III, SUBTREE REPLACEMENT SYSTEMS

1. A Formalism for Reductions

We are interested in sets A of equational axioms which may be treated as reduction rules because each expression on the rightwand side is simpler or clearer than that on the left. Thinking of A as a set of reduction rules, a reduction relation, \rightarrow, may be defined as follows:
$A \rightarrow B$ iff $\exists x \in \operatorname{domain} A, C \in \Sigma_{*}<A / X=C>\in A \quad A \quad B=A(x \neq C)$
$A \rightarrow B$ means that, for some x and $C, A=B$ follows from the axiom $A / x=C$ by one application of the substitution rule for equality.

Definition 16
A Subtree Replacement System (SRS) is a 4 -tuple $\langle\Sigma, F, \rightarrow, A\rangle$ where:
Σ is any set
$F \subseteq \Sigma_{*}$ is a set (forest) of Σ-trees
$A \subseteq \Sigma_{*} \times \Sigma_{*}$ is a set of ordered pairs of Σ-trees
(think of the equation $A=B$ as a special notation for the pair $\langle A, B\rangle$)
\rightarrow is a binary relation on Σ-trees
For all Σ-trees A and $B, A \rightarrow B$ iff
$\exists_{x \in \text { domain } A, C \in \Sigma_{*}}\langle A / x=C>\in A \wedge B=A(x * C)$
F is closed under \rightarrow, i.e.,
$(A \in F \wedge A \rightarrow B) \Rightarrow B \in F$
$(A \in F \wedge B \rightarrow A) \Rightarrow B \in F$
A is a partial function on Σ_{*}, i.e.,
$(\langle A=B\rangle \in A \wedge\langle A, C>\in A) \Rightarrow B=C$.

The definition above is the same as Rosen's definition of an unequivocal Subtree Replacement System [Ro73] (Defs.5.1, 5.2, pp. 169, 170). Intuitively, a SRS consists of a set of expressions F using symbols from Σ (F will often be $\Sigma_{\#}$), with equations A defining a reduction relation \rightarrow. Because of the last clause, only sets A of equations in which left-hand sides are unique may be associated with SRSs.

Example 6
Let $\Sigma=\{0, s, p$, Cond, $F\}$ as in Example 2 .
To represent the recursive definition: $F(x, y)=\operatorname{Cond}(x, 0, F(p(x)), F(x, y))$
with the axioms for s, p, Cond:

$$
\begin{aligned}
& p(s(x))=x \\
& \operatorname{Cond}(0, x, y)=x
\end{aligned}
$$

$$
\operatorname{Cond}(s(x), y, z)=z
$$

we let $A=\{\langle F(A, B)=\operatorname{Cond}(A, 0, F(p(A), F(A, B)))\rangle$,

$$
\begin{aligned}
& <p(s(A))=A\rangle, \\
& <\operatorname{Cond}(0, A, B)=A>, \\
& \left.<\operatorname{Cond}(s(A), B, C)=C>\mid A, B, C \in \Sigma_{\#}\right\},
\end{aligned}
$$

and let \rightarrow be defined as in Definition 16 ($\mathrm{p}, 18$).
Then $E=\left\langle\Sigma, \Sigma_{\#}, \rightarrow, A\right\rangle$ is a SRS representing the recursive definition and axioms above.

By Lemma $2(\mathrm{p}, 12)$, if $\langle\Sigma, F, \rightarrow, A\rangle$ is a $S R S$ and \equiv is the reflexive, symmetric transitive closure of \rightarrow, then $A=A=B$ iff $A \mid-A=B$ iff $A \equiv B$.

2. Sequences of Reductions - Informal Treatment

Given a $S R S\langle\Sigma, F, \rightarrow, A\rangle$, and an expression $A_{0} \in F$, it is reasonable to generate information about A_{0} by finding a sequence of expressions A_{i} such that $A_{0} \rightarrow A_{1} \rightarrow \ldots \rightarrow A_{n}$. Each such A_{i} will have the property that $A F A_{0}=A_{i}$, and A_{i} is a simpler or clearer expression than A_{0}. If A_{n} cannot be reduced further, then it is a normal form for A_{0}.

