
VI. COSTS OF REDUCTION SEQUENCES 

i. A Cost Measure for Noncopying Sequences 

If an expression has several reduction sequences which end in nor- 

mal form, we would like to compare their computational costs. An easy 

measure of the cost of a reduction sequence A~0 M I AI--~2 ''" M-~..__~ A n is 

the number of nonempty redex sets M i in the sequence. This measure is 

reasonable if all nonempty reduction steps A . ~  in all allow- 
I Mi+ 1 Ai+l 

able sequences have roughly the same cost when implemented. 

The cost of a reduction step depends critically on details of the 

representation of expressions and the implementation of reduction steps. 

In many interesting SRSs it is the case that, for all yer<A=B>x, 

B/y=A/x. In such cases, a clever programmer is likely to represent 

expressions by acyclic pointer structures. Reduction steps will not 

cause the subexpression A/x to be copied many times~ but each occurrence 

of A/x at an address y~r<A=B>x in B will be represented by a pointer to 

a single structure. 

Example 17 

In E of Example 6 (p. 18), with r of Example II (p. 23), it is always 

the case that y~r<A=B>x => B/y=A/x. For instance, 

r < F ( 0 , s ( 0 ) )  = C o n d ( A , 0 , F ( p ( 0 ) , E ( 0 , s ( 0 ) ) ) ) > ( 1 )  = { ( 1 ) , ( 3 , 1 , 1 ) , ( 3 , 2 , 1 ) }  

C o n d ( A , 0 , F ( p ( 0 ) , F ( 0 , s ( 0 ) ) ) ) / ( 3 , 1 , 1 )  = F ( 0 , s ( 0 ) ) / ( 1 )  = 0. 

The reduction of Figure 24 could be represented by the transformation 

of pointer structures in Figure 2S. See also Appendix A. 
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transforms to 

Figure 2S 

Implementations of reduction without copying of residuals, such as 

the one hinted at in Example 17, are constrained to reduce all members 

of a residual set simultaneously. The cost of reducing an entire resi- 

dual set is independent of the size of the set, since all members of 

the set are represented by a single structure. The reduction sequences 

which may be produced by pointer implementations without copying of 

residuals are called noncopying sequences. Assuming that the method 

for choosing a redex to reduce at each step is very simple, and that 

all reductions have approximately the same difficulty, the length of a 

noncopying sequence is a reasonable measure of its cost. To facilitate 

future inductions, we allow empty steps to appear in a noncopying 

sequence at no cost. 

Definition 37 

If r is a residual map, then the associated equivalent address map is 

a function e:~ ÷ (p*~P±(p*)) such that 

e<A=B>x =~x if x=() 

[r<A=B>x otherwise 

Extend e to the extended equivalent address map $ just as r was extend- 

ed to r (Def. 23, p. 25). 
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s u c h  that 
8EA,()]{y} = ~[A,(~)]{y} = {y} 

({x})]{y} =~{x'w] wce<A/x=C>z} if <A/x=C>¢R and y=x.z 
[{y} otherwise 

({x})]N = u ~EA,({x})]{y} 
y~N 

(M 1 ..... Mn+I)]N = ~EB,(Mn+I)](~[A,(MI,...,Nn)]N) 

~EA, 

SEA, 

~EA, 

where A MZ ... M: B 

~EA,(M)]N = ~[A,({Xl}, .... {Xm})~N 

where M = {Xl,...,x m} 

The reduction sequence A--AI--~2 " ' ' 0  M 1 

following hold for all nonempty Mj: 

(1) 

is a noncopxing sequence iff the 

There is an i_<j and a redex x in A i such that 

Mj = ~EA i,(Mi+ 1 ..... Mj_I )]{x}. 

(2) Mj cannot be expanded without violating Clause (i). 

The cost of the noncopying sequence AO-~I A 1 ~ ... (written cost(Ai)) 

is the number of nonempty redex sets M i in the sequence. 

We will restrict attention to noncopying sequences. 

