
ON DEFINING ERROR RECOVERY IN CONTEXT-FREE PARSING

Seppo Sippu and Eljas Soisalon-Soininen

Department of Computer Science, University of Helsinki
T661~nkatu ii, SF-0OI00 Helsinki i0, Finland

I. INTRODUCTION

In compiler-compilers or parser generator systems it is necessary to have a part which

generates programs for recovery from syntactic errors. This part should be designed so

that it does not need much input other than the syntax of the language; otherwise a

detailed knowledge of the implementation of the system may be needed for its success-

ful use. In the case of bottom-up parsing, this design requirement for error recovery

is fulfilled adequately in systems based on Leinius' idea of error isolation ([14]).

Various applications of Leinius' idea are discussed in [1],[2],[3],[4],[15] and [16];

and a description of an implementation of this method in the case of LRparsing can

be found in [Ii]. More refined versions of this basic idea developed recently are the

systems of Graham and Rhodes ([7],[8],[12] and [17]) and Ciesinger [S]. Of these the

fo~Taer, however, is suitable only for precedence and bounded context parsing. A some-

what less automatic method, based on a different idea, is presented in Roehrich [18].

Another promising error recovery method, designed for LL(1) parsing, was recently in-

troduced by Fischer et al. [6].

Most of these automatic or almost automatic recovery methods, however, have two dis-

advantages. First, their use (excepting only [6] and [18]) often leads to situations

where several elements of the parse stack have to be discarded, whichmay considerably

affect the later detection of semantic errors (see e.g. [6],[9],[10] and [18]). Sec-

ond - which seems more serious to the authors - they are all highly dependent on the

form of the context-free granmar in which the syntax is to be given (examples of this

problem are presented in [II]). In other words, it is assumed that the user 'programs"

the recovery procedure for his compiler byusing appropriate productions when writing

the grammar. However, the user of a compiler-compiler has already to ensure that his

grammarmeets certain conditions in order to guarantee efficient parsing, while at

the same time arranging that the semantics can be flexibly hanged on the grarmmr.

Clearly it is undesirable that the user be faced with the additional requirement that

the grmmmr should be proper for error recovery.

In this paper we first formalize the recovery method of Leinius [14] designed for LR

parsing in terms of a generative model, and also define a nontrivial variation of it.

We then give a contribution towards the solution of the problems mentioned above by

493

using a simple gramnatical transformation that leads to refinement of recovery. In

particular, we show by means of this transformation that certain types of replacement,

deletion and insertion errors can be corrected.

2. PRELIMINARY DEFINITIONS AND NOTATION

We first review some basic notions of context-free grmmmrs. If V is a set the elements

of which are called characters or symbols, then V 0 denotes the set (~), where ~ is the

so called empty string, and IT* denotes the set of all strings over V. If w is a string

over V and k is a non-negative integer we stipulate that k:w is equal to the string

formed by the first k symbols of w if the length of w is greater than k, and to w

otherwise.

A quadruple G = (N,T,P,S) is a (context-free) grarsmar if N and T are finite disjoint

sets~ P a finite subset of N×(NUT)*, and S an element of N. Elements of the set N are

called nonterminals and denoted by capital Latin letters A,B,...,Z. Elements of the

set T are called terminals and denoted by small Latin letters from the beginning of

the alphabet a,b,... ,s. The elements (A,6) of P are called productions and denoted by

A -~ 6, where the nonterminal A is called the left-~d side of the production and the

string 6 the right-hand side. The symbol S is called the start symbol. We use the sym-

bol V to denote the union of N and T. Terminal strings, i.e. strings over T, are de-

noted by small Latin letters from the end of the alphabet u,v,... ,z, whereas small

Greek letters a,~,y and 6 denote strings over V.

