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ABSTRACT: Coroutine control is usually represented in high level languages in a way 

which allows the referencing of terminated coroutines and permits tricky calling se- 

quences. In this paper a different method and notation for the expression of coroutines 

is outlined and its safety and balance are proved. The proofs are based on a model 

which describes only the relevant and general aspects of executions. Thus the proofs 

deal with the whole language and not with specific programs. 

I. INTRODUCTION 

Coroutines were first introduced over a decade ago [2] in the context of machine coding. 

The basic idea was to interweave execution of routines that otherwise should have been 

done one after another. The benefit gained by coroutines lay primarily in the avoidance 

of large files carrying information from one routine to the next one as these files 

could be transmitted piecemeal during the execution of the whole system of coroutines. 

In the above case information flowed only in one direction and so a natural extension 

was to allow free transmission of data. This turned coroutines into the form known 

today: they give a general way to interweave the execution of routines depending on 

each other. 

~hen adopted to higher level languages [I, 3, 4, 5, 8] coroutines were generalized to 

a powerful control structure but the demand for simplicity and securitywas often for- 

gotten. For example, it became possible to reference terminated coroutines and varia- 

bles declared in them. The first kind of references n~ast be considered to be errors 

while references to variables can be allowed if the memory areas of coroutines are not 

destroyed during termination. 

In the following, we will outline a method and notation for rec~rsive coroutines. The 

system is based on the grouping of co-operating coroutines [5]. These coroutines may 

have parameters that can be renewed by their colleagues during execution. In order to 

maintain the balance of groups of coroutines, parameter renewals are restricted by 

* This work was supported by the Academy of Finland. 
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compile-time rules. We then show that the system has certain properties: control is 

always passed between coroutines of the same group, terminated coroutines and variables 

declared in them are never referenced, and the dynamic ancestors of a coroutine cannot 

change. 

The proofs are based on a model similar to the one which is given in [7] and which we 

call the W~-model. Essentially, our model can be considered to be obtained from the 

WD-model by imposing some restrictions. Consequently our model has new properties as 

indicated in the above paragraph. 

2. OUTLINE OF THE COROUTINE SYSTEM 

In order to present the important aspects of the used version of coroutine control we 

give as an example the following sketch of a group of three coroutines. The group reads 

characters according to some convention (e.g. "SA" means "AAAAA"), outputs it in some 

readable form, and builds a nested data structure (e. g. a tree). The group consists 

of three coroutines, one for each of these tasks. As the tasks maybe recursive it is 

convenient to use coroutines that may contain recursive procedures. This is shown in 

the third coroutine. The control f]ows through these coroutines in the cycle build- 

readchar-writechar-build-... 

cogrou~ readdata; 

begin 

end 

coroutine readchar; 

beg'~n character ch; ... ~,Titechar(ch) ... end; 

coroutine writechar(c); value c; character c; 

begin ... build(c) ... end; 

coroutine build(c); value c; character c; 

begin 

procedure substructure; 

begin ... readchar ... substructure ... 

substructure 

end; 

start build() 

The declaration of a group, hereafter called cogroup, contains thus the coroutines 

and a start notice giving the starting coroutine. Normal static scope rules make it 

impossible to reference coroutines outside the cogroup but they can be referenced in 

nested cogroups. The model of section 3 will make the meaning of such references clear. 
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A cogroup can be invoked by its identifier in the block where it is defined or in the 

inner blocks. Its execution starts by the activation of the starting coroutinewhich 

can then pass control to other coroutines. These will be entered at their first calls. 

At later calls a coroutine continues its execution from the point where it was when 

it last called another coroutine. When one of the coroutines reaches its end the whole 

cogroup is terminated. 

Coroutines may have parameters which are handled almost as in the case of procedures. 

The main exception is that these can be renewed during later calls. When a parameter 

is renewed, its old value is replaced by a new one. If some parameter is not renewed, 

its old value will be retained. There is also a restriction concerning parameters 

passed to coroutines: all identifiers in actual parameters passed by name to coroutines 

must be global to the called coroutine. We shall see that this restriction ensures 

the syn~etry between co-operating coroutines. 

Coroutines and cogroups are handled in other respects just like procedures. Thus corou- 

tines and cogroups, as well as procedures, can be passed as parameters to coroutines, 

cogroups, and procedures. 

