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Introduction 

The pract ical  goal of our work is to produce highly compact tables for  table- 

driven parsers. The motivation l i es  in the recent hardware developments of fas t  ROM 

and microcomputers. The theoret ical  goal is a better understanding of the algebra-- 

pa r t i cu la r l y  algebraic decomposition--of syntax and parsing machines [4,5,6] .  This 

paper considers LR(k) parsers, but we f i rm ly  believe the same techniques w i l l  work at 

least  as well for the other standard table-dr ive techniques (LL(k), precedence, e tc . ) .  

Series decomposition of parsers is standard. One usual ly has a lex ica l  analysis 

whose output is input to the syntactic analysis. Also, Lorenjak's LR(k) analysis [13] 

resembles a ser ia l  decomposition although the resul ts are recombined before run-time. 

Paral lel  decomposition has been explored for  sequential machines [9,11], but not for  

parsers, although the motivation for  this work stemmed from reading [14,15]. The 

notion of  paral le l ism used in [ I0 ]  requires having the ent i re input avai lable at once, 

a d i f f e ren t  notion from paral le l  decomposition. I t  appears that the technique in [ I0 ]  

and the para l le l  decomposition presented here could be combined to provide a paral le l  

decomposition of parsers working on d i s t i nc t  input segments. 

To have a paral le l  decomposition of a language, i t  suff ices to have a monofunctor 

from the syntax category, S, of the or ig inal  grammar to the product of the syntax cate- 

gories for the "quotient" grammars ~l and 52 [5 ,6 ] .  (Although paral le l  decomposition 

into only two components is covered in th is paper, the general izat ion to more than two 

components is straightforward.)  However, for  our explorations in th is paper, we ob- 

tain t r a c t a b i l i t y  by addit ional res t r i c t ions  on f :  

f = (h i ,h2),  with hi: ~ ÷ ~ i '  i = 1,2, 

where each h i is a length preserving homomorphism on str ings and carr ies rules b i jec-  

t i v e l y  to rules. Thus, h i preserves the length of derivations and the resul t ing system 

can be viewed as encoding each symbol in the or ig inal  alphabet V = NUz as a pair of 
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of symbols in V l x V 2. 

There are two approaches to constructing paral le l  LR(k) parsers: 

( I )  Decomposition of the la ~ .  

A modif icat ion of the LR(k) parser construction algorithm is used to con- 

s t ruc t  a parser fo r  each of  the "quot ient"  grammars, G z and G 2, of  the re- 

spective decomposed syntax categories, ~z and §2" 

(2) Decomposition of the parser. 

Column and (opt ional ly)  row mergers are applied in two d i f f e ren t  fashions 

to the LR(k) dr iv ing matrices to obtain the two component parsers. 

In e i ther  case the resul t ing component parsers are essent ia l ly  mergers of the 

columns and rows of the ordinary LR(k) parsing matrices (with possible dupl icat ion) .  

Standard coding resul ts  then lead one to believe that the number of columns needed in 

LR(k) dr iv ing matrices should substant ia l ly  decrease at least  in the case of parsing 

action matrices, which are usually quite sparse. There is a cost however. The paral- 

le l  parser w i l l ,  on a uniprocessor, run at about one-third of the speed. 

P a ~ s e ~ \ ~  Both 

Input CoCo t o t  ~ parsers i have 
rdi na 

/4 i' ~ ident ical 
r igh t  parse 

a s  output. 

The two parsers do not run independently in contrad is t inct ion to the case of sequen- 

t ia l  machines. At each step they must be coordinated which requires about as much 

time as each parser step. 

Grammar Decomposition Approach to a Paral lel  LR(k) Parser 

The deta i ls  consist of creating such a paral le l  parser which runs nondeterminis- 

t i c a l l y  and then establ ishing the addit ional res t r i c t ions  necessary to obtain deter- 

minism once again. 