Let R be a relation on V*. A sequence al,a2,... ,a n of strings aiover V is called an

R derivation, or simply a derivation, from a I to a n and written a I R* a n if a i R ~i+l

for each i = i,... ,n-i whenever n > i. A derivation al,...,a n is said to be nontrivial,

written a I R + an, if n > I, and direct, written a I Ran, if n = 2. A string ~ can be

obtained by an R derivation from a if there exists an R derivation from a to 9. If z

is a terminal string then every R derivation from the start symbol S to z is called

an R parse of z in the gr~r G. The set of all terminal strings which can be ob-

tained by R derivations from S is called the language generated by R and denoted by

L(R). An algorithm that, given a terminal string z, determines an R parse of z if

there is one and armounces error other~¢ise, is called an R parser of the gramnar G.

The right (most) relation on V*, denoted by ~, is defined as follows: ~Ay ~ a6y if

A ~ 6 is a production in P and y is a terminal string. The language L(~) is denoted

by L(G). A string y is a viable prefix of G (e.g. [3]) if either y = S or there is a

derivation S ~*r 0~y ~ a~6y such that y = aB. If y is a string over V then FOLLOW(y)

denotes the set of strings 1 :z such that z is a terminal string and there is a deri-

vation S r=~ * yz. In the following we shall ass~ae that a granmaar G has no useless non-

terminals, i.e. for every nonterminal A there exists a derivation S ~* ~Ay ~* w, where
r r

w is a terminal string.

494

3. EX~FENDED PARSING

We first define a generative model by which the "recovery by reduction" error recovery

method of Leinius [14] and variants of it can be described. We begin with the defi-

nition of the parser defined error in a terminal string ([16]). Let G be a grammar.

If w = xy is a terminal string such that l:y is not in FOLLOW(x), but L(G) neverthe-

less contains a string xu for some u, then we say that l:y is the parser defined error

in w with respect to L(G).

We now extend the definition of the rightmost relation ~ so that strings with errors

can be derived. Let Tz be a string over V such that y is a viable prefix of G and z

is a terminal string. If l:z is not in FOLLOW(T) we say that the string Tz is an error

sentential form with the error point after y. Further, if A is a nonterminal, then we

say that a string aAy is in the error relation with aBxy, an error sentential form

with the error point after a~, and write

~y ~ a~xy,

if aA is a viable prefix of G and l:y is in FOLLOW(yA) for some y over V. The pair

(A, Bx), denoted by A -~ Bx, is said to be an error production which can be used in

aBxy. The right-hand side Bx of the error production is called an error phrase in

a~xy, whereas the left-hand side A is called a reduction goal of 8x in a~xy. In addi-

tion, we say that the recovery can be based on 8x and A in aBxy. Finally, we define

the extended right(most) relation on V*, denoted by ~x' to be the union of the right-

most relation ~ and the error relation ~.
r er

In order to serve as the basis of a generative model describing error recovery in

right parsing the extended rightmost relation ~ should imply the basic property that
ex

L(~x) = T*, i.e. every terminal string z has at least one extended right parse in G.

If z is in L(G) then we can immediately conclude that there exists an extended right

parse of z, since ~ is a subrelation of ~. On the other hand, if z is not in L(G) it

can be expressed as xy, where l:y is the parser defined error in z. Since L(G) con-

tains a string xu for some u, x must be obtained by a rightmost derivation from some

viable prefix of G, say T. Now, since l:y is not in FOLLOW(x) and, consequently, not

in FOLLOW(y) either, we can conclude that there exists a derivation S ~ Yy ~ xy = z.

It would also be desirable that if a string z belongs to the language L(G) then every

extended right parse of z in the grammar G would also be a right parse of z. Unfortu-

nately this is not the case, as may be seen by considering the simple grammar with

productions S~ab, S ~ a and S ~ b. There exists an extended right parse S ~r Sb ~ ab,

although the string ab belongs to the language. If we wish to deny the possibility of

this derivation, then the string Sb must not be obtained by an error derivation from

S. This would imply that for the erroneous string bb the derivation S ~r Sb ~ bb would

not be possible, although in the authors' opinion it is the most natural. One reason

why the latter derivation seems natural is that an LR parser which makes use of so

495

called default reductions, i.e. does not check the validity of reductions when only

one reduce action is possible, would not detect the error in bb until after reducing

the first b to S (see [1]-[4]).

