
PAPJ~LLEL DECOMPOSITION OF LR(k) PARSERS*
(Extended Abstract)

David B. Benson** and Ralph D. Jeffords***

Computer Science Department
Washington State Universi ty

Pullman, Washington 99164/USA

Introduction

The pract ical goal of our work is to produce highly compact tables for table-

driven parsers. The motivation l i es in the recent hardware developments of fas t ROM

and microcomputers. The theoret ical goal is a better understanding of the algebra--

pa r t i cu la r l y algebraic decomposition--of syntax and parsing machines [4,5,6] . This

paper considers LR(k) parsers, but we f i rm ly believe the same techniques w i l l work at

least as well for the other standard table-dr ive techniques (LL(k), precedence, e tc .) .

Series decomposition of parsers is standard. One usual ly has a lex ica l analysis

whose output is input to the syntactic analysis. Also, Lorenjak's LR(k) analysis [13]

resembles a ser ia l decomposition although the resul ts are recombined before run-time.

Paral lel decomposition has been explored for sequential machines [9,11], but not for

parsers, although the motivation for this work stemmed from reading [14,15]. The

notion of paral le l ism used in [I0] requires having the ent i re input avai lable at once,

a d i f f e ren t notion from paral le l decomposition. I t appears that the technique in [I0]

and the para l le l decomposition presented here could be combined to provide a paral le l

decomposition of parsers working on d i s t i nc t input segments.

To have a paral le l decomposition of a language, i t suff ices to have a monofunctor

from the syntax category, S, of the or ig inal grammar to the product of the syntax cate-

gories for the "quotient" grammars ~l and 52 [5 ,6] . (Although paral le l decomposition

into only two components is covered in th is paper, the general izat ion to more than two

components is straightforward.) However, for our explorations in th is paper, we ob-

tain t r a c t a b i l i t y by addit ional res t r i c t ions on f :

f = (h i ,h2), with hi: ~ ÷ ~ i ' i = 1,2,

where each h i is a length preserving homomorphism on str ings and carr ies rules b i jec-

t i v e l y to rules. Thus, h i preserves the length of derivations and the resul t ing system

can be viewed as encoding each symbol in the or ig inal alphabet V = NUz as a pair of

* Research supported in part by NSF Grant MCS 73-03497A01.

** Current address: Computer Science, Universi ty of Colorado, Boulder, CO 80309/USA

***Current address: Computer Science, School of Engineering, Universi ty of Mississippi ,
Universi ty, MS 38677/USA

77

of symbols in V l x V 2.

There are two approaches to constructing paral le l LR(k) parsers:

(I) Decomposition of the la ~ .

A modif icat ion of the LR(k) parser construction algorithm is used to con-

s t ruc t a parser fo r each of the "quot ient" grammars, G z and G 2, of the re-

spective decomposed syntax categories, ~z and §2"

(2) Decomposition of the parser.

Column and (opt ional ly) row mergers are applied in two d i f f e ren t fashions

to the LR(k) dr iv ing matrices to obtain the two component parsers.

In e i ther case the resul t ing component parsers are essent ia l ly mergers of the

columns and rows of the ordinary LR(k) parsing matrices (with possible dupl icat ion) .

Standard coding resul ts then lead one to believe that the number of columns needed in

LR(k) dr iv ing matrices should substant ia l ly decrease at least in the case of parsing

action matrices, which are usually quite sparse. There is a cost however. The paral-

le l parser w i l l , on a uniprocessor, run at about one-third of the speed.

P a ~ s e ~ \ ~ Both

Input CoCo t o t ~ parsers i have
rdi na

/4 i' ~ ident ical
r igh t parse

a s output.

The two parsers do not run independently in contrad is t inct ion to the case of sequen-

t ia l machines. At each step they must be coordinated which requires about as much

time as each parser step.

Grammar Decomposition Approach to a Paral lel LR(k) Parser

The deta i ls consist of creating such a paral le l parser which runs nondeterminis-

t i c a l l y and then establ ishing the addit ional res t r i c t ions necessary to obtain deter-

minism once again.

Given an LR(k) grammar G = (N,s,P,S) where P is an indexed set of productions

with indices 1 r IPI, and sur ject ive hi: V + V i , i = 1,2, l e t

Gi = (Ni ' z i ' P i ' Si) , i = 1,2
be grammars such that

(I) N i = {hi(A) I a + ~ ~ P}

78

(2) z i = h i (V) - N i

(3) V i = NiU s i ,

(4) Pi is indexed by 1 IPI w i th product ions

h i (r : A ÷ ~) = r : h i (A) ÷ h i (B) ,

(5) S i = hi(S) .