Example 18 

Consider E of Example 6 (p. 18). Add the binary symbol + to E, and the 

equations 

{<+(A,B) = Cond(A, B, +(p(A),s(B)))> I A~B~E} to A. 

+(s(s(0)),0) may be reduced to s(s(0)) by the following noncopying 

sequence : 

+(s(s(O)),O) T(--jTcond(s(s(o)), o, +(p(s(s[o))),s(o))) 

{() ~ +(p(s (s(0))) ,s (0)) 

{()~ Cond(p(s(s(0))), s(0), +(p(p(s(s(0)))), s(s(0)))) 

{(z),(s,z,z)~ Cond(s(0), s(0), +(p(s(0)),s(s(0)))) 

( ()---T + (p (s (o)),s (s (o))) 

{()~ Cond(p(s(0)), s(s(0)), +(p(p(s(0))), s(s(s(0))))) 

{(i),(3,1,i)~ Cond(0, s(s(0)), +(p(0), s(s(s(0))))) 

{()~ s (s (o)) 
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The sequence above, with equivalent addresses collapsed, is shown in 

Figure 26. 
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Lemma 19 

Let A 0 have normal form D. 

ending in D. 

Proof Straightforward. 

Then there is a noncopying sequence (Ai) 

2. Commutativity of Residuals 

In order to perform interesting manipulatinns of noncopying se- 

quences we must know that different parts of the sequence may be changed 

independently. This requires an additional property of the SRS to 

guarantee that equivalent addresses do not depend on the order of 

reductions in a sequence. 

Definition 38 

Let [ = <~,F,+,A> be closed with respect to r. 

E commutes with respect to riff: 

for all <A=B>cA, x and y redexes in A, 

~[A,({x},{()})]{y} = r[A,({()},r<A=B>x)]{y} 

Commu~ativity is a strengthened form of clause (2) of the defini- 

tion of closure (Def. 25, p. 30), and is easily verified in many inter- 

esting cases (see Chapter VII). The definition of commutativity, 

applied inductively, shows that any pair of reduction steps may be 

reordered without affecting equivalent addresses. 

Lemma 20 

Let <E,F,÷,A> commute with respect to r, and let A-~B and A-~-C. Then 

for all sets P of redexes in A, 

~[A,(M,~[A,(M) ]N)]P = ~A,(N,~[A,(N)]M)]P. 
Intuitively, either path in Figure 27 yields the same equivalent 

addresses. 

B C 

Proof By induction on IMI, INI and Ipl, using Definition 38. S 

Noncopying sequences are closed under innermost reduction, and the 

cost of a sequence is lessened by at most one due to innermost 

reduction. 
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Lemma 21 

Let <Z,F,+,A> commute with respect to an innermost preserving residual 

map r, and let A ~ A 1 0 M 1 ~-~2 "'' be a noncopying sequence, and let 

(Ai)~(Bi) where N O £ imrA 0 and INolsl. Then 

Bo o, <N o3 B1 l ,  (N l )  "'" i s  a no  opying s e q u e n c e ,  

cost(B i) a cost(Ai)~l. 

Proof M 1 has at most one member, by the definition of noncopying 

sequence (Def. 37, p. 55). Since N O ~ imrA0, }[A0,(N0)]M 1 also has at 

most one member~ so the first step B0-}[A0,(N0)]M~ B 1 in (Bi) satis- 

fies Definition 26. Since r is innermost preserving (Def. 3S, p. 52), 

for all i, N i £ imrA i. 

So commutativity guarantees that every subsequent step 

Bj-I r[ ~ Aj_I,(Nj_I)]~ Bj also satisfies Definition 37. So 

B 0 }[A0,(N0)]MI B 1 }[AI,(NI)]M~ ... is a noncepying sequence. 

We need only show that (Bi) contains at most one more empty reduction 

than A0~ A 1 M/ .... 

