
IV. TH]~ CONFLUENCE PROPERTY AND THB 
CHURCH-ROSSER PROP]~RTY 

i. Motivation 

The strategy of interpreting expressions by reducing them to nor- 

mal forms is of questionable value if some expression has more than one 

normal form. An even stronger condition than uniqueness of normal 

forms might be wanted because of the following informal argument. 

Think of reduction as a means of revealing information which is 

hidden in an expression. Recall (Lemma 2, P.12) that the reflexive, 

symmetric, transitive closure of a reduction relation + is a relation 

such that A-B precisely if A=B is provable. Now if A=B is provable, 

and the only way to reveal information about A and B is to reduce them, 

then A=B should be provable by reducing A and B; that is, there should 

be a C such that A and B both reduce to C. 

The property expressed informally above is the Church-Rosser pro- 

perty, stated for the lambda calculus by Church [Ch41] (Th. 7 XXVI, 

p.24), and Curry and Feys [CF58] (Property (X), Po i09). Following 

Rosen, we will use an equivalent property, the confluence property. 

Definition 24 [CF 58] (~;operty (B), p. II0)~ 

[Ro 73] (Def. 3.2, p. 163). 

A SRS <Z,F,+,A> has the co___nfluence property iff, 

for all A,B,C ~ F such that A÷*B and A÷*C, 

There is a D~F such that B**D and C+*D. 

Figure 12 sketches the confluence property. 

D 

The c o n f l u e n c e  p r o p e r t y  o f  D e f i n i t i o n  24 i s  e q u i v a l e n t  t o  t h e  

C h u r c h - R o s s e r  p r o p e r t y  as l o n g  as t h e  r e l a t i o n  i n v o l v e d  i s  t r a n s i t i v e .  

B e c a u s e  o f  t h i s  e q u i v a l e n c e ,  Rosen  i d e n t i f i e s  t h e  c o n f l u e n c e  p r o p e r t y  

as t h e  C h u r c h - R o s s e r  p r o p e r t y .  The f o l l o w i n g  t h r e e  t h e o r e m s  a r e  w e l l  

known. 

Theorem 3 

Consider a SRS <Z,F,÷,A> and let ~ be the reflexive, symmetric, 

transitive closure of ÷. The confluence property is equivalent to the 

following (Church-Rosser) property: 
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B~C iff there is a D~F with B÷*D and C÷*D. 

That %s, ~ : ÷* ÷*. 

Proof See Curry and Feys [CFSS], Theorem 3, p. Ii0. D 

Theorem 4 

Every SRS with the confluence property has unique normal forms. 

Proof Let A÷*B and A÷*C, where B and C are in normal form. By the 

confluence property, there is a D with B~mD and C÷*D. But, since B and 

C are in normal form, B=D and C=D, so B=C. D 

Theorem 5 

Let <Z,F,+,A> be a SRS with the confluence property. 

Let F be in normal form. 

For all EcF, the following are equivalent: 

(2) A t -  E:s 
(3) E ÷~ F 

(4) there is a finite reduction sequence 

E=E0~ E1 F "'" M-'~ En = F. 

Since F is in normal form, 

(~) E ÷* ÷* F iff E ÷* F. 

<=> (2) by Theorem i. 

<=> (3) by (*) and Theorem 3 and Lemma 2. 

<=> (4) by Definition 21, p. 

Proof 

( I )  

(2) 

(3) 

Theorems 4 and 5 provide the justification for generating reduction 

sequences in order to solve the computing problem for equational logic. 

Rosen gives a natural sufficient condition called "closure" for a 

SRS to have the confluence property. In order to make a useful general- 

ization and to abstract Lemma 12, which will be applied repeatedly in 

the next chapter, we repeat the proof in detail. 

2. Closure 

In applications of SRS theory, the axioms or reduction rules A of 

a SRS will often be presented by some schematic descriptions, and we 

will want to establish the confluence property and other properties by 

examining the characteristics of A as manifested in its description. 

The closure property is a useful sufficient condition for the conflu- 

ence property because it may be easily verified in many such presentations. 
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If <A--B>~A, and similar reductions of A and B produce A' and B' , 

then it is reasonable to hope that <A'=B'>~A. The use of a residual 

map allows a formal definition of "similar" reductions: A--~ A' and X 

B r<A=B>x--- B'. 

Figure 13 sketches the informal property above. 

A 

A' B 

B' Figure .13 

Example 13 

In [ of Example 6, (p. 18) with r of Example ii, (p. 23 ) the above 

property holds, see Figure 14 for instance. 

F(O ,o) 

F(p(s (0)) ,o) --<. 
Cond(p (s (0)),  O,Fip (p(s (0)),F(p (s (0)) ,0) )  

w~/~r<A--B> (I) 

Cond (0,0 ,F (p (0) ,F (0,0)) 

Figure 14 

See Figure 15 on the next page for a picture of the trees above, with 

(I) and its residuals marked by *, 

The intuitive similarity between the above pictures and the dia- 

gram of the confluence property gives hope that we have found a suffi- 

cient condition for the confluence property. Definition 25 generalizes 

Rosen's definition of closure [Ro73] (Def. 5.4, p. 170) to use the more 

general notion of residual map. 