However, it is interesting to note that if the granmmr is LR(0) (see e.g. [1]-[4])

then every extended right parse of a string z in the language is also a right parse

of z. In addition, it should be pointed out that the extended rightmost relation
ex

can be defined so that this is the case for all LR(1) grammars. To do this the right-

most relation~ is replaced by a relation LR(1) defined as follows: ~Ay LR(1) oSy if

~Ay~a6y and l:y is in FOLLOW(~A). The drawback of this definition is that it de-

scribes error recovery only in canonical LR parsing, whereas the original definition

of ~ is capable to describe error recover}, also for optimized LRparsers such as LALR
ex

and SLR parsers (see e.g. [1]-[4]).

To complete our model for error recovery in right parsing we state the following defi-

nition. An extended right parser of a granmmr G is valid, if the extended right parse

it determines for a string z is also a right parse of z whenever z belongs to the lan-

guage L(G). To obtain a valid extended right parser of G we first construct a right

parser of G and then augment it with a subrelation of the error relation ~r' called

the recovery operation of an extended right parser and denoted by r~c' which is one-

to-one. That is, given an error sentential form yz with the error point after y, there

exists exactly one error phrase ~xinyz and exactly one reduction goal A of Bx in Tz

such that y and z can be written as sB and xy, respectively, and 0~y r~c s~xy.

4. ON DEFINING THE RECOVERY OPERATION

In this section we shall put forward a suggestion as to how the actual recovery oper-

ation of an extended right parser should be defined. For this purpose we shall first

consider how to li~t the often great number of different extended right parses a given

terminal string may have, by restricting ourselves to certain subrelations of the error

relation ~ still without affecting the features essential for proper recovery. er

In the following we use as an example the Algol-like grammar with productions

<program>~<block>

<program> ~ <compst>

<block> ~ begin <decllist> ; <stlist> end

<compst> ~ begin <stlist> end

<decllist> ~ <decllist> ; <decl>

<decllist> ~ <decl>

<decl> ~ integer i

<stlist> ~ <stlist> ; <st>

<stlist> ~ <st>

<st> ~<block>

<st> ~ <corapst>

496

<st> -~ S

<st> ~

The erroneous string

begin integer ; integer i ; s end,

where 'i' is missing after the first 'integer', has, among many others, the following

four extended right parses:

<program>

(i) r~ begin <stlist> end

~r begin integer ; integer i ; s end

<program>

~* begin <decllist> • integer i ; s end
(2) r

begin <decl> ; integer i ; s end

~r begin integer ; integer i ; s end

<program>

(3) r ~* begin <stlist> ; <st> ; s end

~r begin <stlist> ; integer i ; s end

begin integer ; integer i ; s end

<program>

(4) ~* begin <decllist> ; integer i ; s end
r
~r begin integer , integer i ; s end

The error productions used in the error sentential forms of the derivations (i), (2),

(3) and (4) are, respectively, '<stlist> ~ integer ; integer i ; s', '<decl>~integer',

'<st> ~ integer i' and '<stlist> ~ integer', and '<decllist> ~ integer'. Compared with

derivation (3), the right-hand side of the error production used in the error senten-

tial form of (i) seems unnecessarily long. Derivation (I) should therefore be ruled

out. On the other hand, derivations (2) and (4) demonstrate the fact that the recovery

based on <decl> does not essentially differ from that based on <decllist>. It is note-

worthy that a similar observation can also be made as regards <block>, <compst>, <st>

and <stlist>. The following definitions, however, provide natural conditions ensuring

the elimination of such "unessential" reduction goals, and also the elimination of un-

necessarily long error phrases ([14] ,[16]).

Suppose ~y6xuy is an error sentential form with the error point after off6 such that

both TBX~ and ~x are error phrases in ~xuy. If either y ~ s or u ~ ~ then we say

that ~x is smaller than TBXU. Next suppose that A and B are reduction goals of an error

phrase 6 in an error sentential form a6y. If B can be obtained by a nontrivial right-

most derivation from A, then we say that A is more essential than B with respect to

6 in a6y. In particular, the reduction goal A of 6 in a6y is said to Be essential if

there exists no reduction goal B of 6 in a6y more essential than A. We now combine

these two concepts by defining a proper subrelation of the error relation ~ as

497

follows: aAy is in the least error relation with a6y, written

~Y l~r aSy,

if A is an essential reduction goal of 8 in a6y and there exists no error phrase in

a6y smaller than 6. We call the union of the relations ~ and l~r the least extended

right(most) relation or simply the least relation.

