
II. SYNTAX, SE}~NTICS AND PROOF THEORY FOR 
EQUATIONAL LOGIC 

I. A Formal Syntax for ~xpressions 

Given an alphabet ~, the traditional syntax of Z-terms is developed 

as follows: 

Definition 1 

Let p:~ + N be a rank function assigning to each character a c Z 

a nonnegative integer pa called the rank of a. 

(I) If pa = 0, then a is a z-term. 

(2) If pb = n > 0, and if A 1 .... ,A n are E-terms, then 

b(A 1 ..... An) is a Z-term. 

(3) Nothing is a Z-term unless required to be by (I) and (2). 

The notion of expressions as Z-terms is very convenient for traditional 

logic, but not for studies of reduction. For the study of reduction, 

we need a way to distinguish different parts or subexpressions even if 

they look the same. For example, if we apply the equation schema 

x*(y+z) = (x*y)+(x*z) t o  reduce t he  expression A = 1"(2+1) to 

B = (1"2)+(1'1), it is sometimes important to capture formally the 

intuitive notion that the leftmost two occurrences of I in B corres- 

pond to the leftmost occurrence in A, while the rightmost occurrence 

of 1 in B corresponds to the rightmost occurrence in A. To formalize 

such distinctions we will define expressions as labeled trees, follow- 

ing Rosen [Ro73] and Brainerd [Br69]. 

Definition 2 

p is the set of positive integers {1,2,3,...} 

p* is the set of finite sequences of positive integers, such as 

(1,7,32,2,5). 

An element of p* may be thought of as a tree address, where the empty 

string, (), is the address of the root, and for each xcp* and i~, 

x-(i) is the address of the ith son of x (for x,y~p*, x.y denotes x 

concatenated with y). 

Definition 3 [Ro73] (Def.4.2, p.167), [Br69] (Def.2.2, p.218) 

A tree domain is a finite subset D~p* such that ()ED and, 

For all xep*, iep 

x.(i)cD => xeD, 

x-(i+l)~D => x-(i)ED. 



A tree domain is, intuitively, the set of addresses in some tree. The 

definition above merely insures that there is a root address, (), and 

that every nonroot address x.(i) has a father x, and that if x has an 

(i+l)s_~t son x-(i+l), then x also has an it h son, x-(i). For instance, 

D = {(), (I), (2), (2,13, (2,23, (2,3)} is a tree domain. 

Tree domains will be drawn as graphs with the root, (), at the top 

and descending arcs representing the son relations. D above is shown 

in Figure I. 

Figure 1 

Any tree address in D may be read by following a path from the root to 

a node, putting the integers on traversed arcs into a sequence. 

Definition 4 [Ro733 (Def.4.3, p.1673, [Br693 (Def.2.4, p.218) 

Let Z be any set. 

A Z-tree is a function A:D + Z 

where Dsp e is a tree domain. 

Z~ = {A I A is a Z-tree}. 

Thinking of Z as a set of labels, a tree is a function from tree 

addresses to labels. Z-trees will be drawn by attaching characters in 

Z to the addresses o£ an appropriate tree domain. 

Example 1 

Let Z = Nu{a,b,c, .... z}. 

L e t  D = {( ) ,  (1),  (2),  (1 ,1 ) ,  (2 ,1 ) ,  (2,23, (2,3)}.  

A = (<(3,  f>,  < (1) ,  0>, <(23, g>, <(2,13,  x>, < (2 ,2 ) ,  1>, 
<(2,2), 3>} is a Z-tree with domain D. 

A is shown in Figure 2. 
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For the purposes of this work, expressions are Z-trees. Every Z- 

term may be represented straightforwardly by a Z-tYee. For instance, 

the tree in Example 1 represents the term f(O,g(x,l,3)). The notion of 

occurrences of subexpressions is captured by the use of tree addresses, 

which may be distinguished even if they are at the roots of subtrees 

which look the same. Notational conventions for describing trees will 

be: 

Definition 5 [Ro73] (Defs. 4.1, 4.4, 4.S, 4.10, pp.167,168), 

[Br693 (Defs. 2.7, 2.9, p.219) 

A-L vary over Z, or Z#. 

a-h vary over Z. 

i-n vary over N (the nonnegative integers {0,1,2,...}). 

p-z vary over p~ (tree addresses). 