Definition 25 

A SRS <Z,F,÷,A> is closed with respect to a residual map r iff the 

following holds. Let <A=B> ~ A, x~() and A-~-A'. Then there is a B' 

such that 

(I) <A'=B'> E A and B r<A=B> ~ B' 

(2) y±x => r<A'=B'>y = r<A=B>y 

Clause (I) formalizes the diagram above; and clause (2), which is 
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intuitively acceptable when residuals are thought o£ as rearrangements, 

is necessary for the inductive argument of Lemma ii. Clause (I) is 

clearly a special case of the confluence property. 

Closure is a natural and common property for SRSs. Nonclosed SRSs 

often represent undesirable axiom systems. 

~xample 14 

Extend E of Example 6 (p. 18) to L = <ZL,(ZL)#,÷,RL>, where 

Z L = Zu{First,Tail} = {0,s,p,Cond,F,First,Tail), p First = p Tail = I. 

First and Tail represent the standard list operators defined by 

First(a(x)) = a 

Tail (a (x)) = x 

To represent these two equations, let 

A L = Au{<First(a(A))=a>, <Tail(a(A))=A>I 

a~{0,s,p,First,Zail}, Ae(EL) #) 

Extend the residual map r of Example II (p. 23) in the natural way: 

r<First(a(A))=a>x = 

r<Zail(a(A))=A>x=i{z) if x=(l~l).z 
[ ~ otherwise 

L is not closed with respect to r, as Figure 16 shows. 

Tail 

s 
Tail ] 

r 1 
0 

0 

s 

0 

s 

0 

Figure 16 
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r < T a i l  (p (s (O) ) )=s (O) > (1) = ~, bu t  < r a i l ( O ) = s ( O ) > ~ A  L. 

In fact, there is no residual map for which i is closed, i represents 

an undesirable formal system, since the meaning of Tail(p(s(0)) is 

intuitively ambiguous. Notice that, since Tail(0) and s(0) are both 

in normal form, i does not have the confluence property. 

In a closed SRS, many important properties of the residual map r 

generalize to the extended residual map r. Lemma 9 generalizes clause 

(I) of Definition 22 of a residual map (p. 23). 

Lemma 9 

Let <Z,F,+,A> be closed with respect to residual map r, and let r be 

the extended residual map (Def. 23, p. 25). Also let each x~N be a 

redex in A, and 

A M2 

Then each yc~[A,(Ml,...,Nn)]N is a redex in B. 

Proof An easz induction on IMiL+...+IMnl, INf. o 

Lemma I0 generalizes Definition 25 (p. 30) of closure. 

Lemma I0 

Let <Z,F,+,A> be closed with respect to r. 

Let A----Bz and A-~A', where VycM ~(y anc z). 

Then there is a B' such that 

(I) A'~B' and B ~ z rEA,({z})~ S' 

(2) N±M => ~[A',({z))]N = ~[A,(fz})]N. 

Proof Induction on IN], IN1 using Definition 25 (p. 30). 0 

3. Proof of the Confluence property 

Lemmas ii and 12 give more and more general cases of the conflue~e 

property, each proved by a single induction or by a noninductive 

argument. The full confluence property (Theorem 6) follows from 

Lemma 12 by two final inductions. 

Lemma II 

Let <Z,F,+,A> be closed with respect to r, and let M and N be sets of 

independent redexes such that Vx~M,y~N ~(y anc x). Also let A-~B and 

A-~C. 

Then there is a D such that B ~[A,(M)]~ D and C-~D. 
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Figure 17 sketches the Lemma. 

B C 

D 

Figure 17 

Proof By induction on IMI. 
Basis step: If IM] = 0, then let D = C. 

Induction step: Assume the lemma holds for sets of size IMI 

Let zsM. Figure 18 outlines the induction step. 

1. 

A ~ (i) 

/ ~ Definition 8 

_/ Induction Hypothesis ~! ~ ~k 

\ "<~ ~ ~/ Lemma 

\ ' " , -  4 (4) D" 

Definition 8 ~  /~ '  

Figure 18 

(i) By Definition 19, there is a B' such that 

A M_--~z} B '----~ B {z} 
(2) By the induction hypothesis applied to the reductions A ~ B '  
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and A-~C, there is a D' such that C--D'M_{z} and 

B' r[A,(~-{z})]~ 9 ' .  

(3) By Lemma 6 (p .  2 5 ) ,  s i n c e  (M-{z ) )  u N c o n t a i n s  no a n c e s t o r  o f  z ,  

r [ A ~ ( M - - { z ) ) ] N  c o n t a i n s  no a n c e s t o r  o f  z .  So ,  b y  Lemma 10,  t h e r e  

i s  a D s u c h  t h a t  D ' ~ D  and  B {z} ~[B', ({z}) ] (}[i, (M-{z]) 3~ 9. 
And, by Definition 23 (p. 25), 

}[B',({z})](~[A,(M-{z))]N) = } [ A , ( M ) ] N .  So ,  B } [ A , ( M ) ] ~  D. 

