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ABSTRACT: 

Two grammars S 1 and G 2 are structural equivalent if the corresponding 

parenthesized grammars generate the same language. This definitio~ 

transfers to grammar forms in a natural way. It is shown that struc- 

tural equivalence of context-free grammar forms is decidable. 
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O, INTRODUCTION, 

In E2~ Cremers and Ginsburg define grammar families by the concept of 

grammar forms. Intuitively a grammar form F defines a grammar family 

such that any member of this family is "similar" to a fixed prototype 

grammar G F. Two natural equivalence problems arise by these defini- 

tions, first the problem wether two grammars GFi and GF2 generate the 

same grammar family (strong equivalence) and second the problem 

wether two grammars GFI and GF2 generate the same language family 

(weak equivalence). 

[23 it is shown that the first problem is decidable. The second In 

one is still open. We want to show that another equivalence problem 

which is more general than strong equivalence and less general than 

weak equivalence is decidable. 

E53 we introduce the structural equivalence of two Following grammars 

G I and G 2. G 1 and G 2 are structural equivalent if the associated 

parenthesized grammars generate the same language. This definition 

transfers in a natural way to grammar forms. It is known (E53, E6~) 

that structural equivalence of context-free grammars is decidable. 

We generalize this result to structural equivalence of context-free 

grammar forms. 

I, BASIC NOTATIONS, 

We adopt the usual notations of phrase structure grammars G=(V,~,P,~), 

context-free grammars, etc. ([3~, E~ ) with the (trivial) change 

~ V - Z. To avoid trivialities we assume (without loss of generality), 

that all grammars in consideration are reduced (~33, [63 ) and contain 

no unnecessary symbols. 

By ~ ~ (~) we denote the notion of a (direct) derivation. 

The set ~ (G) = {w ~ Z* I "~ g 1 ~ g : ~ ~-- w} 

is the generated language and 

D(G) = {oI ~ * w I w ~ Z* & O I e o} 

is the set of derivations. 
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A grammar morphism 

: V~ + V~ with 

(1) 

(ii) 

(iii) 

(iv) 

# : G 1 + G 2 is a monoid homomorphism 

~(a ) C_ 
1 U2 

#(V I - Z I) [- (V 2 - Z 2) 

¢(ZI ) I:::: * - Z2 

~ (p1) = { (#(p),#(q)) ! {p,q)~ p1 } C_ P2" 

We single out various classes of grammar morphisms. 

If # is lengthpreserving, we call ~ a fine morphism, if 

~(~) = ~(~ ~ V 1 - Zl) # is external and if ~ (t) = t (t ~ Z I) ~ is 

internal. 

In a natural way # induces ~ : D(G I) ÷ D(G2). (~4]) 

We call # closed if ; is surjeotive. For closed morphisms # we 

get: #(~ (GI)) = ~(G2). A closed, internal morphism # is called 

a reduction. # is an isomorphism if ~ and #-i are morphisms. 

To any grammar G we associate a grammar family F to be the collection 
G 

of all grammars G' such that there exists a diagram 

G - -  G" - -  G' 
< ~i ~2 > 

where #I is fine and #2 is external and closed. By I (G) we denote the 

collection of all languages ~(G') with G'~ F G. 

The existence of such a diagram is by LIO] equivalent to the notion 

of grammar forms [2] and therefore I(G) is exactly the grammatical 

language family ([-2]) associated to this grammar form. We call G 1 and 

G 2 stron~ equivalent .... (G 1 ~ G 2) if FGI = FG2 ~ and weak equivalent 

(G I ~ G 2) if l(G1) = l(G2). 

Now, consider a universal bracket pair { (,) }. 

If G is a grammar, then the associated parenthesized grammar G () is 

obtained by 

GC~=CV~{~,)} ,~ {~ , ) } , {CP,  Cq))1 CP,q)~ P},o~ C[~],E6]). 

