state of the system can be stored in
s vector denoted by ¥ , where Xy is the total number of promotions of
all competitors from rank = Xk to rank = k-1 , /k=1,...,%t/.

As an example let us consider the following system:
t =6 CIAIM = (3,4,5) RANK = (2,1,4)
then
X =100,1,2,1,1,0) ,
since task T1 wag prounoted from rank = 3 to rank = 2; task T2 from

rank = 4 to rank = 3, from rank = 3 fo rank = 2, and from rank = 2 to
rank = 1; and task T3 was promoted from rank = 5 to rank = 4,

For the formulation of the safetiy and sdmission tests let us define
the following vectors:

T o= (byt-1,85-2,000,1) ;
‘iz(q‘VQQ;coosqt) s
where +
N7
Cj,k=‘h-k+1—,4__‘x.,
=
8 = (81,32,...,St) ,

528

where

=t -k+1- Z{: o

--kJ

and yj is the number of tasks whose
claim = j 3

and pointers

min {k} , if there exists such a k that q_= 0 ;
I = 4%
q
t+1 , otherwise ;
(min {x} , if there exists such a k that 8 = 0 ;

T = J5%0
t+1 , otherwise.

In our example 3

t = (6,5,4,3,2,1),
ﬁ = (1v0aos1s1r1)]
8 = (3,2,1,1,1,1) ,
Iq = 2]
IS = 7 .

The safety and admission tests can be formulated as follows [5] .

Theorem 1. Let the initial state be pafe. A state transition is safe

if and only if
R < Ig
where R T is the rank of a task which request a resource.

Theorem 2, Tet the initial state be safe. If the state remains safe

1 . W o o

after the addition of a task T to the set of candidates, then

o<1,

where C(T) is the claim of task T,

529
4, TASK SCHEDULING AND RESOURCE ALLOCATION ALGORITHMS

In this section we present algorithms for all the situations of
regource allcocation in the system,that require specific serviecing.
These algorithms, in reference to task scheduling, are generalizations
of those in [5] .

Situation 1 : The occurence of a reguest from a competitor or the
arrival of a new candidate.

" - - o T " 310 " 20 2

In this situation we must examine whether the request can be gran-
ted safely or not. As result from Theorem 1 this examination consists
in the comparisen of only iwo numbers R(T) and I, . If it is successfull,
the resource is allocated, and the following algorithm is performed to
caleulate the new values of g, Iq and R(T).

pimpoey < ety cpany

while i <<R(T) do

begin
q‘l o= qi“‘1:
iot= 41 +1
end;
while

,>0 amd I <t do Igt=Ig + 1
R(T) := R(T) - 1;

Ag an example let us congider the system state:

t=6 CLAIM = {4,2,6) RANK = (3,1,4)
then
%-‘—‘ (6,5,4,3,291) Ed
(_i = (2,1;1’01010))
I- = 4‘ o

g

In accordance with Theorem 1, we can grant only the request of
either task T1 or T2 . The allocation of a resource to task TB could
caugse deadlock, since even after the completion of TZ’ there may be

530

not enough resource to complete either T1 or '1‘3 . After granting the
regquest of T1 we obtain:

RANK £ (2,1’4‘) $
§ = (1,070’01070) I
I(l = 2.
If a request cannot be granted safely, the competitor is included
in the set of waiters and must wait for the release of resources.

The arrival of a new candidate is equivalent to its first request,
and as a result to a request from a coupetitor.

Situation 2 : The release of resources.

- o e . o o s

In this sitwation, first, the new resource alccation state must
be calculated. We use the following algorithm.

PPt Prndea i mpn

Iq, RT :=RT + Aj

begin
q; =9y + A;
is=1+ 1
A = A -1
end;
while qu:> 0 and Iqsg t do Iq 1= Iq + 13

For example let us consider the release of one resource fA=1/ by task
T3 in the following system:

$=6 CIATM = (4,2,6) RANK = (3,1,4)

531

Ei = (2:1,17030’0) ?
Iq =4 .,

After the execution of Algorithm 2 we obtain ¢

=(35135) H
E = (3;2:2’1’130} y
I =6,
q
After updating the resource allocation state we should try to
grant the requsts of waiters, which up to now could not be granted
because of the state transition safety test.

s T e ol L e e

. Search for waiters with ranks less than Iq. If no such task
can be found, stop %the algorithm.
2°, Choose the task with maximum (T) and grant its request
/use Algorithm 1/.
3%, Repeat from step 1°.

In the first step of Algorithm 3, we search for tasks whose requests
can be granted safely., The searching procedure can be improved if we
keep the set of waiters ordered in ascending rank order. Let us note
that this algorithm is applied only for waiters and not all the tasks
whose precedence constraints are fulfilled, Thus, thz number of examined
tagks is greatly reduced. Moreover, it is easy to prove that this al-
gorithm will have to repeated at most as many times as the number of
released resources,

Situation 3 : The arrival of a new potential candidate.

o e o s san v - ap 1 > " a0 0 P

In this situnation we must check whether the new potential candidate
can be moved to the set of candidates or not, using the admigsion test,
Moreover, if the new potential candidate did not pass successfully
through the admission test, we will try to replace a candidate, with
an appropriate claim and lower priority, in the set of candidates by
& new potential candidate, Such replacement is beneficial for mean
flow time, and is always possible gince candidates do not have resources
allocated to them.

532

Por servicing of this situation, we will formulate two admission
tests: the first calculated for the set of competltors /s, 1 / and
the second for both competitors and candidates /s » I */, The use of
these tests will be presented in Algorithm 5. However, first let us
formulate an algorithm used for updating values of § and Is after
addition/deletion of a %ask to/from the set of competitors as well as
5% and Is* after the addition/deletion of task to/from the set either
of competitors or candidates.