(4) We have C~D'-----~D {z] , so, by Definition 19, C-~D. 

Lemma 12 (General Residual Lemma) 

If <Z,F,÷,A> is closed with respect to r, and A-~B, A-~C, then there 

is a D such that 

F i g u r e  19 s k e t c h e s  t h e  Lemma. 

A 

B C 

Figure 19 

Proof Partition M into three pieces: 

MnN, 

Mou t = {x I xcM ^ VycN ~ y anc x), 

Min = {x] x~M a 3yEN y anc# x}. 

Similarly partition N into 

NnM = MnN, 

Nou t = {Yl y~N ^ Vx~ M ~ x anc y} 

Nin = {Yl ycN^ 3x~ N x anc~ y} 

Figure 20 on the next page summarizes the proof. 
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By Definition 19, there are A', B' and C' such that: 

(i) A ~-~ A' ~ B ' ~ B  
Mout zn 

(2) A~-~ 'A '  N--~ut C ' - ~ i n  C 

(3) Mou t ± Nou t, so, by Lemma 5 (p. 21) applied to A' N--~ut B' and 

there is a D' such that B' ~ D' and C' M ~ D'. 
out out 

A' N-~ut C' , 

Vx~Min,YENou t ~ x ant y, and 

VyeNin,XeMou t ~ y anc x. 

(4) So, by Lemma Ii (p. 33) applied to B'-~-~. B and B' -~ D', there 
zn Nout 

is a B" such that B N--~u t B" and D' rEB',(Nout)]M/n B". 

(5) Applying Lemma II to C'-~i n C and C'~Mout D', there is a C" such 

that C C" and D' ~[C, (Mout)]Ni n 

(6) By clause (2) of Lemma I0 (p. ), 

r[B',(Nout)]Min = r[A,(Nout)]Min 

r[C',(Mout)]Nin = rEA,(Mou t)]Nin. 

By Lemma 7 (p. 27), 

rEA,(Nou t)]Min ± rEA,(Mou t)]Nin. 

Now, by Lemma S (p. 21) applied to 

B" and D' ~ C", 
D' rEA, (Nou t) ]Min ~[A, (~out) ]Nin 
there is a D such that 

B" CMou t) D C"  EA, (Nou t) 3Mi  D. 

By Definition 23(p. 25), 

r[A,(Mout)]Nin = r[A,(M)]Nin , and 

rFA,(Nout)]Min = ~[A,(N)]Min. 

By Clause (3) of Lemma 8 (p. 27), 

" ~ [ A , ( M ) ] ( N n M )  = ~ E A , ( N ) ] ( M n N )  = ~. 

Finally, by Lemma S, 

(7) B ~[A, (M) ]NoutU~EA , (M) ]NinU~[A , (M) ] (NnM TM) D, and 

(8) C r[A,(N)]MoutU~[A ,(N)]Minu~[A ,(M)](MnN~ D. 

Now, by Definition 23, 

B ~[A,(M)]~ D and C ~'LA,(N)]~ D 
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Corollary 2 

Let <Z,F,~,A> be closed with respect to r, and let A-~-B A-~C. ± ± 
Then there is a D with B-'-D and C -~D. 1 ± 

Proof Direct from Lemma 12. D 

Theorem 6 (Confluence Property) 

If <Z,F,÷,A> is closed with respect to r, then it has the confluence 

property. 

Proof An easy induction on m and n where A-~mB and A-i--nc (see 

Def. 24, p. 28), using Corollary 2 and the fact that --~* =-~*. 

Theorem 6 justifies the confluence property on the reduction 

relation + from the closure condition on the axioms or reduction rules 

A. In Chapter VII we will see that, with certain natural notations for 

defining reduction rules, closure will be easy to verify syntactically. 

In Chapters IV and V, all SRSs will be assumed to be closed with 

respect to some appropriate residual map r. 

*4. Continuous Semantics and the Confluence Property 

Given a continuous interpretation <D,v> of Z, a reasonable formal- 

ization of the notion that A is simpler or clearer than B is vA ~---vB. 

Consider a SRS <Z,F,÷,A> where <A=B>~A => vA ~ vBo If this SRS has the 

confluence property, then we may treat A as a set of definitions on v, 

and reduction sequences will reveal all possible information about 

expressions in Z~. 

Theorem 7 

Let <D,v> be a continuous interpretation of Z. 

Let A be a set of equations. 

Let <Z,F,+,A> be a SRS with the confluence property. 

If <A=B>cA => vA ~ QB, then, for all A~ 

defA = ~{vB I A I-- A=B} exists and 

defA = u{~c ]  A ~*  c}  

If A has normal form E, then 

defA = QE. 

Proof The confluence property and the assumption <A=B>~A => vA ~ vB 

guarantee that, for all A 

{~B I A I-- A=B} is a directed set. 

So U{vB] A ~-A=B} exists. By Theorem 3 and Lemma 2 A I- A=B iff 

B C A +* C A B +* C. By assumption QB ~ vC, so 
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U{vB] A I-- A=B) = ~{~C I A ÷* C). If A has normal form E then 