Given an LR(k) grammar G = (N,s,P,S) where P is an indexed set of productions 

with indices 1 . . . . .  r . . . . .  IPI, and sur ject ive hi: V + V i ,  i = 1,2, l e t  

Gi = (Ni '  z i '  P i '  Si) ,  i = 1,2 
be grammars such that 

( I )  N i = {hi(A ) I a + ~ ~ P} 
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(2) z i = h i (V ) - N i 

(3) V i = NiU s i ,  

(4) Pi is  indexed by 1 . . . . .  IPI w i th  product ions 

h i ( r :  A ÷ ~) = r :  h i (A)  ÷ h i (B ) ,  

(5) S i = hi(S ) . 

Then h i extends to a syntax func tor  from §(G) to S(Gi) [5 ,6 ] .  We now requ i re  

( h l , h z ) :  V l ÷ V z × V 2 i n j e c t i v e  to obta in the f o l l ow ing  fundamental 

Lemma I :  ~ =>~ B i f  and only i f  hi(m) -->~ hz(B) and h2(m) - ~  h2(B) , 

where ~ is  the r i g h t  parse of  B to m. [ ]  

Thus compatible der i va t ions  in  the image syntaxes un iquely  determine the o r i g i na l  

de r i va t i on .  For no ta t iona l  convenience, l e t  Yi denote h i (Y)  f o r  each s t r i ng  y. 

Let T i be LR(k) parsers f o r  G i - - i t  doesn' t  matter tha t  the G i are not necessar i l y  

LR(k), j u s t  const ruc t  the tables fo r  a nondetermin is t ic  k-lookahead parser using the 

LR cons t ruc t ion  methods. Each row s i o f  the T i matr ices cons is ts  o f  the parsing ac t ion  

ent ry  f i ( s i , - )  and the goto ent ry  g i ( s i , - ) ,  [2 ] .  For lookahead u the en t ry  f i ( s i , u i )  

is  a set of  act ions since T i is nondetermin is t i c .  (This is the same type of  construc-  

t i on  used in [ I ]  fo r  cons t ruc t ing  parsers fo r  "ambiguous grammars".) The coord ina t ion  

cons is ts  o f  tak ing f l ( S l , U l )  ~ f2(s2,u2)  when T i is  in  s ta te  s i ,  i = 1,2. The r e s u l t -  

ing set of  act ions is used by both parsers. For var ious reasons, I f l ( s l , u z ) N  

f2(S2,U2)I ~ l in some cases and the pa ra l l e l  parser runs nonde te rm in i s t i ca l l y .  We 

can show tha t  i t  is  co r rec t  but lacks i ~ e d i a t e  e r ro r  de tec t ion ,  as def ined in [4 ] .  

To obta in determinism and immediate e r ro r  de tec t ion ,  add i t iona l  in format ion and 

r e s t r i c t i o n s  are required.  To exp la in  these, some nota t ion is des i rab le .  Let W = 

G " G 
{Y I Vk(Y) ~ 9} be the set o f  v iab le  p re f i xes .  Define y ~ i f  and only i f  Vk(Y) = 

Now l e t  = w / ;  w i l l  be used to index the sets of  va l id  items Define 

the domain of  f (pars ing ac t ion  func t ion )  to be F × E *k. Define g: F x V ÷ F to be 

g ( [ y ] , X )  = [B] i f  and only i f  GOTO(V~(y),X) = V~(~). With t h i s  nota t ion  the rows of 

the parsing matr ix  are indexed by r.  Given ¥i  = h i (Y)  and Y2 = h2(Y) the o r i g i na l  

s t r i n g  ¥ is un iquely  determined due to the i n j e c t i v i t y  o f  ( h l , h 2 ) :  V ÷ V l x V 2. 

