PARALLEL DECOMPOSITION OF LR{k) PARSERS*
(Extended Abstract)

David B. Benson** and Ralph D. Jeffords***

Computer Science Department
Washington State University
Pullman, Washington 99164/USA

Introduction

The practical goal of our work is to produce highly compact tables for table-
driven parsers. The motivation 1ies in the recent hardware developments of fast ROM
and microcomputers. The theoretical goal is a better understanding of the algebra--
particularly algebraic decomposition--of syntax and parsing machines [4,5,6]. This
paper considers LR(k) parsers, but we firmly believe the same techniques will work at
least as well for the other standard table-drive techniques (LL(k), precedence, etc.).

Series decomposition of parsers is standard. One ysually has a lexical analysis
whose output is input to the syntactic analysis. Also, Lorenjak's LR(k) analysis [13]
resembles a serial decomposition although the results are recombined before run~time.
Paraliel decomposition has been explored for sequential machines [9,11], but not for
parsers, although the motivation for this work stemmed from reading [14,15]. The
notion of parallelism used in [10] requires having the entire input available at once,
a different notion from parallel decomposition. It appears that the technique in [10]
and the parallel decomposition presented here could be combined to provide a parallel
decomposition of parsers working on distinct input segments.

To have a parallel decomposition of a language, it suffices to have a monofunctor

fig+5 %8,

from the syntax category, S, of the original grammar to the product of the syntax cate-
gories for the "quotient" grammars 3, and S, [5,6].. (Although parallel decomposition
into only two components is covered in this paper, the generalization to more than two
components is straightforward.) However, for our explorations in this paper, we ob-
tain tractability by additional restrictions on f:

f = (hy,h,), with h § 54, 1=1.2,

where each h; is a Tength preserving homomorphism on strings and carries rules bijec-
tively to rules. Thus, h; preserves the Tength of derivations and the resulting system
can be viewed as encoding each symbol in the original alphabet V = NUZ as a pair of

* Research supported in part by NSF Grant MCS 73-03497A01.
** Current address: Computer Science, University of Colorado, Boulder, CO 80309/USA

***Cyrrent address: Computer Science, School of Engineering, University of Mississippi,
University, MS 38677/USA

of symbols in V, x Vz'
There are two approaches to constructing parallel LR{k) parsers:
(1) Decomposition of the language (grammar).

A modification of the LR{k) parser construction algorithm is used to con-
struct a parser for each of the "quotient” grammars, G, and G,, of the re-
spective decomposed syntax categories, 51 and §2.

(2) Decomposition of the parser.

Column and (optionally) row mergers are applied in two different fashions
to the LR(k) driving matrices to obtain the two component parsers.

In either case the resulting component parsers are essentially mergers of the
columns and rows of the ordinary LR(k) parsing matrices {(with possible duplication).
Standard coding results then lead cone to believe that the number of columns needed in
LR(k) driving matrices should substantially decrease at least in the case of parsing
action matrices, which are usually quite sparse. There is a cost however. The paral-
Tel parser will, on a uniprocessor, run at about one-third of the speed.

///),d Patfer

AN Both

\‘ parsers
have

Coordinator —f
1 identical
/ right parse

y 4 as output.

Parser
2

The two parsers do not run independently in contradistinction to the case of sequen-
tial machines. At each step they must be coordinated which requires about as much
time as each parser step.

Grammar Decomposition Approach to a Parallel LR{k) Parser

The details consist of creating such a paraliel parser which runs nondeterminis~-
tically and then establishing the additional restrictions necessary to obtain deter-
minism once again.

Given an LR(k) grammar G = (N,£,P,S) where P is an indexed set of productions
with indices T,...,r,...,|P|, and surjective hi: V> V;, 1 =1,2, let

6; = (N4, Zys Py, Si)’ i=1,2
be grammars such that

(1) N = thiy(A) | A>3 e P}

78

i

(2) 5y = h(V) - N

(3) V. = NiU Zi’

(8) P is indexed by 1,...,|P| with productions
hi(r: A-g)=r: hi(A) > hi(B),

(58) S. =h.(S) .