Then h i extends to a syntax func tor from §(G) to S(Gi) [5 ,6] . We now requ i re

(h l , h z) : V l ÷ V z × V 2 i n j e c t i v e to obta in the f o l l ow ing fundamental

Lemma I : ~ =>~ B i f and only i f hi(m) -->~ hz(B) and h2(m) - ~ h2(B) ,

where ~ is the r i g h t parse of B to m. []

Thus compatible der i va t ions in the image syntaxes un iquely determine the o r i g i na l

de r i va t i on . For no ta t iona l convenience, l e t Yi denote h i (Y) f o r each s t r i ng y.

Let T i be LR(k) parsers f o r G i - - i t doesn' t matter tha t the G i are not necessar i l y

LR(k), j u s t const ruc t the tables fo r a nondetermin is t ic k-lookahead parser using the

LR cons t ruc t ion methods. Each row s i o f the T i matr ices cons is ts o f the parsing ac t ion

ent ry f i (s i , -) and the goto ent ry g i (s i , -) , [2] . For lookahead u the en t ry f i (s i , u i)

is a set of act ions since T i is nondetermin is t i c . (This is the same type of construc-

t i on used in [I] fo r cons t ruc t ing parsers fo r "ambiguous grammars".) The coord ina t ion

cons is ts o f tak ing f l (S l , U l) ~ f2(s2,u2) when T i is in s ta te s i , i = 1,2. The r e s u l t -

ing set of act ions is used by both parsers. For var ious reasons, I f l (s l , u z) N

f2(S2,U2)I ~ l in some cases and the pa ra l l e l parser runs nonde te rm in i s t i ca l l y . We

can show tha t i t is co r rec t but lacks i ~ e d i a t e e r ro r de tec t ion , as def ined in [4] .

To obta in determinism and immediate e r ro r de tec t ion , add i t iona l in format ion and

r e s t r i c t i o n s are required. To exp la in these, some nota t ion is des i rab le . Let W =

G " G
{Y I Vk(Y) ~ 9} be the set o f v iab le p re f i xes . Define y ~ i f and only i f Vk(Y) =

Now l e t = w / ; w i l l be used to index the sets of va l id items Define

the domain of f (pars ing ac t ion func t ion) to be F × E *k. Define g: F x V ÷ F to be

g ([y] , X) = [B] i f and only i f GOTO(V~(y),X) = V~(~). With t h i s nota t ion the rows of

the parsing matr ix are indexed by r. Given ¥i = h i (Y) and Y2 = h2(Y) the o r i g i na l

s t r i n g ¥ is un iquely determined due to the i n j e c t i v i t y o f (h l , h 2) : V ÷ V l x V 2.

To ensure tha t Lemma 1 is s a t i s f i e d , the const ruc t ion a lgor i thm fo r sets o f va l i d

items (Algor i thm 5.8 in [2]) is modif ied to ru le out cer ta in items tha t are never asso-

c ia ted w i th any compatible de r i va t ions . Furthermore, add i t iona l in format ion cons is t -

ing o f o r i g i n a l parser s ta te (ST par t) and lookahead (LA par t) must be attached to each

parsing act ion w i t h i n an en t ry . This gives parsing act ion en t r ies in the mat r ix f i

o f the form

f i ([Y i] , u i) = U ((f ([~] , v) , [~] , v) } ,

where [B] is the ST par t and v is the LA par t . The union is over lookaheads v such

79

that v i = u i and over states [B] of the canonical LR(k) parser related in a rather

complicated way to the component parser state [T i] . Even with th is added information

and the modified construction algorithm the component parsers may not operate deter-

m in i s t i ca l l y . The deta i ls are given in Section 4.2 of [12].

Direct Paral le l Decom~g_sition of the Ordinary LR(k) Parser

As in the decomposed grammar para l le l parser construction method, or ig inal parser

state and lookahead must be associated with each parsing action value.

Def in i t ion: f ([¥] , u) ~ (f ([y] , u) , [y] , u) .

This i s n ' t bad as i t seems since the f t r i p l es can be nicely encoded. See the example

at the end of the paper.

S im i la r l y , the goto requires the or ig inal state to maintain determinism in the

general case--the symbol X is not required since i t is uniquely determined by g([y] ,X)

and [y].

Def in i t ion: g([y] ,X) e (g ([y] , X) , [y]) .

