
III. SUBTREE REPLACEMENT SYSTE~IS 

I. A Formalism for Reductions 

We are interested in sets A of equational axioms which may be 

treated as reduction rules because each expression on the right-hand 

side is simpler or clearer than that on the left. Thinking of A as a 

set of reduction rules, a reduction relation, ÷, may be defined as 

follows: 

A+B iff 3xcdomainA,C~Z <A/x=C>~A ^ B=A(x÷C) 

A÷B means that, for some x and C, A=B follows from the axiom A/x=C 

by one application of the substitution rule for equality. 

Definition 16 

A Subtree Replacement , System (SRS) is a 4-tuple <S,F,+,A> where: 

Z is any set 

F S E, is a set (forest) of E-trees 

A ~ Z,xZ, is a set of ordered pairs of E-trees 

(think of the equation A=B as a special notation for the 

pair <A,B>) 

÷ is a binary relation on E-trees 

For all E-trees A and B, A÷B iff 

3xEdomai~,Ces,<A/x=C>eA ^ B=A(x÷C) 

F is closed under +, i.e., 

(AcF ^ A÷B) => BeF 

(AeF ^ B+A) => BeF 

A is a partial function on ~,, i.e., 

(<A=B>cA ^ <A,C>cA) => B=C. 

The definition above is the same as Rosen's definition of an unequivo- 

cal Subtree Replacement System [R073] (Defs.5.1, 5.2, pp. 169, 170). 

intuitively, a SRS consists of a set of expressions F using symbols 

from E (F will often be Z#), with equations A defining a reduction 

relation ÷. Because of the last clause, only sets A of equations in 

which left-hand sides are unique may be associated with SRSs. 

Example 6 

Let Z = {0,s,p,Cond,F} as in Example 2. 

To represent the recursive definition: 

F(x,y) = Cond(x,0,F(p(x)),F(x,y)) 

with the axioms for s, p, Cond: 

p(s(x)) = x 

Cond(0,x,y) = x 
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Cond(s(x),y,z) = z, 

we let A = {<F(A,B) = Cond(A,0,F(p(A),F(A,B)))>, 

<p(s(A)) = A>, 

<Cond(0,A,B) = A>, 

<Cond(s(A),B,C) = C>] A,B,C E Z#}, 

and let ÷ be defined as in Definition 16 (p. i~. 

Then E = <Z,Z#,÷,A> is a SRS representing the recursive definition 

and axioms above. 

By Lemma 2 (p.12), if <Z,F,÷,A> is a SRS and 5 is the reflexive, symme- 

tric transitive closure of +, then A ~ A=B iff A I- A=B iff A~B. 

2. Sequences of Reductions- Informal Treatmen.t ' 

Given a SRS <Z,F,÷,A>, and an expression A0~F, it is reasonable to 

generate information about A 0 by finding a sequence of expressions A i 

such that A0÷AI÷...÷An . Each such A i will have the property that 

A ~ A0=Ai, and A i is a simpler or clearer expression than A 0. If A n 

cannot be reduced further, then it is a normal form for A 0. 

Example 7 

In the SRS E of Example 6 (p.18), 

Cond(s(s(0)), s(0), p(p(s(0)))) ÷ p(p(s(0))) + p(0) 

and p(0) is in normal form. 

Figure 4 shows the reduction sequence above. 
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Figure 4 

If an expression has several reduction sequence, we would like to 

know how they are related: whether they yield different normal forms, 

and which sequence is easiest to compute. To approach these questions 

we will need a precise notation for describing different reduction 

steps and reduction sequences. 
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3. A F o r m a l  N o t a t i o n  f o r  R e d u c t i o n  S t e p s  and S e q u e n c e s  

S i n c e  A r e p r e s e n t s  a p a r t i a l  f u n c t i o n ,  a r e d u c t i o n  s t e p  A i + Ai+ 1 

i s  c o m p l e t e l y  s p e c i f i e d  by  naming  t h e  a d d r e s s  o f  t h e  s u b t r e e  i n  A. 
1 

w h i c h  i s  r e p l a c e d .  

Definition 17 

x is a redex in A iff 3B<A/x=B>eA. That is, x is a redex in A 

whenever A may be reduced by replacing the subtree at x. 