To ensure tha t  Lemma 1 is s a t i s f i e d ,  the const ruc t ion  a lgor i thm fo r  sets o f  va l i d  

items (Algor i thm 5.8 in [2 ] )  is modif ied to ru le  out cer ta in  items tha t  are never asso- 

c ia ted w i th  any compatible de r i va t ions .  Furthermore, add i t iona l  in format ion cons is t -  

ing o f  o r i g i n a l  parser s ta te  (ST par t )  and lookahead (LA par t )  must be attached to each 

parsing act ion w i t h i n  an en t ry .  This gives parsing act ion en t r ies  in  the mat r ix  f i  

o f  the form 

f i ( [ Y i ] , u  i )  = U ( ( f ( [ ~ ] , v ) , [ ~ ] , v ) } ,  

where [B] is the ST par t  and v is  the LA par t .  The union is over lookaheads v such 
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that v i = u i and over states [B] of the canonical LR(k) parser related in a rather 

complicated way to the component parser state [T i ] .  Even with th is  added information 

and the modified construction algorithm the component parsers may not operate deter- 

m in i s t i ca l l y .  The deta i ls  are given in Section 4.2 of  [12]. 

Direct Paral le l  Decom~g_sition of the Ordinary LR(k) Parser 

As in the decomposed grammar para l le l  parser construction method, or ig inal  parser 

state and lookahead must be associated with each parsing action value. 

Def in i t ion:  f ( [ ¥ ] , u )  ~ ( f ( [ y ] , u ) , [ y ] , u ) .  

This i s n ' t  bad as i t  seems since the f t r i p l es  can be nicely encoded. See the example 

at the end of the paper. 

S im i la r l y ,  the goto requires the or ig inal  state to maintain determinism in the 

general case--the symbol X is not required since i t  is uniquely determined by g( [y ] ,X)  

and [y]. 

Def in i t ion:  g( [y ] ,X)  e ( g ( [ y ] , X ) , [ y ] ) .  

The columns of the parsing action (goto) matrices of the ordinary LR(k) parser 

are merged according to the par t i t i on  of V induced by the respective h i to obtain the 

respective columns of  the component parsing action (goto) matrices. The merger of the 

rows (which inc identa l l y  defines the "states" of the component parsers) may be done 

in any fashion which preserves the correct determination of the state of  the ordinary 

para l le l  parser for  each reachable component-state pair ,  

By proper row merging (with dupl icat ion) one obtains exactly the parser of the 

preceding section ( in th is case the ST part of the goto function is unnecessary). I f  

no row mergers are performed then each component parser has the same states as the 

ordinary LR(k) parser. The simple guaranteed approach employed in th is  section is 

to l e t  J be any system of representatives of r and to merge rows ~ ~ J and ~ ~ J i f  

~i = ~i" 
With these res t r ic t ions  the parsing action matrix and goto matrix for  each com- 

ponent of the para l le l  parser are defined as the merge of a l l  rows and columns (of the 

ordinary parsing action and goto matrices, respect ively) whose indices are ident ical  

under the component parser's homomorphism. 

Def in i t ion:  

f i ( - [ ~ i ] , u i )  ~ { f ( [~ ] ,w)  i ~ c J, ~i 

g i ( [Y i ] ,X  i )  ~ {g( [~] ,Y) I ~ ~ J, ~i 

Lemma 2: (Determinism under intersect ion) 

f l ( [ Y 1 ] ' U l )  N f2( [Y2] 'u  2) = ( f ( [ y ] , u ) ,  [ y ] ,  u), 

gz([~1]'X I) N g ([Y2]'X2) = (g ( [ y ] ,X ) ,  [ y ] ) .  [ ]  

= ~ i '  wi = u i '  f ( [~ ] ,w)  ~ er ror }  , 

= ~ i '  Yi = × i '  g([B],Y) ~ error}  , 
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The para l le l  parsing algorithm with each component parser i employing i t s  respec- 

t i ve  f i  and gi matrices is the fol lowing. 

A199rithm 3: (from Aho and Ullman [2, p.375]) 

Input: A s t r ing z ~ z* to be parsed. I n i t i a l l y  each parser i has state [y ]  

(the i n i t i a l  null  s t r ing state symbol) on i t s  stack and has z i as input. 

Output: The r ight  parse of  z i f  z m L(G), er ror  otherwise. 