The columns of the parsing action (goto) matrices of the ordinary LR(k) parser

are merged according to the par t i t i on of V induced by the respective h i to obtain the

respective columns of the component parsing action (goto) matrices. The merger of the

rows (which inc identa l l y defines the "states" of the component parsers) may be done

in any fashion which preserves the correct determination of the state of the ordinary

para l le l parser for each reachable component-state pair ,

By proper row merging (with dupl icat ion) one obtains exactly the parser of the

preceding section (in th is case the ST part of the goto function is unnecessary). I f

no row mergers are performed then each component parser has the same states as the

ordinary LR(k) parser. The simple guaranteed approach employed in th is section is

to l e t J be any system of representatives of r and to merge rows ~ ~ J and ~ ~ J i f

~i = ~i"
With these res t r ic t ions the parsing action matrix and goto matrix for each com-

ponent of the para l le l parser are defined as the merge of a l l rows and columns (of the

ordinary parsing action and goto matrices, respect ively) whose indices are ident ical

under the component parser's homomorphism.

Def in i t ion:

f i (- [~ i] , u i) ~ { f ([~] ,w) i ~ c J, ~i

g i ([Y i] ,X i) ~ {g([~] ,Y) I ~ ~ J, ~i

Lemma 2: (Determinism under intersect ion)

f l ([Y 1] ' U l) N f2([Y2] 'u 2) = (f ([y] , u) , [y] , u),

gz([~1]'X I) N g ([Y2]'X2) = (g ([y] ,X) , [y]) . []

= ~ i ' wi = u i ' f ([~] ,w) ~ er ror } ,

= ~ i ' Yi = × i ' g([B],Y) ~ error} ,

80

The para l le l parsing algorithm with each component parser i employing i t s respec-

t i ve f i and gi matrices is the fol lowing.

A199rithm 3: (from Aho and Ullman [2, p.375])

Input: A s t r ing z ~ z* to be parsed. I n i t i a l l y each parser i has state [y]

(the i n i t i a l null s t r ing state symbol) on i t s stack and has z i as input.

Output: The r ight parse of z i f z m L(G), er ror otherwise.

Method: Do unt i l accept or error ;

(I) Let [y i] be respective states on top stacks.

(2) Determine respective lookahead symbols u i from next k input symbols of z i .

(3) Compute f i ([Y i] , u i) and ext ract f ([¥] , u) from i t .

(a) I f f ([y] , u) = sh i f t then the next input symbol (say ai) is read and pushed

onto stack i . Now compute N g i ([Y i] , a i) = ([%a], [¥]) and push [Yia i] onto

stack i . Return to step (I) .

(b) I f f ([y] , u) = reduce r and r : A ÷ ~ then 21m I symbols are popped from stack

i and r is wr i t ten once to the common output. Let [B i] be the new state on

top of stack i . Compute Ng i ([~ i] ,A i) : ([~A],[~]) and push [BiAi] onto

stack i . Return to step (1).

(c) I f f ([y] ,u) = accept m reduce 0 then announce success.

(d) I f f i ([Y i] , u i) = 9, announce error.

The parallel parser simulates the ordinary LR(k) parser,

Theorem 4:

The ordinary LR(k) parser w i l l be in configuration (y°XZy1...xJyJ, x, .,) i f and

only i f the para l le l component parsers are in the respective configurations (YiXiYi...° i z

X j J x i , ~) i = 1,2 (the equivalence class brackets [,] have been dropped for
iYi , , , ,

c la r i t y) . D

An Example of a Paral le l LR(1) Parser

The example is based on a p a r t i a l l y s impl i f ied parser from Anderson et a l . , [3] .

Figure 1 is taken from the i r paper. Figure 2 gives the parsing action (only sh i f t

and error en t r ies) , Figure 3 the corresponding terminal goto matrix and the nonterminal

goto matr ix, and each of Figures 2 and 3 show three vectors associated with the "states"

of the parser:

(PA) Applicable row of parsing action or terminal goto for the parser states 1

through 17.

(PR) Production associated with a state.

(NG) Applicable row of nonterminal goto matrix for the given state.

In the two goto matrices, positive numbers, n, are next-states and negative numbers,

-n, are collapsed reduce rows, signifying a reduction by the production I-nl . Elimi-

8'f

~ , ~ 0

1 1 l

2 1 2

3 2 l

4 2 2

5 2 3

6 2 4

7 3 1

8 4 l

9 5 3

IO 6

I1 7

12 8

13 9

14 I0

15 l l

16 12

17 13

1

2

3

4

5

6

7

8

9

lO

I I

12

13

id + () * i f then or else

I0

*I0

"12

I0

* I I

9 14

5 -3

5 6 -3

5 *9

5 *9 6

-6 -6 6 -6

Parsing Action

:= _L_

-14

-3

-3

-6

S A I E T P B L

-0 -0 -0 12 13 13 11 -4

I -13 -13 -13 15 15 16

I 7 17 17

-8

Goto

Figure I .

nation of LR(O) reduce states, par t ia l chain derivat ion elimination~ and reordering

a f te r merger of rows has already been done. The important point is that any s impl i -

f icat ions not af fect ing the number of columns may be performed before applying the

para l le l decomposition.