Then hi extends to a syntax functor from S$(G) to §(Gi) [5,61. We now require
{hy,hy): Vy =V, x V, injective to obtain the following fundamental

Lemma 1: o =>" g if and only if hy(a) =" hy(8) and h,(a) =" h (8) ,
where = is the right parse of g8 0 o. [

Thus compatible derivations in the image syntaxes uniquely determine the original
derivation. For notational convenience, let v, denote hi(Y) for each string vy.

Let Ti be LR(k) parsers for Gi~-it doesn't matter that the Gi are not necessarily
LR(k), just construct the tables for a nondeterministic k-lookahead parser using the
LR construction methods. Each row S5 of the T; matrices consists of the parsing action
entry fi{si,—d and the goto entry gi(si,—ﬁ, [2]. For lockahead u the entry fi{si’ui)
is a set of actions since Ti is nondeterministic. (This is the same type of construc-
tion used in [1] for constructing parsers for "ambiguous grammars".) The coordination
consists of taking fi(sl,ul}iﬁ fz(sz,uz} when Ti is in state Sy i=1,2. The result-
ing set of actions is used by both parsers. For various reasons, Ifl(sl,ul) N
fz(sz,uz)} > 1 in some cases and the parallel parser runs nondeterministically. We
can show that it is correct but lacks immediate error detection, as defined in [4].

To obtain determinism and immediate error detection, additional information and
restrictions are required. To explain these, some notation is desirable. let W =
Iy | vg(v} # 0} be the set of viable prefixes. Define «v S g if and only if vf(y) =
E(B). Now fet T = W/;. I will be used to index the sets of valid items VE. Define
the domain of f (parsing action function) to be T x E*k.

)

Define g: I x V=T to be

g([y1,X) = [8] if and only i GOTO(V(y),X) = V}(8). With this notation the rous of
the parsing matrix are indexed by T. Given y, = h (v} and v, = hy(y) the original
string v is uniquely determined due to the injectivity of (hl’hz): V>V, x V.

To ensure that Lemma 1 is satisfied, the construction algorithm for sets of valid
items (Algorithm 5.8 in [2]) is modified to rule out certain items that are never asso-
ciated with any compatible derivations. Furthermore, additional information consist-
ing of original parser state (ST part) and lookahead (LA part) must be attached to each
parsing action within an entry. This gives parsing action entries in the matrix f;
of the form

fi(ly;Jouy) = U LF(L8,v) . [815v)s

where [g] is the ST part and v is the LA part. The union is over Tookaheads v such

78

that Vi T Uy and over states [B] of the canonical LR(k) parser related in a rather
complicated way to the component parser state {yi]. Even with this added information
and the modified construction algorithm the component parsers may not operate deter-
ministically. The details are given in Section 4.2 of [12].

Direct Parallel Decomposition of the Ordinary LR(kK) Parser

As in the decomposed grammar parallel parser construction method, original parser
state and lookahead must be associated with each parsing action value.

Definition: %([y],u) = (f([v],u),[v].u).

This isn't bad as it seems since the % triples can be nicely encoded. See the example
at the end of the paper.

Similarly, the goto requires the original state to maintain determinism in the
general case--the symbol X is not required since it is uniquely determined by g([v],X)
and [v].

M S:]([Y]’X) = (Q(EY],X),[Y])

The columns of the parsing action {goto) matrices of the ordinary LR{k) parser
are merged according to the partition of V induced by the respective h; to cbtain the
respective columns of the component parsing action {goto) matrices. The merger of the
rows (which incidentally defines the "states" of the component parsers) may be done
in any fashion which preserves the correct determination of the state of the ordinary
parallel parser for each reachable component-state pair.

By proper row merging {with duplication) one obtains exactly the parser of the
preceding section (in this case the ST part of the goto function is unnecessary). If
no row mergers are performed then each component parser has the same states as the
ordinary LR{k) parser. The simple guaranteed approach employed in this section is
to let J be any system of representatives of T and to merge rows o ¢ J and g ¢ J if
ay = B}-.

