
I. INTRODUCTION 

i. Procedural vs. Descriptive Languages 

Languages for computation are often organized into two types, 

proc@dural and descriptive. Procedural languages, such as FORTRAN, 

ALGOl, COBOL, SNOBOL, PL/I, are directly concerned with sequences of 

actions to be performed by a computer, they have an imperative tone, 

their parts are often thought of as commands. The process of writing 

compilers and interpreters for such languages is fairly well understood, 

and very successful practical results have been obtained. A primary 

weakness of such languages is that it is often very difficult to under- 

stand the relationship between a program and the problem which it 

solves (i.e., the function which it computes). 

Descriptive languages, such as the mathematical languages of func- 

tional and relational expressions and the predicate calculi, are orien- 

ted more toward defining mathematical objects, functions and relations 

without direct reference to computational techniques. These languages 

are declarative in tone, and their parts have the forms of formulae and 

assertinns. Mathematical logic provides us with an elegant semantics 

for these languages, which illuminates very well the correspondence 

between formulae and the objects which they describe. Descriptive lan- 

guages are not as popular for practical computation as procedural lan- 

guages, partly because the efficient implementation of such languages 

may be very difficult. The results of this paper show how practical 

interpreters may be derived for a large class of mathematical languages 

in such a way that the interpreter precisely satisfies the mathematical 

semantics of the language. 

Mathematical logic contains one study which seems relevant to com- 

puting - proof theory. The definitions of one or more functions may be 

treated as a set of axioms or postulates; and computing the value of an 

expression E to be the constant c is basically the same as proving that 

E=c. Unfortunately, traditional mathematical proof theory tells us 

how to generate correct proofs, but not how to efficiently prove asser- 

tions of the particular form above. Even an efficient decision proce- 

dure which recognized true statements in a language would not allow us 

to efficiently compute the value of E above, since we apparently would 

have to search for the appropriate constant symbol c. Proof theory may 

yet be helpful, since if the computation of a value for E closely 

mimics established proof techniques, we will be confident at least that 

any computed answer is correct. Also, we may be able to apply tradi- 

tional completeness results to show that our computation halts whenever 



it should. So, we approach the design of interpreters for mathematical 

languages by trying to efficiently generate certain proofs. Theoretical 

results of this nature have been obtained for the predicate calculus 

[vEK76], but in order to produce efficient practical methods, we limit 

our attention to the weaker language of equational logic. 

2. Equational Logic and Computation 

The language of equational logic contains only assertions of the 

form EXPl = ExP2. The language of equations is much less expressive 

than the predicate calculus, but it is sufficient for describing many 

interesting functions in a natural way. All of LISP 1.0 and the Red 

languages, and large parts of Lucid and APL may be described by sets of 

equations. In mathematics, the lambda calculus, the combinator calculus 

and theories of recursively defined functions may be viewed as special 

systems of equations. 

The general problem of computing in equational systems may be 

stated as follows: 

Given a set of equations A (axioms), and an expression E, 

find an expression F c N such that E = F is a consequence 

of A, where N is some fixed set of simple expressions. 

For instance, A might be an infinite set of equations defining + and * 

for the integers, and N might be the set of integer constant symbols 

N = { .... -3,-2,-I,0,i,2,3,...}. Then, given 8+3*5-23, we may find the 

equivalent expression 0. Solutions to the computing problem depend 

critically on the sets A and N, and the way that they are presented 

(A and N are usually infinite, so we work with finite descriptions 

rather than the actual sets). 

Suppose that, for each equation~ Exp~ = Exp~ in A, Exp~ is in some 

sense simpler or clearer that Exp,. For example, in the equation 

8+3*5-23 = 0 the expression 0 is intuitively simpler because it is a 

single symbol. In the recursive definition of the factorial function, 

F(x) = If x=0 then 1 else F(x-l)~x, the right-hand side is longer than 

the left, but it is clearer in the sense that the value of the function 

at 0 is immediately apparent, and some information about the value at 

other integers n (e.g., that the value at n~0 is divisible by n) can be 

easily seen. The left-hand expression F(x) shows none of this informa- 

tion. Axioms of this type may be thought of as reduction rules allow- 

ing the reduction of the left-hand expression to the right-hand 

expression. 

In such cases, it is reasonable to process an expression: E 0 by 

successively reducing subexpressions of the form Exp~ to the equivalent 



but simpler or clearer for:psExp~, generating a sequence (E~).j If some 

E n has no subexpression of a form Exp~ (that is, E n cannot be reduced 

further) it is said to be in normal form. This work is concerned with 

the computing problem for sets of ordered equational axioms A, where 

N = {F I F is in normal form). The essential formalism for this study 

is the Subtree Replacement System (SRS) of Brainerd [Br69] and Rosen 

[Ro73]. Subtree Replacement Systems may be used to formalize important 

proofs in many equational theories, and the formal versions of these 

proofs may be implemented straightforwardly by standard programming 

techniques using pointer structures. 

The main contribution of this work is to develop sufficient condi- 

tions on Subtree Replacement Systems under which: 

I) For each expression E there is at most one normal form F equi- 

valent to E, and F may bc found by reducing E; 

2) a large class of computations succeeds in finding the normal 

form F for E whenever such exists; 

3) a simple computational strategy for finding F is optimal. 

These results are applied to the study of the iambda calculus, the com- 

binator calculus, recursive equations, LISP and Lucid, producing some 

new theorems and reproducing some old ones in a uniform way. The appli- 

cation to LISP suggests an interpreter with several provable advantages 

over traditional LISP interpreters. Hopefully, the study of reduction 

in Subtree Replacement Systems, begun here and in [Ro73], may serve as 

the basis for a rigorous and practical computing theory for equational 

logic which may yield a uniform methodology for developing interpre- 

ters for many descriptive languages. 


