
I. INTRODUCTION

i. Procedural vs. Descriptive Languages

Languages for computation are often organized into two types,

proc@dural and descriptive. Procedural languages, such as FORTRAN,

ALGOl, COBOL, SNOBOL, PL/I, are directly concerned with sequences of

actions to be performed by a computer, they have an imperative tone,

their parts are often thought of as commands. The process of writing

compilers and interpreters for such languages is fairly well understood,

and very successful practical results have been obtained. A primary

weakness of such languages is that it is often very difficult to under-

stand the relationship between a program and the problem which it

solves (i.e., the function which it computes).

Descriptive languages, such as the mathematical languages of func-

tional and relational expressions and the predicate calculi, are orien-

ted more toward defining mathematical objects, functions and relations

without direct reference to computational techniques. These languages

are declarative in tone, and their parts have the forms of formulae and

assertinns. Mathematical logic provides us with an elegant semantics

for these languages, which illuminates very well the correspondence

between formulae and the objects which they describe. Descriptive lan-

guages are not as popular for practical computation as procedural lan-

guages, partly because the efficient implementation of such languages

may be very difficult. The results of this paper show how practical

interpreters may be derived for a large class of mathematical languages

in such a way that the interpreter precisely satisfies the mathematical

semantics of the language.

Mathematical logic contains one study which seems relevant to com-

puting - proof theory. The definitions of one or more functions may be

treated as a set of axioms or postulates; and computing the value of an

expression E to be the constant c is basically the same as proving that

E=c. Unfortunately, traditional mathematical proof theory tells us

how to generate correct proofs, but not how to efficiently prove asser-

tions of the particular form above. Even an efficient decision proce-

dure which recognized true statements in a language would not allow us

to efficiently compute the value of E above, since we apparently would

have to search for the appropriate constant symbol c. Proof theory may

yet be helpful, since if the computation of a value for E closely

mimics established proof techniques, we will be confident at least that

any computed answer is correct. Also, we may be able to apply tradi-

tional completeness results to show that our computation halts whenever

it should. So, we approach the design of interpreters for mathematical

languages by trying to efficiently generate certain proofs. Theoretical

results of this nature have been obtained for the predicate calculus

[vEK76], but in order to produce efficient practical methods, we limit

our attention to the weaker language of equational logic.

2. Equational Logic and Computation

The language of equational logic contains only assertions of the

form EXPl = ExP2. The language of equations is much less expressive

than the predicate calculus, but it is sufficient for describing many

interesting functions in a natural way. All of LISP 1.0 and the Red

languages, and large parts of Lucid and APL may be described by sets of

equations. In mathematics, the lambda calculus, the combinator calculus

and theories of recursively defined functions may be viewed as special

systems of equations.

The general problem of computing in equational systems may be

stated as follows:

Given a set of equations A (axioms), and an expression E,

find an expression F c N such that E = F is a consequence

of A, where N is some fixed set of simple expressions.

For instance, A might be an infinite set of equations defining + and *

for the integers, and N might be the set of integer constant symbols

N = { -3,-2,-I,0,i,2,3,...}. Then, given 8+3*5-23, we may find the

equivalent expression 0. Solutions to the computing problem depend

critically on the sets A and N, and the way that they are presented

(A and N are usually infinite, so we work with finite descriptions

rather than the actual sets).

Suppose that, for each equation~ Exp~ = Exp~ in A, Exp~ is in some

sense simpler or clearer that Exp,. For example, in the equation

8+3*5-23 = 0 the expression 0 is intuitively simpler because it is a

single symbol. In the recursive definition of the factorial function,

F(x) = If x=0 then 1 else F(x-l)~x, the right-hand side is longer than

the left, but it is clearer in the sense that the value of the function

at 0 is immediately apparent, and some information about the value at

other integers n (e.g., that the value at n~0 is divisible by n) can be

easily seen. The left-hand expression F(x) shows none of this informa-

tion. Axioms of this type may be thought of as reduction rules allow-

ing the reduction of the left-hand expression to the right-hand

expression.

In such cases, it is reasonable to process an expression: E 0 by

successively reducing subexpressions of the form Exp~ to the equivalent

but simpler or clearer for:psExp~, generating a sequence (E~).j If some

E n has no subexpression of a form Exp~ (that is, E n cannot be reduced

further) it is said to be in normal form. This work is concerned with

the computing problem for sets of ordered equational axioms A, where

N = {F I F is in normal form). The essential formalism for this study

is the Subtree Replacement System (SRS) of Brainerd [Br69] and Rosen

[Ro73]. Subtree Replacement Systems may be used to formalize important

proofs in many equational theories, and the formal versions of these

proofs may be implemented straightforwardly by standard programming

techniques using pointer structures.

The main contribution of this work is to develop sufficient condi-

tions on Subtree Replacement Systems under which:

I) For each expression E there is at most one normal form F equi-

valent to E, and F may bc found by reducing E;

2) a large class of computations succeeds in finding the normal

form F for E whenever such exists;

3) a simple computational strategy for finding F is optimal.

These results are applied to the study of the iambda calculus, the com-

binator calculus, recursive equations, LISP and Lucid, producing some

new theorems and reproducing some old ones in a uniform way. The appli-

cation to LISP suggests an interpreter with several provable advantages

over traditional LISP interpreters. Hopefully, the study of reduction

in Subtree Replacement Systems, begun here and in [Ro73], may serve as

the basis for a rigorous and practical computing theory for equational

logic which may yield a uniform methodology for developing interpre-

ters for many descriptive languages.