Denote by I() (G) the collection of all languages ~ (G ' ()) with 

G'~ F G . 

G 1 and G 2 are called structural equivalent (G I - G 2) if 

I() (GI) = I () (S2) . 
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It is easy to check: 

G I ~ G 2 .... > G I H G 2 --> G I ~ G 2. 

Example: Consider G 1 and G 2 specified by 

P1 : ~ ÷ o I + a~ + 

~1 ÷ ° I ~ I  + ° I  + 

P2 : a ÷ ~I + a~ + 

It is easy to check that A(G I) =~reg~ = l(G2)' ~() (G2) ~- ~lin and 

D 1 ~ ~() (GI) , where D 1 is the Dyck language over { (,)}, hence 

G! ~ G 2 but G I ~ G 2. 

From now on, we assume without further mentioning all grammars to be 

context-free. 

2, PRELIMINARY RESULTS, 

IN this section we derive some results on grammar morphisms and paren- 

thesized grammars, which are necessary to prove our main result. 

We state without proof. 

Lemma I: Let # : G 1 ÷ G 2 be a morphism 

There exists a factorization # = #I o #2 resp. #2 o #i with #2 

internal and #I external. If # is closed then ~2 is closed. 

Lemma 2: If #I : GO ÷ G I is closed and external and #2 : GO ÷ G2 is 

internal, then there exist @I : G2 ÷ G3 closed and external and 

~2 : GI + G3 internal with @2#i = ~i#2. Moreover, if #I is fine then 

@I is fine and if #2 is a reduction then ~2 is a reduction. 

We now study the effect of parenthesizing. Obviously there is a 

canonical external and closed morphism e : G () + G defined via 

bracket erasing. 

Consider a morphism # : G 1 + G 2, then # induces a unique morphism 

#() : G~ ) G~ ) such that 

- - >  G 2 
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is commutative. Observe that in a certain sense parenthesizing is a 
() 

functor. Obviously properties of ~ transfer to ~ , especially if 
() 

is a reduction then ~ is a reduction. 

This yields 

Fact: If ~ : G I + G 2 is a reduction, then ~(G~ ) ) = ~ (G~)). 

Conversely if ~ : G~ ) + G~ ) is a "bracket" morphism (~(()=(&#())=)), 
^ 

then ¢ induces ¢ : G I + G 2 with % = ~(). Again properties of 
^ 

transfer to ~. 
Call a grammar G invertible if (p,q) & (p,q') ~ P .... > q = q'. 

Lemma 3: To any grammar G there exists a diagram 

¢i ~2 --> Ginv 
G < G O 

where ~1 and ¢2 are reductionsand G inv is invertible. 

Proof: We analyze the construction of G inv given in [5] ,[6]. 

Ste~ I: "G inv" 

Consider Z' = 2 V-Z -{~}. Define a substitution ~: (Z' V Z)@÷ 2 V@ by 

I zl ' zl ~ z' 
~(Z 1 ) 

{z i} , z i 6 z. 

to any q ~ (Z'~ Z) @ consider 

S 1 = {~ I q' with ~ ÷ q' & P & q' ~ p(q)}. 

NOW define G inv as follows 

G inv = (V',Z,P',s') 

(i) 

(ii) 

(iii) 

V'- Z = {SqIS q + ~, q = toe t I ..... S t. 
ql qi i 

with Sql + ~, t~ 7~ ~, q,ql~ (Z' %~ Z)~;O,< I ~< i} 

P' = { (Sq,q) I q & (Z' V Z) W & Sq ~ V'- 7} 

o' -- {sq I sq~ ~ + ~ } 

It is easy to check, that G inv is invertib!e. 
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Step 2: "G #1,#2" O' 

Define G O = (Vo,Z,Po,So) by 

(i) V 0 - Z = { (Sq,~) I~ 6 Sq, q ~ V' - Z} 

(ii) G 0 = { (Sq,~1) I ~I ~ ~ /% Sq} 

(iii) Po = { (Sq,~) + to(Sql,~ I) ..... (Sqi,~i)til 

~) i % O, t I ~ Z~(O ~ ~ 6 i) 

S) ~ ~ Sq,n I ~ Sql (i ~ I ~ i) 

= f. t. Y) q tOSql "*'Sqi 1 

~) ~ + ton I .... ,~iti~ P}. 