Al l reduce actions (represented by production numbers) have been deleted from

the parsing action and placed in the PR vector since there is at most one production

associated with a given state and each nonshift entry for that state may default to

that par t i cu la r reduction. In general, i f the grammar is weak precedence (a l l weak

precedence grammars are SLR(1) [8, p,209]) and no chain der ivat ion el iminat ion has

been performed, then each state of the canonical SLR(I) parser w i l l have at most one

type of reduction, [12].

82

~- ~ PA PR

1 1

2 1

3 2

4 2

5 2

6 2

7 3 14

8 4

9 5

I0 6

I I 7

12 8 3

13 9 3

14 I0

15 I I

16 12

17 13 6

NG id +

S

S

S

S

S

() * i f then or else :=

S S

Parsing Action

Figure 2

Normally one combines the terminal port ion of the goto matr ix with the parsing

action [I , p.108] but th is is not desirable here since we want j us t one symbol in the

parsing act ion matr ix to keep the example simple. Furthermore, the en t i re goto matr ix

can be merged compactly without regard to blank ent r ies , which are inaccessible [2,

p.589].

The para l le l parser is constructed by merging j us t terminal columns of the pars-

ing action and terminal goto matr ix according to h l ,h 2 given in Figure 4. Merging

rows can also be considered but makes the construct ion much more d i f f i c u l t . Without

merged rows the ST parts in both parsing action and goto matrices are superfluous.

is sparse enough that the LA parts of f ([~ i] , u i) are unneces- The parsing action

sary in a l l but row 12 in Figure 4. For row 12 a secondary s h i f t symbol S is s u f f i -

c ient to encode the necessary information from the LA part required for unique deter-

mination of the or ig ina l parsing act ion.

In row 12,

fz(12,2)N re(12,2) = S ((2,2) encodes ")")

whi le

f1 (12 ,1)n f2 (12 ,2) = ~ ((1,2) encodes "e lse")

83

5

6

7

8

9

I0

11

12

13

14

15

16

17

t~ OJ

~ ~ PA PR NG

1 1 1

2 1 2

3 2 1

4 2 2

2 3

2 4

3 14 1

4 1

5 3

6

7

8 3

9 3

I0

I I

12

13 6

id

- I0

I -12

l lO

l
I

- I I

÷ () * i f then or else :=

8

4

9 14

5 -9

5 -9

Terminal Goto

S A I E T P B L
1

-0 -0 -0 12 13 13 I I - 4 |

l -13 -13 -13 15 16 16

7 17 17 /

J ,,...-=-. - 8

Nonterminal Goto

Figure 3.

s ign i f y i ng er ror .

As the terminal goto matr ix is sparse, i t may be merged using the ind i rec t ad-

dressing methods in [3] . The resu l t is given in Figure 4. The f ive entr ies with mul-

t i p l e values should be kept in an a u x i l i a r y table. In other cases i t may be preferable

to use the para l le l decomposition only for the parsing action and run a l l subparsers

from a s ingle goto matr ix.

The parsing act ion decomposition is essen t ia l l y a decomposition-encoding done

for each separate row. B r i e f l y s tate, a decomposition-encoding of a binary-valued

vector (Vo,V z Vn_l) is two vectors F I and F 2 such that

V w (F I (h I (j)) ~ F2(h2(j))) = Vj

(~/w represents a w-input OR funct ion giv ing a s ingle b i t resu l t ; ~represents w

84

rw
LJ mm

0

1

2

3

4

5

6

7

8

9

I0

I I

12

13

hl
f 1 i
0 1 2 3 0

hz

1

S

S

S S

S S

S

S

S

S

S

S

S S

S S

S~ S

S

Parsing Action

I
2

f

0

_10,8

10,4

-12

I0

- I I

h I

2

5 , - g

5,-9

!

3

9,14

/

0

I0

- I0

-12

I0

3

9

- I I

h 2

1

14

5

5,6

2

Terminal Goto

5 -9

5,6 -9

6

hl

0 1 2 3 2

10,8 8

- I0 ,4 2

-12 -9

- I I

2

6 5,-9

3

9,14

h2

0 1

I0

- I0 4

-12 5,6

3

9 14

- I I

Terminal Goto (Merged)

id + () * i f then or else := _]__

h z 0

h 2 0

2 0 2 1 0 3 3 1 2 1

1 1 2 1 0 0 1 2 0 0

Figure 4.

para l le l 2- input AND funct ions) . This encoding is nearly as compact as simply pack-

ing b i ts in to a word but does not require any s h i f t operation to access a desired b i t .