The concept of a least derivation alone does not provide a sufficient criterion for

uniquely selecting the error production to be used in a given error sentential form,

even if the recovery were to be based on a fixed error phrase. For example, there ex-

ists exactly two least parses of the erroneous string above, namely (3) and (4), where

the recovery is based on two different reduction goals (<stlist> and <decllist>, re-

spectively) of the same error phrase (i.e. 'integer') in the same error sentential

form. However, considering the "extraneous" error sentential form introduced in (3)

by the '~adly predicted" reduction goal <stlist>, it is obvious that (4) is more de-

sirable and should be chosen in preference to (3). Thus there is no reason to rule

out both of these derivations by resorting to the "unique essential replacement" cri-

terion initially suggested by Leinius [14] and later used by Petersan [16], whereby

an error production A ~ 8 can be used only if A is a unique essential reduction goal

of 6. (In fact, the extended right parse of the example erroneous string produced by

this method would always be of the form (I):) On the contrary, we can easily arrive

at the desired result by defining yet another proper subrelation of the error relation

in the following natural way:
er

Let a~xy be an error sentential form with the error point after aB. First, we say that

the parse of a nonterminal A is incomplete in a~xy with respect to B if aA is a viable

prefix and there exists a terminal string z such that 6z can be obtained by a non-

trivial rightmost derivation from A. Now, let A be an essential reduction goal of ~x

in aBxy. We then say that aAy is in the canonical error relation with a6xy, and write

aAy c~r ~6xy,

if either aAy = a~ = S or the parse of A is incomplete in a6xy with respect to B and,

in addition to both these conditions, there exists no error phrase B'x' in aBxy smaller

than 6x with a reduction goal A' the parse of which is incomplete in a6xy with respect

to 6'. Correspondingly, we call the union of the relations ~ and c~r the canonical

extended right(most) relation or simply the canonical relation.

Clearly, derivation (4) is a canonical parse of the example erroneous string, and in

this case even a unique such. In general, however, there may exist more than one ca-

nonical parse of a given terminal string. Consequently, when defining the actual re-

covery operation, a further strategy of specifying a choice ought to be introduced.

When such a further selection decision is required, we could simply make the selection

arbitrarily or we could try to achieve a better choice by somehow making use of the

right context z of the error point in the error sentential form yz. We feel the

498

ultimate selection decision does not in most cases make any real difference in so far

as the resulted recovery operation is still a subrelation of the canonical error re-

lation =.
cer

A canonical extended right parser has been defined by Sippu [19]. The definition is

an extension of the definition of the LR(1) parsing algorithm such that the extended

right parser treats strings in the language in exactly the same way as the correspond-

ing LR(1) parser. Some encouraging practical results have also been obtained for a

subset of Algol containing 103 productions ([13]). The authors are preparing an Eng-

lish version of [19] in which the correspondence of canonical extended right parsing

as defined in [19] and the relation c~r will be demonstrated.

5. ERROR CORRECTION BY EXTENDED PARSING

In the previous sections we have given a precise account of the basic recovery method

of Leinius [14] for LR parsing and have indicated a nontrivial variation of it in the

form of the canonical error relation. In this section we present a method for improving

error recovery, and verify the improvement by using our formalization for error re-

covery and showing that the method leads to correction of certain kinds of errors

whatever the form of the given grammar.

Although the error recovery methods based on the canonical error relation are theor-

etically attractive and concise, they still have the often harmful property that the

quality of recovery is too sensitive to the form of the productions in the grar~nar.