Induce #I and #2 by #l((Sq,~)) = ~ and #2((Sq,~) = Sq. 

Ste~ 3: "#I is a reduction" 

We observe first for all ~I ~ 

#11(al) = {(Sq,Ul) lql~ S } q O" 0 . 

Now consider (Sq,~) + to(Sq,n I) ... (Sqi'ni)ti ~ PO 

(Sq ') ... (Sq~,~) tj such that 
q, . % i'll 

...  iti = ° ... 

and 

= ! = ! ! = We conclude j = i, t O to,...,t f t i, n I = nl,...,n i n i. 

On the other hand, by ~ ÷ ton I ... nit i ~ P we get ~ ~ Sq,, hence 

(Sq,,~) ÷ to(Sql,n I) ... (Sqi,ni)t i 6 PO" 

This proves, that #I is coperfect in the sense of ~1]. Hence #I is 

a reduction ([11~) . 

Step 4: "#2 is a reduction" 

Again, we observe the following fact. 

If Sq 6 ~', then there exists ¢I ~" G "~ Sq, 

This proves #2(~O ) = O'. 

hence (Sq,q I) ~ qO" 
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Consider 

(Sq,~) + to(Sqi,nl) ... (Sqi'~i)t'l PO 

and 

(Sq,,~') with ~2(Sq,,~') = ~2((Sq,~)) . 

= . toSql . . . .  We g e t  Sq Sq,  S i n c e  ~ '  ~ Sq and  q = S q i t  t t h e r e  e x i s t  

.. ' n' ... n~t ~ p and n~ ~ Sql (I g I ~ i) . n~ . ~.~ w i t h  ~ '  + t o  1 1 i 

We conclude 

(Sq,~') + to(Sql,n ~) ... (Sqi,n ~) t i e PO 

and 

~2(tQ (Sql,~ ~) .-. (Sqi,n~)t i) = ~2(to(Sql,n I) .-. (Sqi, ni)ti)- 

This proves that ~2 is perfect in the sense of Eli]. Hence #2 is a 

reduction (~ i~) . 

We are now able to prove one of the key theorems. 

Theorem I: The following statements are equivalent for two grammars 

G I and G 2 

(2) There exists a diagram 

G O ~> G 2 G1 < 41 ~2 

where 41 and ~2 are reductions. 

Proof: (2) .... > (i) with the above fact. 

(i) " --> (2). By lemma 3 there exist two diagrams 

G inv (i = 1,2) 
Gi< i GI i > i 

~I ~2 

i i 
with ~i and ~2 reductions (i=i,2). 

Parenthezising leads to diagrams 

G ! ) < ~  G! () --~-> G? () (i = 1,2) 

I ~2 
i i 

where ~I and ~2 are reductions and G? (1 is invertible (i = 1,2) 
l 

Since 

we obtain from E5~, that there exists an internal isomorphism between 
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() () 
G~ and G~ 

Hence we get a diagram 

@1 ~2 

where all arrows are reductions. 

^2 
~2 

Removing the brackets, we get a diagram 

1 /@3 

G o G 2 

^2 t 
*l 

where all ~i(i = 1,2,3,4) are reductions. 

By a theorem of ~] , [9~ we can fill in this diagram with reductions 

@5 and ~6" 

G' 

Now, letting ~I = @i~5 and 42 = ~4~6 , we get the theorem. 

3, THE MAIN THEOREM 

We are now in the position to prove a characterization of the struc- 

tural equivalence. 