With these restrictions the parsing action matrix and goto matrix for each com-
ponent of the paraliel parser are defined as the merge of all rows and columns {of the
ordinary parsing action and goto matrices, respectively) whose indices are identical
under the component parser's homomorphism.

Definition:
fi(‘[“{i:}sui) = {'F([B],W) § e J, 3 = Yy w
g;{[v;1.Xx,) = (g([81.Y) | 5 ¢ 3, By = vys ¥

Uss f([el.w) # error} ,
Xi» 9([81.Y) # error} ,

Lemma 2: (Determinism under intersection)
fl([Yl]’ul-)ﬂ fZ([YZJ’UZ) = (f(["{]su)s {Y}s U),
9,([v,1:X) 0 g ([, 14)) = (a([v1.%), [vD). O

80

The parallel parsing algorithm with each component parser i employing its respec-
tive fi and 95 matrices is the following.

Algorithm 3: (from Aho and Ullman {2, p.375])
Input: A string z ¢ £* to be parsed. Initially each parser i has state [v]
(the initial null string state symbol) on its stack and has z; as input.
Qutput: The right parse of z if z ¢ L{G), error otherwise.
Method: Do until accept or error;
(1) Let [yj] be respective states on top stacks.
(2} Determine respective Tookahead symbols uj from next k input symbols of z;.
{3) Compute fi([*i}’“i) and extract f([y],u) from it.
(a) If f([yl.u) = shift then the next input symbol (say ai) is read and pushed
onto stack i. Now compute rygi([yij,ai) = ([yal,[y]) and push [Yiai] onto
stack i. Return to step (1}.
(b) If f([vI.u) = reduce r and r: A » o then 2]a| symbols are popped from stack
i and r is written once to the common output. Let [Bi] be the new state on
top of stack i. Compute (?gi(fsi],Ai) = ([gA],{g]) and push fﬁiAil onto
stack i. Return to step (1).
(¢) If f([yl,u) = accept = reduce 0 then announce success.

(d) If fi([yi]’ui) =), announce error.

The parallel parser simulates the ordinary LR(k) parser,

Theorem 4:

The ordinary LR(k) parser will be in configuration (v?XIyl...Xx9yJ, x, =) if and
1

only if the parallel component parsers are in the respective configurations (yQlei. .

11

ngg, Xs 7}, i = 1,2 {the equivalence class brackets, [,], have been dropped for

clarity). [

An Example of a Parallel LR(1) Parser

The example is based on a partially simplified parser from Anderson et al., [3].
Figure 1 is taken from their paper. Figure 2 gives the parsing action (only shift
and error entries), Figure 3 the corresponding terminal goto matrix and the nonterminal
goto matrix, and each of Figures 2 and 3 show three vectors associated with the "states”
of the parser:
(PA) Applicable row of parsing action or terminal goto for the parser states 1

through 17.

(PR) Production associated with a state.
(NG) Applicable row of nonterminal goto matrix for the given state.
In the two goto matrices, positive numbers, n, are next-states and negative numbers,
-n, are collapsed reduce rows, signifying a reduction by the production l-n{. Elimi-

g’

o
g s
;&fg E’Lig f‘% id + { 3 * if then or else = |
1 1 1 1 10 8
2 1 2 2 *10 4
3 2 1 3 2 -14
4 2 2 4 *12
5 2 3 5 10
6 2 4 6 3
7 3 1 7 9 14
8 4 1 8 5 -3 -3
9 5 3 9 5 6 -3 -3
10 6 10 *11
11 7 11 5 *9
12 8 12 5 *9
13 g 13 -6 -6 6 -6 -6
14 10 Parsing Action
15 11
16 12
17 13 5 A I E T p B L
1 -0 -0 -0 12 13 13 1 -4
2 -13 -13 -13 15 16 16
3 7 17 17
4 -8
Goto
Figure 1.

nation of LR(0) reduce states, partial chain derivation elimination, and reordering
after merger of rows has already been done. The important point is that any simpli-
fications not affecting the number of columns may be performed before applying the
paraliel decomposition.