Example 7

In the SRS E of Example 6 (p.18),

$$
\begin{aligned}
& \text { Cond }(s(s(0)), s(0), p(p(s(0)))) \rightarrow p(p(s(0))) \rightarrow p(0) \\
& \quad \text { and } p(0) \text { is in normal form. }
\end{aligned}
$$

Figure 4 shows the reduction sequence above.

If an expression has several reduction sequence, we would like to know how they are related: whether they yield different normal forms, and which sequence is easiest to compute. To approach these questions we will need a precise notation for describing different reduction steps and reduction sequences.
3. A Formal Notation for Reduction Steps and Sequences

Since A represents a partial function, a reduction step $A_{i}+A_{i+1}$ is completely specified by naming the address of the subtree in A_{i} which is replaced.

Definition 17
x is a redex in A iff $\exists_{B}<A / x=B>\in A$. That is, x is a redex in A whenever A may be reduced by replacing the subtree at x.

Example 8

In the SRS E of Example 6 (p .18), the expression
$\mathrm{s}(\mathrm{Cond}(\mathrm{s}(0), \mathrm{p}(\mathrm{s}(0)), \mathrm{F}(0,0))$), shown in Figure 5,

Figure 5
has redexes (1), (1,2), (1,3).
Definition 18
$A \rightarrow B$ iff x is a redex in A and $B=A(x-C)$ where $\langle A / x=C\rangle \in A$.
$A \rightarrow B$ means that A may be reduced to B by replacing the subtree at x in A.

Example 9
In E of Example 6 (p .18),
$s(\operatorname{Cond}(s(0), p(s(0)), F(0,0))) \overrightarrow{(1,2)} s(\operatorname{Cond}(s(0), 0, F(0,0)))$.
Figure 6 shows the reduction above.

Notice that: $\vec{x} \subseteq \rightarrow ; \overrightarrow{(}=A ; \vec{x}$ is a partial function.
It is convenient and reasonable in some contexts to treat a set of independent reductions as a single step.

Definition 19
Let $M \in P^{\perp}$ (domainA) be an independent set of redexes in A, then

$$
A \vec{M} B \text { iff } B=A\left(x+C_{x} \mid x \in M\right) \text { where } \forall x \in M<A / x=C_{x}>\in A
$$

$A \vec{M} B$ means that A may be reduced to B by replacing each subtree at $x \in M$ in A. Since M is an independent set, the order of replacements is irrelevant.

Example 10
In E of Example 6 (p.18),

$$
\begin{aligned}
& s(\text { Cond }(s(0), p(s(0)), F(0,0))) \overrightarrow{\{(1,2),(1,3)\}} \\
& \\
& s(\operatorname{Cond}(s(0), 0, \operatorname{Cond}(0,0, F(p(0), F(0,0))))) .
\end{aligned}
$$

Figure 7 shows the reduction above.

Notice that $A \vec{\phi} A ; \vec{M} \subseteq \rightarrow|M| ; \overrightarrow{\{x\}}=\vec{X} ; \vec{M}$ is a partial function. If M and N are mutually independent, then \vec{M}, \vec{N} commute.

Lemma 5

If $M \perp N$ and $A \vec{M} B, A \vec{N} C$, then there is a D such that $B \vec{N} D, C \vec{M} D$, $A \overrightarrow{\mathrm{MUN}} \mathrm{D}$. Figure 8 summarizes the Lemma.

Figure 8

Proof Simple induction on $|M|+|N|$, using Definition 19.

Sometimes we will not need to specify a reduction step $A \vec{N} B$ completely, but must know that it is the result of independent replacements.

Definition 20
$A \xrightarrow[\perp]{ } B$ iff there is an $M \epsilon P^{\perp}$ (domainA) such that $A \vec{M} B$.

Since the order in which reductions are performed on an independent set of redexes is irrelevant, we will write reduction sequences in a way that ignores this order.

Definition 21
The sequence $\left(A_{0}, M_{1}, A_{1}, M_{2}, A_{2}, \ldots\right)$ is a reduction sequence iff for all A_{i} and M_{i} in the sequence, $A_{i} \overrightarrow{M_{i}} A_{i+1}$. If A_{n} is in normal form, then the reduction sequence $\left(A_{0}, M_{1}, A_{1}, \ldots, M_{n}, A_{n}\right)$ is a reduction of A_{0} to normal form A_{n}.