Functional application of f to x is written fx. 

x'y means x concatenated with y. 

anc is the ancestor (initial substring) relation on p*, 

x anc y iff 3we~, x.w=y. 

anc~ is the proper ancestor relation, 

x anq~ y iff x anc y and x~y. 

± is the independence relation on ~*, 

x±y iff ~(x an q y) and ~(y an c x). 

±S iff Vx,yeS x±y v x=y. 

Read "IS" as "S is an independent set." 

S±T iff VxcS,y~T x±y. 

Read "SIT" as "S and T are mutually independent." 

domain is the domain operation on functions, 

domainA = {x I Ax is defined}. 

If D is a tree ~omain, then 

~D = {S] S~D A IS}. 

Sc * P±(P~) = {SI _p ^ iS ^ S is finite}. 

M-Z vary over Pi(p~). 

/ is the subtree operator. 

If A is a tree and x(domainA c ~ - , then 

A/x = ~y. A(x'y); i.e., A/x is the subtree of 



A rooted at the address x. 

A(x÷B) = Xy. if y=x,z then Bz else Ay; 

i.e., A(x÷B) is the tree resulting from replacing the sub- 

tree at x in A by B. 

If M~P±(domainA), then A(X÷Bxl xcM) is the tree obtained from A 

by replacing each subtree at x~M by the corresponding B x. 

Formally: 

A(X÷Bx[ x~¢) = A 

A(X÷Bxl xcMo{y}) = A(X÷Bxl xeM)(y÷By). 

This notation is well-defined since independent (in the sense 

of ±) replacements are order-independent. 

If a~Z, and AI,...,A n are Z-trees, 

then a(A 1 ..... A n ) = Xy. if y=() then a 

else Aiz where y = (i).z; 

i.e., a(AI,...,A n) is the Z-tree with a at the root and the 

subtrees AI,...,A n directly below, in order. 

The character acZ will also be used to denote the one-node Z-tree 

~y. if y=() then a else undefined. 

Thus, each Z-term may be interpreted as a Z-tree. Z# is the set 

of Z~trees w~ich represent Z-terms. The special brackets <> and 

E] will sometimes be used instead of () to improve readability. 

A = B may refer to the equation or it may assert the equality of A and 

B. The correct meaning should be obvious from the context. E.g., 

A=B ~ A refers to the equation A = B, while A = B(x * C) asserts 

equality. To simplify reading, equations may be enclosed in 

pointed brackets, e.g., <A=B> ¢ A. 

Example 2 

Let Z = {0,s,p,Cond,F}, where 

0 represents the usual integer, 

s and p represent the successor and predecessor operations on non- 

negative integers, 

Cond represents the special conditional function defined by 

Cond(x,y,z) = if x=0 then y else z, 

F represents an undetermined binary function to be defined 

recursively. 

pO = 0 

p s  = p p  = 1 

p F  = 2 

PCond = 3 



Then Z# includes 

]~(O,s(O) ) 
Cond(O,O,F(p(O) ,F(O,s(O)))) 

Z, also contains nonsensical objects such as 

F(O) 
s(p) 
0 ( F ( p , s )  , C o n d ( F , p ) ) .  

The Z-trees above are shown in Figure 3. 
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2. Semantics for Expressions and Equations 

The traditional semantic treatment of expressions in S# is based 

on the notion of an interpretation of Z. 

Definition 6 

An interpretation of Z is a pair 

I = <D,v> 

where D is any set, and v is a function 

v:Z ÷ U (D n ÷ D) 
n~N 

such that, for all a e 2, 

va a D Da ÷ D. 

D is called the domain of I. 



v is called a valuation of Z. 

Arbitrary elements in a domain D will be named by underlined lower case 

letters £, k, £, ~ ..... 

An interpretation gives meaning to each character in Z. Now v may be 

extended to ~:Z# ÷ D straightforwardly. 

Definition 7 

Let I = <D,v> be an interpretation of Z. 