A11 reduce actions {represented by production numbers) have been deleted from
the parsing action and placed in the PR vector since there is at most one production
associated with a given state and each nonshift entry for that state may default to
that particular reduction. In general, if the grammar is weak precedence (all weak
precedence grammars are SLR(1) [8, p.209]) and no chain derivation elimination has
been performed, then each state of the canonical SLR(1) parser will have at most one
type of reduction, [12].

82

Parser
State

PA PR NG id +) * if then or else :=
1 1 1 S
2 1 2 S
3 2 1 S
4 2 2
5 2 3
6 2 4 S
7 3 14 1) S
8 4 1 S
g 5 3 S S
10 6 S
1 7 S
12 8 S
13 9
14 10
15 1 Parsing Action
16 12
17 13 6

Figure 2

Normally one combines the terminal portion of the goto matrix with the parsing
action [1, p.108] but this is not desirable here since we want just one symbol in the
parsing action matrix to keep the example simple. Furthermore, the entire goto matrix
can be merged compactly without regard to blank entries, which are inaccessible [2,
p.589].

The paralle] parser is constructed by merging just terminal columns of the pars-
ing action and terminal goto matrix according to h,,h, given in Figure 4. Merging
rows can alsoc be considered but makes the construction much more difficult. Without
merged rows the ST parts in both parsing action and goto matrices are superfluous.

The parsing action is sparse enough that the LA parts of %([Yij’ui) are unneces-
sary in all but vow 12 in Figure 4. For row 12 a secondary shift symbol S is suffi-
cient to encode the necessary information from the LA part required for unique deter-
mination of the original parsing action.

In row 12,

f,(12,2)n f2(12,2) =8 ((2,2) encodes ")")
while

f,.02,1)nf,(12,2) = ¢ {{1,2) encodes "else")}

83

Earser
State

PA PR NG id +) * if then or else =
1 1 1 10 8
2 1 2 -10 4
3 2z 1 2
4 2 2 -12
5 2 3 10
6 2 4 3
7 3 14 1 9 14
8 4 1
9 5 3 6
10 6 =11
1 7 -9
12 8 -9
13 9
14 10 Terminal Goto
15 1
16 12
17 13 6
S A 1 E T P B L
1 -0 -0 -0 12 13 13 11 -4
2 ~13 =13 -13 15 16 16
3 7 17 17
4 -8

Nonterminal Goto

Figure 3.

signifying error.

As the terminal goto matrix is sparse, it may be merged using the indirect ad-
dressing methods in [3]. The result is given in Figure 4. The five entries with mul-
tiple values should be kept in an auxiliary table. In other cases it may be preferable
to use the parallel decomposition only for the parsing action and run all subparsers
from a single goto matrix.

The parsing action decomposition is essentially a decomposition-encoding done
for each separate row. Briefly state, a decomposition-enceding of a binary-valued
vector (VO,Vl,...,V is two vectors F1 and F, such that

n-z)
V, (FL(h,(3) 4 Fyh,())) = Vs
(\/w represents a w-input OR function giving a single bit result; 4 represents w

84

f 1 f 1 i 1 f 1
01 2 3 0 1 2 0 1 2 3 0 1 2
1 S S 10,8 10 8
2 S S -10,4 -10 4
3 S S 2 2
4 S -12 -12
5 S 10 10
& 6 S 5 3 3
g
S 7 S1S 9,14 9 14
= 8 5
(=]
o 9 S S 6 5,6
1018 S -11 -11
11 5,-9 5 -9
12 § s§ s 6 5,-9 56 -9
13 6
Parsing Action Terminal Goto
hy ny
i 1 T]
0 1 2 3 0]
10,8 10
~-10,4 2 -10 4 2
-12 6 5,-9 -12 5,6 -9
3 3
9,14 9 14
-11 -11
Terminal Goto {Merged)
id + () * if then or else = L
hy | O 2 0 2 1 0 3 3 1 2 1
h, | O 1 1 2 1 0 0 1 2 0 0