Already James [ii] has noted that recovery may be unsatisfactory if the gramnar has

productions of the form A ~ ~b~ where b is a terminal and ~ is a non-empty sequence

of symbols containing at least one nonterminal. This drawback is clearly demonstrated

by considering the grmmmr used as an example in the previous section. In fact, any

string that does not begin with the symbol 'begin' can be obtained by a direct ex-

tended rightmost derivation only from <program>, <block> or <compst>, for instance

<program> c~r integer i ; s end

is the only canonical parse of the string 'integer i ; s end' and

<program> c~r begni integer i ; s end

is the only canonical parse of the string 'begni integer i ; s end', where the 'begni'

stands for a misspelled 'begin'.

However, if instead of the production '<block> ~ begin <decllist> ; <stlist> end' our

grammar had the productions '<block> ~ <begin><decllist> ; <stlist> end' and '<begin>~

begin', then the respective canonical parses would be

<program> r ~* <begin> integer i ; s end

c~r integer i ; s end,

where the error production used is '<begin> ~ s', and

499

<program>y* <begin> integer i ; s end

c~rbegni integer i ; s end,

where the error production used is '<begin> ~ begni'. These derivations can actually

be considered as describing situations where the input string is corrected by adding

the missing first terminal or, respectively, changing the erroneous first terminal.

Consider on the other hand the erroneous string

i begin integer i ; s end,

which could be corrected by deleting the first 'i'. For obtaining an extended right

parse that would describe this error and correction of it we cannot resort solely to

the above substitution of the production '<block> ~ begin <decllist> ; <stlist> end'.

Instead, the new production '<begin> ~ begin' could be split into the productions

'<begin> ~ <~>begin' and '<g> ~ ~'. After this substitution the respective canonical

parse would be

<program>=~ <~> begin integer i ; s end
r

c~r i begin integer i ; s end,

where the error production used is '<g> ~ i'.

Altogether, the preceding examples suggest that extended parsing should be applied

not to the given grammar but to a modified grammar defined as follows: Let G = (N~T,

P,S) be a grammar. Given a string ~ in (NUT)*, we define @ to be the unique string

which is obtained from a by replacing each terminal a in ~ by a new symbol <a> not

in NUT. Let <~> and S' be two more new symbols not in NUT. We now define the augmented

gr~ for G to be the grammar G' = (N',T,P',S'), where

N' = N U {<a> I a is in T} U {<~>,S'}

and

P' = {A~ £<g> I A~ a is in P}

U {<a> ~ <g>a<~> I a is in T}

U {<~> ~ ~, S' ~ S<~>}

Trivially, L(G') = L(G) and right parses in the grammar G can be obtained from right

parses in the augmented granmar G'. Moreover, it should be emphasized that this gram-

matical modification is given for conceptual purposes only and does not need to be

carried out explicitly in practice. For example, any LR parser of the original gram-

mar G constructed by the canonical, LALR or SLR construction algorithms (see e.g.

[1]-[4]) can be interpreted as an optimized LR parser of the augmented grmmnar G' such

that the reductions by new productions are combined with other actions as follows:

Action in the LR parser Combined actions in the LR parser
of the given gran~ar G of the augmented granmar G'

reduce by A ~ ~ (reduce by <£> g

[reduce by A ~ ~<~>

500

i reduce by <~> ~
shift a shift a

reduce by <~> ~

reduce by <a> ~ <~>a<~>

I reduce by <~> ~

accept reduce by S' ~ S<c>

accept

Clearly, we are then able to construct the optimized extended right parser of the aug-

mented grammar directly from the LR parser of the original grammar.

To characterize the usefulness of the given grammatical modification we need a few

definitions. Let G be a grammar and z a terminal string. We say that a sequence

! and e. is either a terminal or the empty string ~, (e~,el),...,(e~,en), where each e I i

represents the parser defined errors in z with respect to the language L(G) if z can

be written as z 0 = Xoelxl...enx n such that each l:ei+iXi+l...enx n is the parser de-

fined error in the string z i = Xoe~Xl...e~xiei+l...enXnWith respect to L(G). In par-

ticular, if x i ~ ~ for each i = l,...,n-l, we say that z has one parser defined error

locally, and that the sequence (e~,el),...,(e~,en) represents the isolated parser de-

fined errors in z.