Example  8 

I n  t h e  SRS E o f  Example  6 (p .  18) ,  t h e  e x p r e s s i o n  

s ( C o n d ( s ( 0 ) ,  p ( s ( 0 ) ) ,  F ( 0 , 0 ) ) ) ,  shown i n  F i g u r e  5, 

S 

Cond 

s p F 

I1 I1 A \2 
0 ~I 0 0 

0 Figure 5 

has redexes (I), (1,2), (1,3). 

Definition 18 

A x- ~ B iff x is a redex in A and B = A(x~C) where <A/x=C>~A. 
A--~ B means that A may be reduced to B by replacing the subtree at 

x 
x in A. 

Example 9 

In E of Example 6 (p. i~, 

s(Cond(s(0), p(s(0)), F(0,0))) ~(1,2) s(Cond(s(0), 0, F(0,0))). 
Figure 6 shows the reduction above. 
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Notice thmt;--~x _c +'-~=A;, -~ is a partial function 

It is convenient and reasonable in some contexts to treat a set of 

independent reductions as a single step. 

Definition 19 

Let MePl(domainA) be an independent set of redexes in A, then 

A-~B iff B = A(X÷CxlXEM ) where VxE M <A/X=Cx>EA 

A-~ B means that A may be reduced to B by replacing each subtree at 

xEM in A. Since M is an independent set, the order of replacements is 

irrelevant. 

Example I0 

In E of Example 6 (p. 18), 

s(CondCs(O), pCs(O)), FCO,O))) '{(1,2), (1,3)~ 

s (Cond(s (0), O,CondCO,O,FCp (0) ,F(O,O))))). 
Figure 7 shows the reduction above. 
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Notice that A-~ A;-~ ¢_-~ ]MI., ~Vx} ---~" -~ is a partial function. 

M and N are m u t u a l l y  i n d e p e n d e n t ,  t h e n - ~  , - ~  commute. 

I f  

Lemma 5 

If M±N and A-~ B, A-~ C, then there is a D such that B-~ D, C-~ D, 

A-~ D. Figure 8 summarizes the Lemma. 

A 

Figure 8 
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Prqof Simple induction on ]MI+[N[, using Definition 19. 

Sometimes we will not need to specify a reduction step A-~-B complete- 

ly, but must know that it is the result of independent replacements. 

Definition 20 

A-~B iff there is an M~P±(domainA) such that A-~B. 

Since the order in which reductions are performed on an independent set 

of redexes is irrelevant, we will write reduction sequences in a way 

that ignores this order. 

Definition 21 

The sequence (A0,NI,AI,N2,A2,...) is a reduction sequence iff for 

all A i and M i in the sequence, Ai--~iAi+ I. If A is in normal form, 

then the reduction sequence (A0,NI,AI, .... Mn,An) is a reduction of A 0 

to normal form A n. 

Notice that a reduction sequence may be infinite. Reduction sequences 

may be written A0--~I AI-~2 ... or simply (Ai) when convenient. The 

value of reduction sequences is that they closely mimic a large class 

of computations which seek normal forms for expressions, and also 

correspond directly to equational proofs. 

4. Residuals 

Interesting properties of reduction sequences may be affected by 

the way in which redexes are created, preserved and destroyed by reduc- 

tion steps. In many SRSs which arise naturally, the replacement of A 

by B where <A=B>eA may be viewed as a rearrangement of A. For instance, 

the replacement of a*(b+c) by (a*b)+(a*c) according to the distributive 

axiom is really a rearrangement of the parts of the expression a*(b+c). 

When an expression is rearranged, some subexpressions may be preserved 

or repeated, as the b and c above are preserved and the a is repeated. 

When these subexpressions are redexes, their preservation or repetition 

ma F be crucial to the properties of a reduction sequence. A residual 

map r is intended to illuminate the rearrangement process by mapping 

addresses x in an expression A to sets of addresses r<A=B>x in B which 

are copies of x under the rearrangement. The following definition is 

a generalization of Rosen's definition of a residual map [Ro73J (Def. 

5.3, p.170). 
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Definition 22 

A residual ma~. is a function r:A÷(p*~P±(~*)) such that 

(I) (x is a redex in A ^ ycr<A=B>x) => y is a redex in B 

(2) x±y => r<A=B>x ± r<A=B>y 

(3) r<A=B> () = 

Clause (i) says that residuals of redexes are redexes, clause (2) that 

residuals of independent redexes are independent, and clause (3) says 

that the redex which is reduced disappears. 