The valuation of E# induced by I is the function v:Z# ÷ D defined 

by: 

va = va if pa = 0 

v(b(A 1 .... ,An) ) = (vb)(VAl,...,VAn) 

if pb = n and AI,...,A n ~ Z#. 

gives meaning to each expression in Z#. A slight modification 

of Definitions 6 and 7 provides semantics for all expressions in 

7,,. 

Definition 8 

A pseudointerpretation of Z is a pair 

I = <D,v> 

where D is any set, and v is a function 

v:Z ÷ (D* * D) 

The valuation of Z, induced by I is the function v:Z, ÷ D defined 

by: 

~a = (va )  () 
v(b  (A 1 . . . . .  A n ) )  = (vb) (~-A 1 . . . .  , JAn) .  

We will not distinguish between interpretations and pseudeinterpreta- 

tions, since all our results about one will hold for the other. 

The important semantic question about an equation A = B is: 

"Is this equation true?" An equation is true for an interpetation 

precisely when the value of each side is the same. 

Definition 9 

Let I = <D,v> be a (pseudo) interpretation of Z. 

For all A,B ~ ~# (Z,) 

I ~ A = B iff ~A = ~B 

I ~ A = B is read "I satisfies A = B" or 

"A = B is valid (true) for I." 
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is usually extended in several ways, as follows: 

Let I be a set of interpretations of Z. 

~ A=B i f f  I ~ A=B f o r  a l l  I ~ I. 
C=D ~ A=B iff {II I Y-- C=D} ~-A=B. 
Let A be a set of equations. 

I ~- A iff VA=B~ A I ~ A=B, 
a ~- A=B iff { I ] I  > A) b A=B. 
a ~ A=B i s  r e a d  "A=B i s  a c o n s e q u e n c e  o f  a " .  

A=B iff I ~ A=B for all interpretations I. 

A=B is read "A=B is valid." 

The simplicity of the above semantic definitions and their close corres- 

pondence to the intuitive meanings of equations are great strengths of 

equational logic. The main purpose of formalizing the definitions here 

is to provide a precise terminology for dealing with the correctness 

and completeness of proof techniques and computational strategies. 

Although this work is not directly concerned with expressions contain- 

ing variable symbols, it is convenient to have semantics for such 

expressions. 

Definition 9 

Let <D,v> be an interpretation of Z. 

Let V be a set of variable symbols, V n z = ~, pa = 0 for a ~ V. 

Let A,B ~ (Z o V)#. 

I ~- A=B i f f  I' ~ A=B 
for all I' = <D,v'> where v' extends v to ~ u V. 

Example 3 

A natural interpretation of Z in Example 2 (p. 7) is <N,v> where 

N is the set of nonnegative integers and 

v0 = the number zero 

vs = ~n. n+l 

vp = An. if n=0 then 0 else n-i 

v Cond = Xi,j,k. if i=0 then j else k 

vF = ~m,n. 0 

With v defined above, and variable symbols x,y,z, 

<N,v> ~- pC0) = 0 
<N,v> ~- p(s(x)) = x 

<m,v> I = Cond(0,x,y) = x 

<N,V> b C o n d ( s ( x ) , y , z )  = z 

<R,v> ~ F ( x , y )  = 0 

<N,v> D F ( x , y )  = Cond(x,O,F(p(x),F(x,y))) 



l i  

<e~,v> ~ F (s (O) ,O)  = o 

3. Equational Proofs 

Proofs in equational logic (without variable symbols) are generally 

performed using rules of inference corresponding to the reflexive, 

symmetric, transitive and substitution laws for equality: 

Reflexivity 

Symmetry 

Transitivity 

I. 

2. A= B 

3. A=B, B=C 
A=C 

A=B 
4. Substitution C(x+A) = C(x+B) 

For proofs and computations in this work, an axiom with variable sym- 

bols may always be treated as a schema representing all of the axioms 

(without variables) which result from replacing those variables by 

expressions. 

Definition I0 

Let A be a set of equations. 

A proof D of A=B from A is a finite sequence of equations ending 

in A=B such that, if C=D is in ~, then either 

(I) C=D ~ A or 

(2) C=D is derived from (0 or more) previous equations in 

D by one application of one of the rules 1,2,3,4. 

A I-- A=B means that there exists a proof of A=B from A. 