Suppose Mi+ 1 ~ ¢ but }[Ai,(Ni)]Mi+ 1 = %. Then, since N i £ imrAi, 

Mi+ 1 £ N i. So, by clause (2) of Definition 37, Mi+ 1 = N i # ~. 

Now, Ni+ 1 = r[Ai,(Mi+l)]N i = ¢. Therefore, there is at most one i for 

which Mi+ 1 # % and }[Ai,(Ni)]Mi÷l = %, that is, cost(Bi) z cest(Ai)-l. 

D 

3. Strictly Innermost Sequences are Most Costly 

Strictly innermost sequences are infinite whenever possible, so it 

seems reasonable that they may be very costly even if finite. By the 

second clause of the definition of an extended equivalent address map 

(Def. 37~ p. 55), equivalent address sets in strictly innermost non- 

copying reduction sequences are all singletons. Therefore, the strict- 

ly innermost noncopying sequences are exactly the sequences 

-~i A ~... in which each M. is empty or contains exactly one A0 1 M 2 i 

innermost redex. 

Theorem 12 (Cost of Strictly Innermost Sequences) 

Let <E,F,+,A> be a SRS which commutes with respect to an innermost 

preserving residual map r. 
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Let A0-~I A 2 .... M2 ~An 

normal form. Let (Bi) be any noncopying sequence with B0=A 0. 

cost(B i) ~ cost(Ai). 

I s be a noncopying sequence, with A n in 

Then 

Proof By induction on cost(Ai). 

Basis: If cost(Ai) = 0, then A 0 is in normal form, and no nontrivial 

reduction sequence may start with A 0. 

Induction step: Assume that the theorem holds for less costly sequences. 

Let Mj be the first nonempty rede  set in A0-- I Ai-- 7 2 A n 

A0-~j A j, and Aj Mj+~ ...---~A nMn is a less costly sequence. 

Let N0=Mj, and define (Ni) and (Ci) by (Bi)~(Ci). Notice that 

IN01=IMjl = I. By Lemma 21 (p. 60), (C i) is a noncopying sequence, and 

cost(Ci) ~ cost(Bi)-l. By induction hypothesis, 
J~ . . . cost(Ci) ~ cost(Aj Mj+I -~n An ) = cost(Ai)-l. 

So, cost(Bi) ~ cost(Ai). D 

4. Some Strictly Outermost Sequence is Optimal 

Exactly characterizing optimal noncopying reduction sequences 

without additional constraints on SRSs may be very difficult. But, 

appealing only to commutativity and the outer property, Theorem 13 

below at least restricts attention to reduction sequences which always 

reduce some outermost redex. 

Definition 39 

A noncopying reduction sequence A0--~I A1 M ~ .... is a strictly outermost 

sequence iff, for all i, Mi+ 1 n omr___A i # ~. 

0 s = {(Ai) I (Ai) is a strictly outermost sequence} 

Note that to specify precisely a strictly outermost noncopying sequence~ 

we need only choose one outermost redex, x, at each step, and reduce 

the entire equivalent address set containing x. The "delay-rule" of 

Vuillemin [Vu74] (3.1, p. 23~ generates a strictly outermost non- 

copying sequence. In order to compare strictly outermost noncopying 

sequences to other noncopying sequences, we will need an inverse of the 

equivalent address map. 

Definition 40 

S-lEA, (M 1 ..... M n) IN = 

{x I x is a redex in A and ~[A,(M 1 ..... Mn)]{x} ~ N} 
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Now, we may commute outermost and nonoutermost reduction steps in 

a noncopying sequence. 

Lemma 22 

Let <Z,F,÷,A> be outer and commutative with respect to r. 

Let A--~-0 M 1 A1 M<~ ... be a noncopying reduction sequence, and let 

M i n omrAi_ 1 = ~ but Mi+ 1 n omrA i # ~. Then the sequence 

A . .  Ai--  Mii Mi+ 0 M 1 • 1 ~-l[Ai_ I, 

Ai ~[Ai_l,<$-l[Ai_l,(Mi)]Mi+l)]~ i Ai+l Ni+ ~ "'" 

is a noncopying sequence which costs no more than the original sequence 

~. ~ . . . and A0"MI . .  Ai_i-~i Ai M--~+ I Ai+l Mi+ 2 

^-I 
e [Ai_l,(Mi)]Mi+ 1 n omrAi_ 1 ~ %. 