Theorem 2; The following statements are equivalent for two grammars 

G I and G2: 

(I) I ()G 2 ~ I() (GI) 

(2) There exists a diagram 

~I ~2 ¢3 ~4 
G I < - -  G~ - - >  G O < - -  G~ - - >  G 2 

with 
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(~) #l is internal 

(~) ~2 is a reduction 

(Y) ~3 is fine, external and closed 

(~) ~4 is external and closed. 

Proof: (i) .... > (2) 

Consider G 2. Since ~ (G~) ) ~ I () (GI) , there is a G 2 ~ FGI with 

By theorem [ and the definition of FGI we get a diagram 

closed ~ G2 
GI < f--~-~ne G1 external ~ 2 < reduction reduction ~ G2 

consider the diagram 
^ GI closed G2 

external ~ reduction > G2" 

By a theorem of LI~ we can fill in this diagram in the following way 

closed 

GI ~-- red. G~ 

L ' ext. Iclosed ext. 

red. 

Consider the diagram 
^ 

closed > G2 
G~ ext-- re----~---. > G 2 • 

By lemma 1 we can fill in this diagram in the following way 
^ 

closed 
G ~ ..... > G 2 I\ ext. 

1 -. i red. 1 ~ red. 

G~ --Jlosed ~ G2 
ext. 
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Now, we reached the following situation: 

GI < fine GI red. 
ext. 

G~ cl -osed  > G 2 

By lemma 1 again we find a diagram 

G1 <~interna I -fine GI < ext. 
closed,fine 

Consider the diagram 

G[< e x t .  
fine G~ red. > G~. 

By lemma 2 we can fill in this diagram: 

G I " ~ ext. ,@ 

i closed,fine G'i~ 

red. i ed. 
I 

ext. 
G O ~ G~ 

closed,fine 

But this proves the if-part of theorem 2. 

(2) --~> (I) Consider an arbitrary diagram 

fine ext. 
G 2 < G~ closed ~ G3 

By a theorem of ~IO] we get a diagram 

GO < fine G~ ~ fine S~ closed ext. , G3 " 

On the other hand by a theorem of ~8], E9] we get a diagram 

G~ < fine G3 red. G3" 

In summary we obtain 

~ > ~ ext. -> G3 
GI < fine G3 red. G3 closed 

w~ ~ FGI. By section 2 we get By definition: G 3 

where h is a certain, bracket preserving homomorphism. But this proves 

Z s () 
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It remains to show the decidability of statement (2) of theorem 2. 

Denote by I IGI I = Max lql- To any G and Z with Z /~ Z = 

(p,q)~ P 

associate ~ (G,Z) = {G' I G' = (Z ~ Z,Z,P',~'), I IG'i I ~ I IGI I 

& there exists a diagram 

G < int-------u" G" red-----L--" .> G' } 

Lemma 4: I~(G,Z)I < ~ and there is an algorithm which computes 

(G,Z). 

Proof: We show first, that to any diagram 

int. red. 
G < - -  G" 

exists a diagram 

--'> G ' 

G < int------c-" G"' red~ > G' 

with V"' -- Z ~ (V ~ Z) x (V'- Z). 

To prove this we consider the following equivalence relation on 

V" ~ Z : 

E ~'<~> ~i (~) = ~l (~') & ¢2(~ ) = %2{~,). 