Method: Do unt i l  accept or error ;  

( I )  Let [y i  ] be respective states on top stacks. 

(2) Determine respective lookahead symbols u i from next k input symbols of z i .  

(3) Compute f i ( [ Y i ] , u i )  and ext ract  f ( [ ¥ ] , u )  from i t .  

(a) I f  f ( [ y ] , u )  = sh i f t  then the next input symbol (say ai)  is read and pushed 

onto stack i .  Now compute N g i ( [ Y i ] , a i  ) = ( [%a], [¥])  and push [Yia i  ] onto 

stack i .  Return to step ( I ) .  

(b) I f  f ( [ y ] , u )  = reduce r and r :  A ÷ ~ then 21m I symbols are popped from stack 

i and r is wr i t ten once to the common output. Let [B i ]  be the new state on 

top of stack i .  Compute Ng i ( [~ i ] ,A i )  : ([~A],[~]) and push [BiAi] onto 

stack i .  Return to step (1). 

(c) I f  f ( [y ] ,u )  = accept m reduce 0 then announce success. 

(d) I f  f i ( [ Y i ] , u i )  = 9, announce error. 

The parallel parser simulates the ordinary LR(k) parser, 

Theorem 4: 

The ordinary LR(k) parser w i l l  be in configuration (y°XZy1...xJyJ, x, .,) i f  and 

only i f  the para l le l  component parsers are in the respective configurations (YiXiYi...° i z 

X j J x i ,  ~) i = 1,2 (the equivalence class brackets [ , ]  have been dropped for  
iYi , , , , 

c la r i t y ) .  D 

An Example of a Paral le l  LR(1) Parser 

The example is based on a p a r t i a l l y  s impl i f ied  parser from Anderson et a l . ,  [3] .  

Figure 1 is taken from the i r  paper. Figure 2 gives the parsing action (only sh i f t  

and error  en t r ies ) ,  Figure 3 the corresponding terminal goto matrix and the nonterminal 

goto matr ix,  and each of Figures 2 and 3 show three vectors associated with the "states" 

of the parser: 

(PA) Applicable row of parsing action or terminal goto for the parser states 1 

through 17. 

(PR) Production associated with a state. 

(NG) Applicable row of nonterminal goto matrix for the given state. 

In the two goto matrices, positive numbers, n, are next-states and negative numbers, 

-n, are collapsed reduce rows, signifying a reduction by the production I-nl .  Elimi- 
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Figure I .  

nation of LR(O) reduce states, par t ia l  chain derivat ion elimination~ and reordering 

a f te r  merger of rows has already been done. The important point is that any s impl i -  

f icat ions not af fect ing the number of columns may be performed before applying the 

para l le l  decomposition. 

Al l  reduce actions (represented by production numbers) have been deleted from 

the parsing action and placed in the PR vector since there is at most one production 

associated with a given state and each nonshift entry for  that state may default  to 

that par t i cu la r  reduction. In general, i f  the grammar is weak precedence (a l l  weak 

precedence grammars are SLR(1) [8, p,209]) and no chain der ivat ion el iminat ion has 

been performed, then each state of the canonical SLR(I) parser w i l l  have at most one 

type of reduction, [12]. 



82 

~- ~ PA PR 

1 1 

2 1 

3 2 

4 2 

5 2 

6 2 

7 3 14 

8 4 

9 5 

I0 6 

I I  7 

12 8 3 

13 9 3 

14 I0 

15 I I  

16 12 

17 13 6 

NG id + 

S 

S 

S 

S 

S 

( ) * i f  then or else := 

S S 

Parsing Action 

Figure 2 

Normally one combines the terminal port ion of the goto matr ix with the parsing 

action [ I ,  p.108] but th is  is not desirable here since we want j us t  one symbol in the 

parsing act ion matr ix to keep the example simple. Furthermore, the en t i re  goto matr ix 

can be merged compactly without regard to blank ent r ies ,  which are inaccessible [2, 

p.589]. 