For fu r ther deta i ls see [7,12]. A second decomposition-encoding or packing may be

performed to merge the rows in to a more compact form. Since LR(k) parsers for actual

programming languages al low a s h i f t fo r only a very few lookaheads in a given state,

a para l le l decomposition should introduce a r e l a t i v e l y small number of addi t ional

85

s h i f t symbols l i ke i . By t ry ing various sets of homomorphisms with the i n jec t i ve

property i t may be possible to millimize the number of addi t ional s h i f t symbols re-

quired (equ iva lent ly the number of b i ts required in the decomposition-encoding), A

heu r i s t i c procedure fo r tes t ing such homomorphisms in a pract ical way is l e f t for

fu r ther invest iga t ion . For example~ i t is possible by a clever choice of homomorphisms

to encode the parsing action of Figure 2 using only a s ingle s h i f t symbol, as shown in

Figure 5. This gives a to ta l parsing action storage requirement of 13 x 7 = 91 b i ts

as compared to the or ig ina l matr ix of 13 × I0 = 130 b i ts . In general, i t should be

possible to encode the en t i re parsing action matr ix in considerably less space than

required by other methods.

h- 1

8

9

I0

I I

12

13

r
0

1 S

2 S

3

4 S

5 S

6

7

S

!El E2
I r ~- ' --!

1 2 3 0 1 2

S

S S

S

S

S

S

S S S

S S

S S S

S

S S S

S S S S

S S

Parsing Action

id + *) (1 then or i f := else

0 1 2 3 0 1 2 3 0 1 2

0 0 0 0 1 1 1 1 2 2 2

Figure 5o

Concl us ions

In conclusion, para l le l decomposition appears to o f fe r economies of space for

LR(k) parsing. However, th is must s t i l l be checked in cases of pract ica l in te res t .

As a theoret ic too l , para l le l decomposition increases our understanding of the nature

of parsing. I t has already led to other s imp l i f i ca t i ons of the parsing process as

reported in [7] .

86

References

[I] Aho, A. V., and Johnson, S. C. LR parsing. ACM ComPuting Surveys 6,2 (June
1974), 99-123.

[2] Aho, A. V., and Ullman, J. D. The Theory of Parsing, Translating, and Compil-
ing, Vol. I and I I . Prentice-Hall, Englewood Cl i f fs , N. J., 1972, 1973.

[3] Anderson, J., Eve, J., and Horning, J. J. Efficient LR(1) parsers. Acta In-
formatica 2,1 (1973), 12-39.

[4] Benson, D. B. An abstract machine theory for formal language parsers. Acta
Informatica 3,2 (1974), 187-202.

[5] Benson, D. B. The basic algebraic structures in categories of derivations.
Information and Control 28,1 (May 1975), 1-29.

[6] Benson, D. B. Some preservation properties of normal form grammars. SIAM J.
Computing 6,2 (1977), to appear.

[7] Benson, D. B., and Jeffords~ R. D. A vector encoding technique applicable to
tabular parsing methods, submitted to Comm. ACM.

[8] DeRemer, F. L. Practical translators for LR(k) languages, Tech. Report MAC
TR-65, Project MAC, M.I.T., Cambridge, Mass., Oct. 1969.

[9] Eilenberg, S. Automata, Languages, and Mac.hines, Vol. B. Academic Press,
New York, 1976.

[lO] Fischer, C. On parsing context free languages in parallel environments.
Cornell U. TR75-237 (1975).

[l l] Hartmanis, J. and Stearns, R. E. Algebraic Structure Theory of Sequential
Machines. Prentice-Hall, Englewood Cl i f fs , N.J., 1966.

[12] Jeffords, R. D. Algebraic decomposition of parsers. Ph.D.Diss., Washington
State Univ., Pullman, Wash., Feb. 1977.

[13] Korenjak, A. J. A practical method for constructing LR(k) processors. Cow.
ACM 12,11 (Nov. 1969), 613-623.

[14] Schnorr, C. P., and Walter, H. Pullbackkonstruktionen bei Semi-Thuesystemen.
E.I.K. 5,1 (1969), 27-36.

[15] Walter, H. Verallgemeinerte Pullbackkonstruktionen bei Semi-Thuesystemen und
Grammatiken. E.I.K. 6,4 (1970), 239-254.