]-- A=B means ~ I-- A=B. 

A ~ A=B means that there exists a proof of A=B from A which 

does not require rule 4. 

Theorem 1 (Correctness and Completeness) 

A ~ A;B i f f  A I -  A;B 

A;B i f f  ~ A=B 

Proof A ~ A=B => A ~ A=B by induction on the length of a proof of 

A=B. The converse is proved by constructing an interpretation <D,v> 

defined by 

D = {{BI A I - -A=B} T A~Z,} 

(va)(dl ..... d_n ) = {BJ A ~- a(D 1 .... ,Dn) = B} where ViD i c ~i" 

v is easily proved well-defined. 

By induction on the structure of ACE,, 
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~A = {B[ A ~ A=B}. 

So <D,v> ~ A=B iff A ~ A=B. 

<D,v> ~ A is straightforward. 

So, by Definition 9 (p. 9), A ~ A=B => A ~ A=B. 

is merely the special case where A = #. Z 

A=B <=> ~-A=B 

The correctness and completeness theorem shows a great strength of 

equational proof techniques - they are sufficient to prove all the 

consequences of a set of equational axioms. In order to develop compu- 

tational strategies, we would like to simplify the notion of proof even 

more. Rule 4 (substitution) is the most complicated. Substitution 

cannot be eliminated, but it may be isolated at the beginning of a 

proof. 

Lemma 1 

Let A' = {E(x+C) = E(x+D) I C e ~,, x ~ domainS, C = D ~ A}. 

A I-- A=B iff A' I--' A=B. 

Proof Note that A' is the set of all equations which follow from A 

by one application of rule 4. We may reorder a proof so that all 

applications of rule 4 occur at the beginning. D 

With substitution out of the way, we may reinterpret proofs in a form 

more suitable for discussing computational strategies. 

Lemma 2 

Define ~ by 

A ÷ B iff 3x~domainA,C~ z A/x=C ~ A A B = A(x÷C) 

Let ~ be (÷ u ÷)*, the reflexive, symmetric, transitive closure 

of ÷. 

Then A ~ A=B iff A ~- A=B iff A ~ B. 

Proof Consider A' as in Lemma I. A ÷ B iff A=B E A'. Now, since 

rules i, 2, 3 state exactly the reflexive, symmetric and transitive 

properties of equality, we may show that A' ~i A=B iff A ~ B. Then by 

Theorem I and Lemma I, A ~ A=B iff A I-- A=B iff A ~ B. See [CFS8] 

(Thol, p.60) for another treatment. D 

Our computation theory for equational logic is based on the study of 

the relation ÷. Note that, given an expression E0, all the expressions 

F such that A ~ E 0 = F may be generated by creating sequences (El) 

such that, for each i, either E i ÷ ~i+l or E i + El+ I. The study of 

Subtree Replacement Systems will show, in many cases, that we need 
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consider only the case E i ÷ Ei+l, and that we may effectively choose an 

appropriate Ei+ 1 given E i. 

Example 4 

Consider g = {0,s,p,Cond,F} of Example 2 (p. 7), with the inter- 

pretation <m,v> of Example 3 (p.10). 

L e t  A = { p ( s ( A ) )  = A ,  

Cond(0,A,B) = A, 

Cond(s(A) ,B,C) = C, 

F(A,B) = Cond(A,0,P(p(A),PCA,B))) I A,B,C ¢ ~#}. 

A contains only equations which are valid for <N,v>. 

F(s(0),0) = 0 may be proved from A as follows: 

~(s (O) ,o )  -- Cond(s(O), O, F(p(s (O)) ,  r (s (O) ,O)) )  A 
Cond(s(O), O, E(p(s(O)) ,  ~(s (O) ,O)))  = F(p(s (O)) ,  ~(s(O),O)) A 
F(s(O),O) = F ( p ( s ( O ) ) ,  F (s (O)) ,O) )  Trans. 

p(s(O)) = 0 A 
E(p(s(O)) ,  F(s(O),O)) : S(O, S(s(O),O)) Subst. 

F(s(O),O) : F(O, F(s(O) ,O))  Trans. 