The para l le l  parser is constructed by merging j us t  terminal columns of the pars- 

ing action and terminal goto matr ix according to h l ,h  2 given in Figure 4. Merging 

rows can also be considered but makes the construct ion much more d i f f i c u l t .  Without 

merged rows the ST parts in both parsing action and goto matrices are superfluous. 

is sparse enough that  the LA parts of f ( [ ~ i ] , u i )  are unneces- The parsing action 

sary in a l l  but row 12 in Figure 4. For row 12 a secondary s h i f t  symbol S is s u f f i -  

c ient  to encode the necessary information from the LA part required for  unique deter- 

mination of  the or ig ina l  parsing act ion. 

In row 12, 

fz(12,2)N re(12,2) = S ((2,2) encodes ")" )  

whi le 

f1 (12 ,1 )n f2 (12 ,2 )  = ~ ((1,2) encodes "e lse")  
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Nonterminal Goto 

Figure 3. 

s ign i f y i ng  er ror .  

As the terminal goto matr ix is sparse, i t  may be merged using the ind i rec t  ad- 

dressing methods in [3] .  The resu l t  is given in Figure 4. The f ive  entr ies with mul- 

t i p l e  values should be kept in an a u x i l i a r y  table.  In other cases i t  may be preferable 

to use the para l le l  decomposition only for  the parsing action and run a l l  subparsers 

from a s ingle goto matr ix.  

The parsing act ion decomposition is essen t ia l l y  a decomposition-encoding done 

for  each separate row. B r i e f l y  s tate,  a decomposition-encoding of a binary-valued 

vector (Vo,V z . . . . .  Vn_l) is two vectors F I and F 2 such that  

V w ( F I ( h I ( j ) ) ~  F2(h2( j ) ) )  = Vj 

(~/w represents a w-input OR funct ion giv ing a s ingle b i t  resu l t ;  ~represents w 
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Figure 4. 

para l le l  2- input AND funct ions) .  This encoding is nearly as compact as simply pack- 

ing b i ts  in to a word but does not require any s h i f t  operation to access a desired b i t .  

For fu r ther  deta i ls  see [7,12].  A second decomposition-encoding or packing may be 

performed to merge the rows in to  a more compact form. Since LR(k) parsers for  actual 

programming languages al low a s h i f t  fo r  only a very few lookaheads in  a given state,  

a para l le l  decomposition should introduce a r e l a t i v e l y  small number of addi t ional  
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s h i f t  symbols l i ke  i .  By t ry ing  various sets of homomorphisms with the i n jec t i ve  

property i t  may be possible to millimize the number of  addi t ional  s h i f t  symbols re- 

quired (equ iva lent ly  the number of b i ts  required in the decomposition-encoding), A 

heu r i s t i c  procedure fo r  tes t ing such homomorphisms in a pract ical  way is l e f t  for  

fu r ther  invest iga t ion .  For example~ i t  is  possible by a clever choice of  homomorphisms 

to encode the parsing action of  Figure 2 using only a s ingle s h i f t  symbol, as shown in 

Figure 5. This gives a to ta l  parsing action storage requirement of 13 x 7 = 91 b i ts  

as compared to the or ig ina l  matr ix of 13 × I0 = 130 b i ts .  In general, i t  should be 

possible to encode the en t i re  parsing action matr ix in considerably less space than 

required by other methods. 
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id + * ) ( 1 then or i f  := else 

0 1 2 3 0 1 2 3 0 1 2 

0 0 0 0 1 1 1 1 2 2 2 

Figure 5o 

Concl us ions 

In conclusion, para l le l  decomposition appears to o f fe r  economies of space for  

LR(k) parsing. However, th is  must s t i l l  be checked in cases of  pract ica l  in te res t .  

As a theoret ic  too l ,  para l le l  decomposition increases our understanding of  the nature 

of parsing. I t  has already led to other s imp l i f i ca t i ons  of the parsing process as 

reported in [7] .  
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