Then define G"' = {{[~EI~ e V" - Z}V Z,Z,P"', {[~I~EI~1 ~ ~"}) 

where 

1 
if and only if 

{ ÷ toq I ... qiti 6 P" 

for all ~ , q l , - - - , q i  E V"-- Z , t  0 . . . .  , t  i ~ Z ~ a n d  i ~ O° 

By definition of ~ E ~' we get in a natural way internal ~[ and ~ 

G < G" 

T t I 

G" '~--.> G ' 

such that 

is commutative. This shows: ~ is a reduction. By construction [~_ 

is uniquely determined by ~{ ([~__) and ~ ([~E). This proves the 

above assertion. 
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To compute ~ (G,Z) we now have to inspect only (G",G') , such that 

(i) ~" = ~' = ~ (ii) V"-- ~ ~ (V - ~) × (V'-- ~) 

iii) I IG"! I ~ I IGI I , (iv) I IG'I I ~I IGi I 

Obviously, there are only a finite number of such pairs and the set of 

all these (G",G') can be effectively constructed. To any such pair 

associate 

V .I 41 : V" -- ~ + V - ~ and 42 : ~ ~ ÷ V' 

by 41([,n) = ~ and ~2([,n) = ~ (([,n) ~ V" -- E) • 

We can deaide wether 41 and 42 define internal morphism. Now, if both 

are morphisms we can decide by an algorithm due to C.P. Schnorr [7~ 

wether 42 is a reduction. 

Now, consider a grammar G and ~' with (V -- E) ~ E' = ~ and k ~ Z+. 

TO any such triple associate 

~(~,~',~) = {G'IG' = (~'V (V - Z), ~',P',~), 

I IG' I I ~ k & there exists a diagram 

G'< closed G" closed.> G} 
ext.fine ext. 

Lemma 5: I ~ (G,Z' ,k) I < ~ 

~ (G,Z',k). 

and there is an algorithm which computes 

Proof: We show first, that to any diagram 

closed closed 
S" 

G'< ext.fine ext. 

41 42 

there exists a diagram 

m ~ >  G 

G ' < G" ' - - >  G 4; ,; 

where 41 is closed, external and fine and 42 is closed and external, 

such that 

liGII 
~,,, ~ ~,× k~/ z j 

j = O 

Observe first that 142(t) I ~ I IGI I for all t ~ Z". Now consider 

the following equivalence relation on Z": 
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t - t' iff #i (t) = #I (~') & ~2(t) = ~2(t'). 

Define G"' = ({ It]= I t ~. Z"}%; (V"-- Z") ,{It] = { t ~ Z">, P"',~") 

where 

iff 

+Dot I ... ti~ i ~ P" 

for all ~O' "'" ,n ~ (V" ~ Z" ~, tl,... ,t i ~ ~" and i % O. 
i 

Again we obtain by construction a commutative diagram 

i 
G' < 

G" '~ 

G" 

~2 

> G 

where #i' is closed, external and fine and #~ is closed and external. 

Moreover [~H is now uniquely determined by ~ ([~E) and ~ ([~=). 

To compute~ (G,E',k) we have to consider all pairs (G",G') with 

{{GI{ 
(ii) Z" ~ Z' × ~ Z j 

j = O 

(iii) V"-- Z" = V' - Z' = V -- Z. 

Obviously, there are only a finite number of such pairs and all these 

pairs can be constructed effectively. Now, associate to any such pair 

(G",G') two mappings 9 I and #2 by #I (t,w) = t and ~2(t,w) = w for all 

(t,w) ~ Z". Decide wether both mappings define external morphisms. If 

the~ do, check: P' = #i (P") and P = ~2(P") which is a necessary and 

sufficient condition for #I resp~ ~2 to be closed. 

Consider now a diagram from theorem 2(2) 

int. red. closed closed 
G 1 < G~ > Go< ext.,fine G~ ext. >G2 

By definition of ~ (G,Z) and~ (G,Z',k) we get 

Go v2 - Go  cG2 I I IG111  
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This shows, that the existence of such a diagram is equivalent t~ 

Using lemma 4 and lemma 5 we can decide this last relation. This 

completes the proof of our 

Theorem 3: For any two contextfree grammars G 1 and G 2 it is decidable 

wether or not G 1 ~ G 2 holds. 

Remark: We have shown, that the relation 

l() (G2) ~ I () (GI) is decidable, too. 
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