The following theorem is an almost immediate consequence of the above definitions:

Theorem. Let G be a grammar. If a terminal string z has one parser defined error lo-

cally and the sequence (e~,el),...,(e~,en) represents the isolated parser defined er-

rors in z with respect to the language L(G), then there exists in the augmented gram-

mar G' a canonical parse of z the error productions of which are exactly <e~> ~ el,... ,

<e~> ~ e n.

This theorem gives rise to the following definition: If ~ is an extended right parse

of a terminal string z in the augmented grammar G' such that every error production

used inn is of the form<e'> ~ e, where e' and e are terminals or the empty string ~,

then we say that the unique string z' the right parse of which is obtained from ~ by

changing each error production <e'> ~ e to <e'> ~ e' is the correction of z defined

by ~.

As an illustration consider the grammar for simple program structures given previous-

ly. The augmented granmmr is then

<program'> ~ <program> <~>

<program> ~ <block> <~>

<program> ~ <compst> <~>

<block> ~ <begin> <decllist> <;> <stlist> <end> <~>

<compst> ~<begin> <stlist> <end> <~>

<decllist> ~ <decllist> <;> <decl> <c>

<decllist> ~ <decl> <~>

501

<decl> ~ <integer> <i> <~>

<stlist> ~ <stlist> <;> <st> <~>

<stlist> ~ <st> <~>

< s t > ~ < b l o c k > <~>

< s t > ~ <comps t> <&>

< s t > ~ <s> <~>

< s t > ~ <g>

< b e g i n > ~ <~> b e g i n <~>

< ; > ~ <g> ; <~>

< e n d > ~ <~> e n d <£>

<integer> ~ <~> integer <~>

<i> ~ <~> i <~>

<S> ~ <£> S <g>

<8> ~ g

In the string

begin integer 2 ; s begin s end end end

it appears that '2' should be changed to 'i', a semicolon should be inserted between

the first 's' and the second 'begin' and the final 'end' should be deleted. In the

case of a t>~)ical optimized LRparserwhichmakes use of default reductions (as men-

tioned in section 3) the following canonical parse of this erroneous string can be

obtained:

<program'>

<program> <~>

c~r <program> end

~* <begin> <decllist> <;> <stlist> <;> begin s end end end
r

c~r <begin> <decllist> <;> <stlist> begin s end end end

~* <begin> <integer> <i> ; s begin s end end end
r

c~r <begin> <integer> 2 ; s begin s end end end

r=~ begin integer 2 ; s begin s end end end

Here the error productions used are '<~> ~ end', '<;> ~ ~' and '<i> ~ 2'. The correc-

tion of the erroneous string defined by this canonical parse is

begin integer i ; s ; begin s end end.

A system which generates an error recovery routine for any LALR(1) grarmnar (see e.g.

[1]-[4]) is being prepared by one of the authors (Sippu). Augmented with this error

recovery routine the LALR(1) parser of the gran~nar will be capable of producing a very

near approximation to a canonical parse for every terminal string. It will also be

possible to obtain a correction for most terminal strings that conform to the assump-

tions of the theorem stated above. Unfortunately the exact effect of the theorem will

not always be achieved. This is mostly due to the decreased error detecting capability

502

of optimized LR parsers, especially those using default reductions.

Finally, it should be admitted that in a real compilation environment when an abstract

parse tree (see e.g. [1]-[4]) is constructed alongside the parsing process, the parse

tree corresponding to such an erroneous terminal string for which no correction could

be obtained contains syntactically incorrect subtrees introduced by those error pro-

ductions which are not of the form <e'> ~ e. Consequently the later semantic analysis

may still be seriously affected (see again [6],[9],[10] and [18]). To remedy this

shortcoming, the authors are working on the following idea (c.f. [6],[9] and [18]):

given an error sentential form ~$xy with the error point after ~6 such that aAy c~r

~Bxy, we could, instead of actually reducing by the error production A ~ Bx, select

a string z o of "minimal cost" from the (by definition) non-empty set of terminal

strings z for which there exists a nontrivial rightmost derivation A ~+ &z and replace
r

x in ~xyby z0, after which normal parsing could be resumed. Obviously, augmented

with an error recovery routine working in this manner, the LR parser would be able to

produce a syntactically correct parse tree for every terminal string.