Example II 

In ~ of Example 6 (p. 18), we may define a residual map r as 

follows : 

r<F (A,B) =Cond(A,0,F (p (A) ,F (A,B)))>x = 

I {(1).z, (3,1,1).z, (3,2,1)-z} if x=(1).z 

{(3,2,2).z} if x=(2)-z 

otherwise 

{z} if x=(l,l)-z 
r<p(s(A))=A>x = ~ otherwise 

I {z} if x = ( 2 ) ' z  
r<Cond(0,A,B) =A>x [ ~ otherwise 

I {z} i~ x=(3) . z  
r<Cond(s(A) ,B,C)=C>X = ~ ~ o t h e r w i s e  

Looking  a t  F i g u r e  9, 
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we see that in all cases, the residuals of an address x in a subtree A, 

B, or C on the left-hand side are the corresponding addresses in the 

copies of subtrees A, B, C on the right. Other addresses have no resi- 

duals. For instance, in Figure i0 (i,i) and its residuals 

have been marked with a *. 
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If A is the left-hand expression, and B the right, then 

r<A=B> (1,1) = { ( 1 ,1 ) ,  ( 3 ,1 ,1 ,1 ] ,  (3 ,Z ,1 ,1 ) } .  

The residual map r shows how redexes are rearranged by a single 

reduction step. The extended residual map r shows how redexes are re- 

arranged by a sequence of reductions. 
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Definition 23 
^ 

If r is a residual map then the extended residual map r is a func- 

tion ~:F×(Pi(p*))**(P±(p*)+Pi(p*)) such that 
~ E A , ( ) ] { y >  = ~ [ A , ( ¢ ) ] { y }  = {y} 

{x'w] wcr<A/x=C>z} if <A/x=C>¢A and y=x.z 

~[A,({x})]{y} =[{y} otherwise 

~[A,({x})]N = U [}[A,({x})]{y} 
yeN 

A 

r[A,(M 1 ..... Mn+I)]N = r[B,(Mn+I)](r[A,(MI,...,Mn)]N ) 

where A .... ~ B 
M1 n 

r[A,(M)]N = r[A,({x I} ..... {Xm})]N 

where M = {x I ..... x m} 

is well-defined by a straightforward argument which hinges on the 

fact that the M, M i and  N a r e  i n d e p e n d e n t  s e t s ,  and  t h a t  A , - - ~ .  a r e  
1 ^ 

partial functions. Intuitively, r[A,(MI,...,Mn)]N gives the residuals 

of all tree addresses x~N as they are rearranged by the reductions 

A M1 M B. The extended residual map r allows us to keep track 
n 

of all the r e a r r a n g e d  c o p i e s  o f  a r e d e x  t h r o u g h  an a r b i t r a r i l y  l o n g  

reduction sequence. 

Example 12 

Consider E of Example 6 (p.18), r defined in Example ii (p.23). In 

Figure Ii on the next page, (i,I,I) and its extended residuals have been 

marked with a * 

Notice that when the addresses N in A are rearranged by reductions 
^ 

at the redexes M, all residuals in r[A,(M)]N are descendants of address- 

es in M and N. 

Lemma 6 

Let ~ be an extended residual map, then 

Vx~r[A, (M) ]N 3ycMuN(Y a nc x ^ 3z¢ N y anc z) 

Proof Consider zeN. If z has no ancestor in M, then 

^ M r[A,(M)]{z} = {z}. If z has an ancestor weM, then all of rEA,( )]{z} 

have w as an ancestor also. 

Lemma 6 and the following two Lemmas on residuals will be useful 

in Chapters IV and V. 
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Lemma 7 

Let ~ be an extended residual map, and MlUN t ± N2, M2uN 2 ± N 1. 

Then ~[A,(MI)]N 1 ± ~[A,(M2)]N 2. 

Proof Direct from Lemma 6. D 

Lemma 8 

Let r be an extended residual map. 

Then (I) O[A,(MI,...,Mn) IN 1 u ~[A,(M 1 ..... Mn)]N 2 

= ~[A,(M 1 ..... Mn)](N 1 u N2) 

(2) NI±N 2 ~> ~[A, CH 1 ..... Mn) JN 1 ± ~[A,(M 1 ..... Mn)]N 2 

(3) H~M => ~[A,M~N = ¢. 

Proof An easy i n d u c t i o n  on IMII+...+IHnl, INII+IN21. 

Clauses (2) and (3) generalize clauses (2) and (3) of Definition 22 

(p. z3). 