F(O, F(s(O) ,O))  = Cond(0, O, F(p(O),  F(O, F ( s (O) ,O) ) ) )  A 

F(S(0),0) = Cond(0, 0, F(p(0), F(0, F(s(0),0)))) Trans. 

Cond(0, 0, F(p(0), F(0, F(s(0),0)))) = 0 A 

F(s(07,0) = 0 Trans. 

F(s(0),0) ÷* 0 as shown by the following sequence: 

~(s(O),O) + Cond(s(O), O, F(p(s (O)) ,  t:(s(O),O)) 
÷ F(p(s (O)) ,  F(s(O),O)) 
÷ F(o,  F(s(O),O)) 
÷ Cond(O, O, F(p(O), E(s(O),O))))  
÷ 0. 

~. Continuous Semantics for Equations 

A more specialized type of semantics is currently popular in 

theoretical computer science. This alternate semantics, like the tradi- 

tional logical semantics, assigns to each expression a value in some 

domain. The values assigned are intended to represent the available 

information about an expression. Domains are partially ordered accord- 

ing to information content. 

Definition 11 

Let D be a set and ~ a partial ordering of D. 

A chain is a set C c D such that 

v~,b~ C ~ E  k v k~ 
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D is a C__oomp!ete Partial Ordering (cPo) if every chain C S D has 

a least upper bound, written UC. 

Intuitively, ~E k (read "a is less defined than b") means that b repre- 

sents all the information in a, and possibly some more. A chain is a 

set of objects with increasing information, so the existence of least 

upper bounds for chains guarantees the ability to collect all the 

information presented by an increasing sequence of objects. 

Note that ~ must be a minimum element of D. ~¢ is often called 

"bottom" or "undefined", since it represents a complete lack of informa- 

tion. In other literature, U¢ is generally written ±, but we use ~ to 

avoid confusion with the independence relation. In a CP0 D, subsets 

C s D may not have greatest lower bounds, but, when they do, we write 

RC. 

Lemma 3 

Let D be a CPO. 

Let C s D be such that Va,bc C 3ce C a = c ^ b~ !. 

(C is called a directed ~eT.) - 

Then C has a least upper bound, written UC. 

Proof See [Ma76] (Corollary I, p.5S) U 

Definition 1 2 

Let D be a CP0. 

The ordering ~ extends to D* as 

(ai) = (b_i) i f f  V i ~ i  = b. 

and to D* ÷ D and r~ ÷ (D * + D) as 

f =_ g iff V(ai)_ f(ai) _= g(ai) 

v _= w iff V a va =_ wa 

D* D* ÷ D and E ÷ (D* ÷ D) are CPOs with the relation= 

A function f:D ÷ E is continuous iff for all nonempty chains 

C ED , 

f(UC] = u{f(_ai) I (_ai)(C}. 

Continuity means that our information about a function value is propor- 

tional to our information about the arguments of the function. Most 

work on continuous semantics is based on the following well-known 

Lemma. 

Lemma 4 (Least Fixpoints) [Ma76] (Th.9, p.6S) 

Let D be a CPO, f a continuous function f:D ~ D. 
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f has a least fixpoint !f~f ~D, which is the least element such 

that f(Ifpf) = Ifpf. 

! f ~ f  = n{£]  f £  = d} 
= u{fn~I n c N} 

Proof {fnm I n e N} is a chain, so u{fn~l n ~ N} exists. It is 

straightforward to show that the limit of this chain is the least fix- 

point of f. D 

Definition 13 

A continuous in terpretatio n of Z is a pair I = <D,v> such that 

D is a CPO and v is a function 

v: Z ÷ (D* * D) such that, 
for all a • Z, va is continuous. 

v extends to Q: Z, + D just as in Definition 8. 

It is convenient to extend Q further to Q:~Z u D)# + D with 

the conventions that d e D is a constant symbol (@d = 0) and 

Qd = d. 

The relation ~-- follows just as in Definition 9. 

Some people [Sc70] insist that D be a complete lattice (every set C £ D 

has a least upper bound and a greatest lower bound). Every complete 

lattice is a CPO, so all of this discussion applies also to complete 

lattices. 

Example 5 

Let Z = {0,s,p,Cond,F} as in Example 2. 

Let D = N += N u {w}, and define ~ by iK J iff i=j v i=m. 