Proof We must complete the diagram of Figure 28, where the right-hand 

path A i_ 1---~i A i ~ M i + l  A i +  1 i s  g i v e n .  

SMi -i 
A. 
i-I 

Y 
T 

4" 

A i 

+ 

Ai~l 

~ Mi+2 
Figure 2,,,,8_ 
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Since N i n omrAi_ 1 = ~, omrAi_ 1 = omrA i by Lemma 14. A short 

argument establishes that Mi+ 1 n M. = ~, and therefore 
^-i 1 
e [Ai_l,(Mi)]Mi+ 1 are equivalent redexes in A i and 

r[Ai_l,(Mi)](e-l[Ai_l,(Mi)]Mi+l ) = Mi+ I. So 

, M ~ A: Ai-I ~-l[Ai-I (Mi)] i+l i ~[Ai_l,(~-l[Ai_l,(Mi)]Ni+l)]~ i Ai+l by 

Lemma 12. 

The new sequence is noncopying by Lemma 20. 

Theorem 13 (Optimal Sequence Theorem) 

Let <Z,F,÷,A> be outer and commutative with respect to r. Assume A 0 

has normal form D. Then there is a strictly outermost noncopying 

sequence from A 0 to D which is optimal (costs no more than any other 

noncopying sequence from A 0 to D). 

Proof Let A0~A ~... 1 M 2 An_l-~n An be any optimal noncopying sequence 
& 

ending in normal form A n . We will use Lemma 22 to transform (Ai) 

into a strictly outermost noncopying sequence without increasing the 

cost. 

(*) First eliminate all empty reductions. 

N n = omrAn_l, else, by closure (Def. 25, p. 30) A n would contain a 

redex. 

Let N i be the last redex set (if any) such that M i n omrAi_ 1 = #. 

i<n, so Ni+ 1 n omrAi+ 1 = ~, and by Lemma 22 we may commute N i and Mi+ 1 

producing another noncopying sequence with no increase in cost. 

Repeat this process from (*) until a strictly outermost sequence is 

obtained. D 

5. Finding an Optimal Sequence Using a Dominance Ordering 

Consider E of Example 6 (p. 18). The expression 

Cond(p(s(0)),F(0,0),F(s(0),0)) has three outermost redexes, (I), (2) 

and (3), any of which might be chosen by a strictly outermost sequence. 

An intuitive understanding of the conditional function Cond suggests 

that (I) be reduced first, since the value of the argument at (I) 

determines which of the other two arguments is relevant, Notice that 

reduction of (i) creates a redex Cond(0,F(0,0),F(s(0),0)) at the outer- 

most address (), while reduction of (2) and (3) cannot create such a 

redex. The address (I) dominates its brothers (2) and (3) in the sense 

that only a reduction at (I) may create a redex at (). 

Definition 41 

A dominance ordering is a function d:F÷p*xp* such that, for all AeF, 
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(I) dA is a partial ordering of domainA, 

(2) x an___cc y => x(dA)y for x,y e d0mainA, 

(3)  x ( d A ) y ( d A ) z  A A - ~ - B  => x ( d B ) y .  
Z 

x ( d A ) y  i s  r e a d  "x  d o m i n a t e s  y i n  A" .  

A SRS <Z,F,+~A> i s  d - o u t e r  i f f  t h e  f o l l o w i n g  h o l d s :  

L e t  A and  B be  i n  F,  and  l e t  x ,  y and  z be  i n  domainA w i t h  x ( d A ) y ( d A ) z ,  

yCz.  Assume x i s  n o t  a r e d e x  i n  A and  y and  z a r e  r e d e x e s  i n  A, and 

A - ~ B .  Then x i s  n o t  a r e d e x  i n  B. 
z 

Definition 41 generalizes Definition 32 (p. 46). Note that the 

ordering defined 5y x(dA)y <=> x anc y is a dominance ordering. 