Let T be the new potential candidate.

Algorithm 4

Boolean variable AD equal o true denotes addition, false -~

-

deletions

Is, i =13

while 1{CT 4o
begin
if (AD) then 8y i=8; -1 else s; t=18; +1
end;
while sIs:> 0 and It 4o Igi=1Ig+ 1

The algorithm for the admission of a new potential candidate is as

follows.

e e I s e s e o

If ()<< Iy , move T to the set of candidates and use
Algorithm 4 for the calculation of the new values of g%

and Iy ; then stop the algorithm.

I c(1) = Ig stop the algorithm,.

From among candidates with claims greater than or equal to

C T £ind task T, with priority fW(Tr} at the minimum. If

no such task can be found, or 'W(Tr);;'W(T) then stop the
algorithm; otherwise replace Tr by T in the set of candidates
and update the values of g% and Igx using Algorithm 6., Then
stop the algorithm,

533

Algorithm 6

ios= C(T) + 13
while i< C(T) do

begin
¥ = g¥ .
sf := 8% + 13
i t=1 +1
end;
Is* HE

while sIs*:>-O do Iy i=Ix+ 15

Situation 4 : The completion of a competitor.

- T oo s S S e

In this situation we sghould:
1°, Update values of q, Iq, 8, I, 8%, I, using Algorithms
2 and 4.
2°, Try to move & potential candidate to the set of candidates
/it can be proved that there will be at most one such
potential candidate/ -~ wusing Algorithm 7.
30, Add the tasks whose precedence constraints are now fulfilled
to the set of potential candidates -~ using Algorithms
for serviecing Situation 3.
4°, Try to allocate resources released by the completed com~
petitor using Algorithms for servicing Situation 2,

1Y, Search for a potential candidate T with C(T)<< Is* and
with (T) at the maximum. If no such tagk can be found,
stop the algorithm.

2°, Move T to the set of candidates and use Algorithm 4 for

calculating new values of 8% and Is*' Then, stop the

algorithm,

[phuhagiagignagniinty - " i " o> - e s om0 4 . . . v

In this situation we must activate a special gtrategy of resource
allocation 4o grant the requests of tasks composing the blocked job.
This strategy consists in the division of gystem resources into two

534

parts: the one part ensures the completion of a blocked job, and the
remaining resources are used for servicing requests from other jobs.
The servicing of the blocked job and remaining jobs is independent,
and performed in accordance with Situations 1 to 4 but for a reduced
number of resources.

The first problem in Situation 5 which can be distinguish is the
determination of the number of resources necessary for the blocked job.
It can be shown that this number ig egqual to the meximum rank of tasks
which are not vet being completed, composing the permanently blocked
job., Let us note that the rank of a task which is not a competitor is
equal to its elaim, This number should be updated after the completion
of every task composing the blocked job, since it should be at the
minimum,

The next step of the permanent blocking prevention strategy consists
in waiting for the completion of all competitors. Then, as was mentioned
above, the resources are divided and servicing of the blocked job is
verformed independently.

It could seem that the completion of all competitors should not he
necessary. However, we want to preclude a situation in which the
remaining after division resources are allocated to tasks which cannot
complete because of the lack of resources, and thus block these resources
during permanently blocked job servieing.

Tet us note that the strategy presented here is less conservative
than Holt’s well known strategy BO] , 8ince it allows the parallel
servicing of the blocked and non-blocked jobs.

5, CONCLUSIONS

The two general problems of task scheduling in systems with non-
preemptible resources: first, the optimization of a given system per-
formance measure, and second the solution of the system performance
failures problems /determinacy of the set of iasks, deadlock and per-
menent blocking/, are commonly solved gseparately. The algorithms presen-
ted in this paper represent a joint approach to both of these problems,
which may lead to better results, being obtained. They deal with the
case of infinite stream of dependent tasgks and thus concern a wide class
of practical situations. The algorithms are presented in the form which
allows for direcet implementation in operating systems.

535

REFERENCES

1.

2.

3.

4.

5.

7.

8.

9.

10.

Bzer, J.L., A survey of some theoreiical aspects of multiprocessing,
Computing Surveys vol. 5, No 1, 1973.

Berngtein, A.J., Analysis of programs for parallel processing, IEEE
Prans. Comp. vol EC-15, 1966, No 5.

Cellary, W., On resource allocation policies in uniprocessor systems
with nonpreemptible regources, MTA SZTAKT Tanulmanyok 69, 1977.
Cellary, W., Resource allocation strategies in computer systems with
nonpreemptible resources, Foundations of Control Engineering, vol. 2,
®o 3, 1977.

Cellary, W., Task scheduling in systems with nonpreemptible resources,
in: H. Beilner and ¥, Gelenbe, Medelling and Performance Evaluation
of Computer Systems, /Proc., of the III International Symposium/,
North Holland Publishing Co., 1977.

Coffwman, E.G.,, Jr., M.J. Elphick, A, Shoshani, Syster deadlocks,
Computing Surveys vol. 2, No 3, 1971.

Coffwan, E.G., Jr., P.J. Denning, Operating Systems Theory, Prentice
Hall, Englewood Cliffs, N.J., 1973,

Habermann, A.N., A new approach to avoidance of system deadlocks,
Revue Francaise d’Automatique, Informatique et Recherche Opérationelle
9. sept B-3, 1975

Habermann, A.N., Prevention of system deadlocks, Comm, ACM vol 12,

No 7, 1969.

Holt, R.C., Comments on prevention of system deadlocks, Comm, ACHM,
vol., 14, No 1, 1971.