Notice that a reduction sequence may be infinite. Reduction sequences may be written $A_{0} \overrightarrow{M_{1}} A_{1} \overrightarrow{M_{2}} \ldots$ or simply $\left(A_{i}\right)$ when convenient. The value of reduction sequences is that they closely mimic a large class of computations which seek normal forms for expressions, and also correspond directly to equational proofs.

4. Residuals

Interesting properties of reduction sequences may be affected by the way in which redexes are created, preserved and destroyed by reduction steps. In many SRSs which arise naturally, the replacement of A by B where $\langle A=B\rangle \in A$ may be viewed as a rearrangement of A. For instance, the replacement of $a^{*}(b+c)$ by $(a * b)+(a * c)$ according to the distributive axiom is really a rearrangement of the parts of the expression $a^{*}(b+c)$. When an expression is rearranged, some subexpressions may be preserved or repeated, as the b and c above are preserved and the a is repeated. When these subexpressions are redexes, their preservation or repetition may be crucial to the properties of a reduction sequence. A residual map r is intended to illuminate the rearrangement process by mapping addresses x in an expression A to sets of addresses $r<A=B>x$ in B which are copies of x under the rearrangement. The following definition is a generalization of Rosen's definition of a residual map [Ro73] (Def. 5.3, p.170).

Definition 22
A residual map is a function $r: A \rightarrow\left(P^{*} \rightarrow P^{\perp}\left(P^{*}\right)\right)$ such that
(1) (x is a redex in $A \wedge y \in r<A=B>x) \Rightarrow y$ is a redex in B
(2) $x i y \Rightarrow r<A=B>x+r<A=B>y$
(3) $r<A=B>0=\phi$

Clause (1) says that residuals of redexes are redexes, clause (2) that residuals of independent redexes are independent, and clause (3) says that the redex which is reduced disappears.

Example II

In E of Example 6 (p. 18), we may define a residual map r as follows:

$$
\begin{aligned}
& r<F(A, B)=\operatorname{Cond}(A, 0, F(p(A), F(A, B)))>x= \\
& \qquad\left\{\begin{array}{l}
\{(1) \cdot z,(3,1,1) \cdot z,(3,2,1) \cdot z\} \text { if } x=(1) \cdot z \\
\{(3,2,2) \cdot z\} \text { if } x=(2) \cdot z \\
\phi \text { otherwise }
\end{array}\right. \\
& \quad r<p(s(A))=A>x=\left\{\begin{array}{l}
\{z\} \text { if } x=(1,1) \cdot z \\
\phi \text { otherwise }
\end{array}\right. \\
& \quad r<C o n d(0, A, B)=A>x=\left\{\begin{array}{l}
\{z\} \text { if } x=(2) \cdot z \\
\phi \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$r<\operatorname{Cond}(s(A), B, C)=C>x=\left\{\begin{array}{l}\{z\} \text { if } x=(3) \cdot z \\ \phi \text { otherwise }\end{array}\right.$
Looking at Figure 9,

Figure 9

we see that in all cases, the residuals of an address x in a subtree A, B, or C on the left-hand side are the corresponding addresses in the copies of subtrees A, B, C on the right. Other addresses have no residuals. For instance, in Figure $10(1,1)$ and its residuals have been marked with a *.

If A is the left-hand expression, and B the right, then $\mathrm{r}\langle\mathrm{A}=\mathrm{B}\rangle(1,1)=\{(1,1),(3,1,1,1),(3,2,1,1)\}$.

The residual map r shows how redexes are rearranged by a single reduction step. The extended residual map \hat{r} shows how redexes are rearranged by a sequence of reductions.