Another useful dominance ordering is pre0rder. 

Definition 42 

Preorder is the dominance ordering defined by 

x(dA)y iff x anc y 

or 3z~i, j z.(i) an c x A z'(j) anc y a i<j 

When d is preorder, strictly d-outermost reduction is called leftmost 

outermost reduction. 

The SRS E o f  Example  6 (p .  18)  i s  d - o u t e r  f o r  p r e o r d e r  d ,  as  i s  

t h a t  o f  Example  18 (p .  5 6 ) .  

A l l  t h e  r e s u l t s  o f  C h a p t e r s  V and  VI g e n e r a l i z e  t o  a r b i t r a r y  

d o m i n a n c e  o r d e r i n g s .  The f o l l o w i n g  d e f i n i t i o n  g e n e r a l i z e s  D e f i n i t i o n s  

2 9 - 3 1  ( p p .  44 ,  4 5 ) .  

Definition 43 

x is a d-outermost redex in A iff x is a redex in A and 

n3yy(dA)x A y~x A y is a redex in A. 

omr.dA ~ {x I x is a d-outermost redex in A}. 

Let A ~  A 1 4 "'" be a reduction sequence with x e OmrdA j. x in 
0 M 1 

omrdA j i s  e l i m i n a t e d  as  a d - o u t e r m o s t  r e d e x  i n  A k t h e  f i r s t  t i m e  t h a t  

(1)  xeM k o r  (2) x ~ omrdA k.  

The r e d u c t i o n  s e q u e n c e  (A i )  i s  an e v e n t u a l l y  d - o u t e r m o s t  r e d u c t i o n  

s e q u e n c e  i f f  

3 x is eliminated in A k. 
V j ~ 0 , x e o m r d A  j k>j  

e = { ( A i ) l  (A±) i s  an e v e n t u a l l y  d - o u t e r m o s t  r e d u c t i o n  s e q u e n c e } .  0 d 

No te  t h a t  omrdA _c omrA and 0 e _c 0 d.e 

Now we may g e n e r a l i z e  t h e  E v e n t u a l l y  O u t e r m o s t  S e q u e n c e  Theo rem.  
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Theorem 14 

Let <Z,F,+,A> be closed and d-outer. 
e 

Let A0-~I A 1 M2 "''¢ 0d and let A 0 have normal form D. 

Then 3zA£ = D. 

Proof Analogous to proof of Theorem I0 (p. 50). 

The following definition generalizes Definition 39 (p. 61). 

Definition 44 

A noncopying reduction sequence A0--~I A 1 ~ ... is a strictly d-outer- 

most sequence iff, for all i, Mi+ 1 n omrdA i # ~. 

0dS = {(Ai)i (Ai) is a strictly• d-outermost sequence}. 

s 0 s " Note that 0 d 

Finally, we generalize the Optimal Sequence Theorem. 

Theorem 15 

Let <Z,F,÷,A> be d-outer and commutative with respect to r. Assume A 0 

has normal form D. Then there is a strictly d-outermost noncopying 

sequence from A 0 to D which is optimal. 

Proof Analogous to proof of Theorem 13 (p. 63). 

Notice that if dA is a total ordering for all AcF (e.g., preerder 

is a total ordering), then a strictly d-outermost noncopying sequence 
S e is uniquely determined by the starting expression A0, and 0 d ~ 0 d. So, 

if a SRS ~ is d-outer for an easily computable total dominance ordering 

d, we may easily generate optimal noncopying reduction sequences for E. 

If E is d-outer but d is not total, a reasonable ad hoc strategy is to 
s e 

generate sequences in 0 d n 0d~ since this set is terminating and con- 

tains the optimal sequences. 