Let v0 = 0 

I i+l if i~N 
(vs)i = ~ if i=~ 

i-i if i~N-{0} 

(vp)i = 0 if i=0 

if i=~ 

j if i=O 

(v Cond)(i,j,k) = k if i~N-{O} 

if i=~ 

(vF)(i,j) = 

Then the continuous interpretation <D,v> represents the fact that we 

can compute the successor, predecessor and conditional functions on N, 

but we don't yet knew what F is. 
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A richer interpretation of Z uses the domain D' = PN, with a ~ 

iff b S a. 

Note that ~ = N. 

Let v'0 = {0} 

(v's)~ = {i+l I ie~} 

(v'p)a = {max(i-l,0)I ie~} 

b if a = {0} 

Z if 
(v'C°nd)(a-a'k'£) = , if a = ¢ 

Ibuc otherwise 
K-- - -  

(v ,F)  ( ~ , 5 )  = N 

The continuous interpretation <D',v'> represents a stronger understand- 

ing of s,p and Cond. Notice that <D',v'> ~ Cond(s(A),B,C) = C for all 

A,B,C ~ Z#, but <D,v> ~ Cond(s(A),B,C) = C only when vA ~ ~. 

So far, continuous semantics seems to be merely a complicated 

special case of classical semantics. With the new semantics we may 

treat a set of equations A as a set of definitions, instead of a set of 

assertions as in the traditional view. Rather than investigating which 

equations are consequences of A, we use continuous semantics to study 

the way in which A extends our information about expressions. 

Consider a continuous interpretation <D,v> of E, representing 

preliminary information about Z, and a set of equations, A, intended to 

supply additional information about Z. We would like to represent the 

resulting state of knowledge about I by a new interpretation <D,vA>, 

where v ~ v A and <D,vA> ~ A. v A would extend, as usual, to a valua- 

tion ~A of E, or Z#. 

If D is a complete lattice, then an appropriate v A may always be 

found. In other cases there may be no reasonable choice. 

Definition 14 

A 
v = U{w I <D,w> ~ A and v ~ w} 

whenever such a greatest lower bound exists. 

^A 
When v A exists, v represents all the information about expressions 

which was given by v, plus all the additional information which may be 

derived from A. Given preliminary information v and equations A, a 

reasonable strategy for discovering information about an expression A 

is to collect all the information about expressions B such that 

A ~- A=B. In reasonable systems, this strategy should produce the same 
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A 
information as v . We prove such a result here for complete lattices~ 

and in Chapter YIII for CPOs with special sets A representing recursive 

equations. 

Definition 15 

Given axioms A and continuous interpretation <D,v>, 

def A : u~BI A I- A:B} 

whenever such a least upper bound exists. 

Theorem 2 

Assume that v A and def A exist. 

(i) Then def A ~ v A ~. 

(2) If, in addition, there is a continuous interpretation w such 

that v ~ w and wA = def A, then vAA = def A. 

Proof 

Since v = v A ^ ~A 

Let A ~A=B. 
~A Then A ~ A=B, so v A = vAB. 

^ ~A A Thus, vB £ 

Therefore, def A = D{vB I A I-- A=B} ~ vAA. 

(2) Note that <D,w> ~ A and v ~ w. 

So vA=__ w. 

Therefore, vAA E wA = def A. 

Cgrollary 1 

A 
If D is a complete lattice, then v 

vAA = def A for all A ~ Z,. 

Proof Define w by 

and def A exist, and 

(wc) (! 1 ..... ! n) = ~{def(c(D I, .... Dn)) I V i def D i~ !i } 

D ( ~ ( d  I . . . . .  in ) 
v E w and wA = def A. 

So, by Theorem 2, vAA = def A. D 

Continuous semantics is usually applied to situations where Z may 

be partitioned into primitive symbols Zp and defined symbols Z d. v 

gives meaning only to the primitive symbols, so va = ~ for a e Zd, and 

A adds meaning only to the defined symbols, so yah = vb for b e Z . 
P 

In such situations, the equations A are said to define symbols in Z d 

in terms of those in Zp. See Section VIII.4 on recursive equations 

for an example of defining Z d from Zp. 