Figure 4.

parallel 2-input AND functions). This encoding is nearly as compact as simply pack-
ing bits into a word but does not require any shift operation to access a desired bit.
For further details see [7,12]. A second decomposition-encoding or packing may be
performed to merge the rows into a more compact form. Since LR(k) parsers for actual
programming languages allow a shift for only a very few lookaheads in a given state,
a parallel decomposition should introduce a relatively small number of additional

85

shift symbols like S. By trying various sets of homomorphisms with the injective
sroperty it may be possible fo minimize the number of additional shift symbols re-
quired {equivalently the number of bits required in the decomposition-encoding). A
heuristic procedure for testing such homomorphisms in a practical way is left for
further investigation. For example, it is possible by a clever choice of homomorphisms
to encode the parsing action of Figure 2 using only a single shift symbol, as shown in
Figure 5. This gives a total parsing action storage requivement of 13 x 7 = 91 bits

as compared to the original matrix of 13 x 10 = 130 bits. In general, it should be
possible to encode the entire parsing action matrix in considerably less space than
required by other methods.

1 S
2 S S

3 S S
4

5

6 S S
7 S S S

8 S

9 S S

10 S)
11 S

12 S S
13 N

Parsing Action

id o+ o) (| then or if = else
h; 1 0 1 2 3 0 1
h, 0 0 1 1 1 1 2 2
Figure 5.

Conclusions

In conclusion, paraliel decomposition appears to offer economies of space for
LR{k} parsing. However, this must still be checked in cases of practical interest.
As a theoretic tool, parallel decomposition increases our understanding of the nature
of parsing. It has already led to other simplifications of the parsing process as
reported in [7].

1]
(2]
[3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
[11]
12]
[13]
(4]
[15]

86

References

Aho, A. V., and Johnson, S. C. LR parsing. ACM Computing Surveys 6,2 {June
1974), 99-123.
Aho, A. V., and Ullman, J. D. The Theory of Parsing, Translating, and Compil-

ing, Vol. I and II. Prentice-Hall, Englewood C1iffs, N. J., 1972, 1873.
Anderson, J., Eve, J., and Horning, J. J. Efficient LR(1) parsers. Acta In-
formatica 2,1 (1973), 12-39.

Benson, D. B. An abstract machine theory for formal language parsers. Acta
Informatica 3,2 (1974), 187-202. T
Benson, 0. B. The basic algebraic structures in categories of derivations.
Information and Control 28,1 (May 1975), 1-29.

Benson, D. B. Some preservation properties of normal form grammars. SIAM J.
Computing 6,2 (1977}, to appear.

Benson, D. B., and Jeffords, R. D. A vector encoding technique applicable to
tabular parsing methods, submitted to Comm. ACM.

DeRemer, F. L. Practical translators for LR(k) languages, Tech. Report MAC
TR-65, Project MAC, M.I.T., Cambridge, Mass., Oct. 1969.

Eilenberg, S. Automata, lLanguages, and Machines, Vol. B. Academic Press,
New York, 1976.

Fischer, C. On parsing context free languages in parallel environments.
Cornell U, TR75-237 (1975).

Hartmanis, J. and Stearns, R. E. Algebraic Structure Theory of Seguential
Machines. Prentice-Hall, Englewood Cliffs, N.J., 1966.

Jeffords, R. D. Algebraic decomposition of parsers. Ph.D.Diss., Washington
State Univ., Pullman, Wash., Feb. 1977.

Korenjak, A. J. A practical method for constructing LR{k} processors. Comm.
ACM 12,11 (Nov. 1969), 613-623.

Schnorr, C. P., and Walter, H. Pullbackkonstruktionen bei Semi-Thuesystemen.
E.I.K, 5,1 (1969), 27-36.

Walter, H. Verallgemeinerte Pullbackkonstruktionen bei Semi-Thuesystemen und
Grammatiken. E.I.K. 6,4 (1970), 239-254.