ACKNOWLEDGEMENTS

The authors wish to thm& N[ikko Saarinen and Esko Ukkonen for pointing out some er-

rors in earlier drafts of this paper. Thanks are also due to Professor Martti Tienari

and to Jorma Sajaniemi for their comments.

This work was supported by a research project investigating translator writing sys-

tems. The project is led by Professor Martti Tienari and sponsored by the Academy of

Finland.

REFERENCES

i. Aho,A.V.: Language theory in compiler design. In Yeh,R.T.(ed.): Applied Computa-
tion Theory: Analysis, Design, Modeling. Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1976, pp. 185-249.

2. Aho,A.V. & S.C.Johnson: LR parsing. Computing Surveys 8:2 (1974), pp. 99-124.
3. Aho,A.V. & J.D.Ollman: The Theory of Parsing, Translation, and Compiling. Vol. l:

Parsing. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1972.
4. Aho,A.V. $ J.D.Ullman: The Theory of Parsing, Translation, and Compiling. Vol. 2:

Compiling. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973.
5. Ciesinger,J.: Generating error recovery in a compiler generating system. In GI -

4. Fachtag~g ~ber Progr~ierapr~chen. Springer-Verlag, Berlin - Heidelberg - New
York, 1976, pp. 185-193.

6. Fischer,C.N., D.R.Milton & S.B.Quiring: An efficient insertion only error-corrector
for LL(1) parsers. In Conference Record of the Fourth ACMSymposium on Principles
of Progr~ing Languages~ 1977, pp. 97-103.

7. Graham,S.L. g S.P.Rhodes: Practical syntactic error recovery in compilers. In Con-
ference Record of ACMSymposiumon Principles of Progr~ng Languages, 1973, pp.
52-58.

8. Graham,S.L. g S.P.Rhodes: Practical syntactic error recovery. Com. ACM 18:11
(1975), pp. 639-650.

9. Gries,D.: Compiler Construction for Digital Computers. John Wiley & Sons, New
York, 1971.

503

i0. Horning,J.J.: What the compiler should tell the user. In Bauer,F.L. & J.Eickel
(eds): Co~ler Construction: An Advanced Course. Lecture Notes in Computer
Science, Vol. 21. Springer-Verlag, Berlin - Heidelberg - New York, 1974, pp. 525-
548.

ii. James,L.R.: A syntax directed error recovery method. Technical Report CSRG-13,
Computer Systems Research Group, University of Toronto, Toronto, May 1972.

12. Johns,C.B.: The generation of error recovering simple precedence parsers. Com-
puter Science Technical Report No. 74/10, Department of Applied Mathematics~
McMaster University, Hamilton, Ontario, July 1974.

13. Koskimies,K., K-J.R~ih~,M. Saarinen,S.Sippu & E.Soisalon-Soininen: Definition and
compiler of a subset of Algol (in Finnish), Internal Report, Series C, 1976/40,
Department of Computer Science, University of Helsinki, Helsinki, May 1976.

14. Leinius,R.P.: Error detection and recovery for syntax directed compiler systems.
Ph.D. Thesis, University of Wisconsin, Madison, 1970.

15. Lewis,P.M.,II, D.J.Rosenkrantz & R.E.Stearns: CompiZer Design Theory. Addison-
Wesley Publishing Company, Reading, Mass., 1976.

16. Peterson,T.G.: Syntax error detection, correction and recovery in parsers. Ph.D.
Thesis, Stevens Institute of Technology, Hoboken, N.J., 1972.

17. Rhodes,S.P.: Practical syntactic error recovery for programming languages. Ph.D.
Thesis, Technical Report 15, Department of Computer Science, University of
California, Berkeley, June 1973.

18. Roehrich,J.: Syntax-error recovery in LR-parsers. In GI - 4. Faahtagung ~ber
Progrc~m~niersprachen, Springer-Verlag, Berlin - Heidelberg - New York, 1976, pp.
175-184.

19. Sippu,S.S.: Error recovery in LR parsing (in Finnish). Master's Thesis, Series C,
1976/22, Department of Computer Science, University of Helsinki, Helsinki, Feb.
1976.