If r is a residual map then the extended residual map \hat{r} is a function $\hat{I}: F \times\left(P^{\perp}\left(P^{*}\right)\right)^{*} \rightarrow\left(P^{\perp}\left(P^{*}\right) \rightarrow P^{+}\left(P^{*}\right)\right)$ such that
$\hat{r}[A,()]\{y\}=\hat{r}[A,(\phi)]\{y\}=\{y\}$
$\hat{\mathbf{r}}[A,(\{x\})]\{y\}=\left\{\begin{array}{l}\{x \cdot w \mid w \in r<A / x=C>z\} \\ \{y\} \text { otherwise }\end{array}\right.$ if $<A / x=C>\in A$ and $y=x \cdot z$
$\hat{r}[A,(\{x f)] N=\underset{y \in N}{U}[\hat{r}[A,(\{x\})]\{y\}$
$\hat{r}\left[A,\left(M_{1}, \ldots, M_{n+1}\right)\right] N=r\left[B,\left(M_{n+1}\right)\right]\left(r\left[A,\left(M_{1}, \ldots, M_{n}\right)\right] N\right)$
where $A \overrightarrow{M_{1}} \cdots \vec{M}_{n} B$
$\hat{r}[A,(M)] N=\hat{r}\left[A,\left(\left\{x_{1}\right\}, \ldots,\left\{x_{m}\right\}\right)\right] N$
where $M=\left\{x_{1}, \ldots, x_{m}\right\}$
\hat{r} is well-defined by a straightforward argument which hinges on the fact that the M, M_{i} and N are independent sets, and that $A,{\underset{M}{i}}$ are partial functions. Intuitively, $\hat{r}\left[A,\left(M_{1}, \ldots, M_{n}\right)\right] N$ gives the residuals of all tree addresses $x \in N$ as they are rearranged by the reductions $A \overrightarrow{M_{1}} \ldots \overrightarrow{M n}_{n} B$. The extended residual map \hat{r} allows us to keep track of all the rearranged copies of a redex through an arbitrarily long reduction sequence.

Example 12
Consider E of Example 6 (p.18), r defined in Example 11 (p.23). In Figure 11 on the next page, $(1,1,1)$ and its extended residuals have been marked with a *.

Notice that when the addresses N in A are rearranged by reductions at the redexes M, all residuals in $\hat{r}[A,(M)] N$ are descendants of addresses in M and N.

Lemma 6
Let $\hat{\mathrm{r}}$ be an extended residual map, then

$$
\forall_{x \in \hat{r}[A,(M)] N} \exists_{y \in M \cup N}\left(y \text { anc } x \wedge \exists_{z \in N} y \text { anc } z\right)
$$

Proof Consider $z \in N$. If z has no ancestor in M, then $\hat{r}[A,(M)]\{z\}=\{z\}$. If z has an ancestor $w \in M$, then all of $\hat{r}[A,(M)]\{z\}$ have w as an ancestor also.

Lemma 6 and the following two Lemmas on residuals will be useful in Chapters IV and V.

Figure 11

Lemma 7

Let $\hat{\mathrm{H}}$ be an extended residual map, and $\mathrm{M}_{1} \mathrm{UN}_{1}+\mathrm{N}_{2}, \mathrm{M}_{2} \mathrm{UN}_{2}+\mathrm{N}_{1}$. Then $\hat{r}\left[A,\left(M_{1}\right)\right] N_{1} \perp \hat{r}\left[A,\left(M_{2}\right)\right] N_{2}$.

Proof Direct from Lemma 6.

Lemma 8
Let r be an extended residual map.
Then (1) $\hat{r}\left[A,\left(M_{1}, \ldots, M_{n}\right)\right] N_{1} \cup \hat{r}\left[A,\left(M_{1}, \ldots, M_{n}\right)\right] N_{2}$

$$
=\hat{r}\left[A,\left(M_{1}, \ldots, M_{n}\right)\right]\left(N_{1} \cup N_{2}\right)
$$

(2) $N_{1} \perp N_{2} \Rightarrow \hat{r}\left[A,\left(M_{1}, \ldots, M_{n}\right)\right] N_{1} \perp \hat{r}\left[A,\left(M_{1}, \ldots, M_{n}\right)\right] N_{2}$
(3) $N \Phi M \Rightarrow \hat{r}[A, M] N=\phi$.
$\underline{\text { Proof }}$ An easy induction on $\left|M_{1}\right|+\ldots+\left|M_{n}\right|,\left|N_{1}\right|+\left|N_{2}\right|$. Clauses (2) and (3) generalize clauses (2) and (3) of Definition 22 (p. 23).