3. THE MODEL 

We will now introduce a model for the execution of programs written in the coroutine 

system outlined in section 2. It should be noted that we are not interested in specific 

programs but rather in the class of all programs. Thus we can leave out all details 

concerning the program to be executed if we instead give axioms that are satisfied by 

all programs. For example, the model does not keep track of identifiers but only states 

that if an identifier is referenced it must have been declared in a textually enclosing 

block, procedure, cogroup or coroutine or it must have been delivered through a name 

parameter. In the same way values of variables can be ignored as it is stated that 

variables may have any value whatsoever. 

We may leave out also all information concerning the flow of control inside blocks, 

procedures and coroutines by stating that they can execute any of their statements 

independently of the execution so far. But we go still further and leave out the whole 

program and state that the execution of a statement may be followed by the execution 

of any statement. 

We have left out many details of the execution of programs. It is now impossible to 

say what is the next action to be done, what are the values of variables, and what 

identifiers can be referenced. Thus an execution of the model proceeds in a non-deter- 

ministic manner. However, given any real execution it is possible to find an equiva- 

lent execution of the model. Thus all statements about the model are valid also in 

real executions. 
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The model consists of a set of states and rules which define how a new state can be 

obtained from another. Each state contains all existing procedure~ cogroup, and corou- 

tine instances (i.e. executions of a procedure, cogroup or coroutine). Blocks are not 

included as they can be considered to be a special case of procedures. Two functions, 

T and D, which will be defined formally later, associate each instance with two other 

instances. T(x) gives the instance where x is declared and D(x) usually gives the in- 

stance which called x. In figures we denote T by double arrows and D by single arrows. 

Thus single arrows show the dynamic nesting while double arrows give the textual nest- 

ing. Each state contains moreover a special instance named P. It represents an under- 

lying operating system and D(P) gives the currently active instance. 

Fig. 1 shows a state occurring possibly during an execution of a program containing 

the cogroup readdata of section 2. This example demonstrates the use of the function 

D in the case of temporarily suspended coroutines. Instances are labeled with the name 

of the associated textual unit and they have a subscript to distinguish between dif- 

ferent incarnations. The coroutine writechar is active. The coroutine build has called 

the procedure substructure which has called itself recursively. When writechar will 

eventually call the coroutine build, build will continue its execution within the sec- 

ond incarnation of substructure. 

read.at' I 

ati 

subst~cture~2 

Figure i: A state of the execution of readdata 
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We now turn to the formal definition of the model. The set of currently existing in- 

stances will be denoted by S. The set S and the functions T and D will be continuously 

changing during execution and we will give their strict definition later. Here it is 

sufficient to know that S is a set of instances, P is an instance of S, T is a function 

defined on S-{P} and D is a function from S into S. 

First we define two relations ~ and ~. Let x and y be two instances. We say that x~y 

if and only if x*P A T(x) =y, and that x-,y if and only if x*P A D(X) =y. 

Let N be a subset of existing cogroup and procedure instances with the intuitive mean- 

ing: if an instance belongs to N then it has parameters called by" name. The strict 

definition of N will be given later. Let x and y be two instances. We say that x~y 

if and only if x~y v xEN A x~y. 

We need also the reflexive and transitive closures of the previous relations. We say 

that x~*y (x'y, x'y) for two instances x and y if and only if (I) ((2), (3)) is true. 

(1) x = y  v ( ~ v ) ( x ~ v  ,,, v ~ y )  

(2) x = y  v ( S v ) ( x ~ v  A v~*y) 

(3) x = y  v (gv)(x,--,v A v*~y) 

I n t u i t i v e l y ,  an  i n s t a n c e  x can  c o n t a i n  a r e f e r e n c e  t o  an  i n c a r n a t i o n  o f  an i d e n t i f i e r  

d e c l a r e d  i n  an  i n s t a n c e  y o n l y  i f  x ' y .  Th i s  r u l e  c o v e r s  t h e  ca se  o f  name p a r a m e t e r s  

a s  w e l l  as  t h e  c a s e  o f  normal  r e f e r e n c i n g  o f  an  i d e n t i f i e r  i n  a t e x t u a l l y  e n c l o s e d  i n -  

s t a n c e  s i n c e  x*~y = x * y  i s  a d i r e c t  consequence  o f  t h e  d e f i n i t i o n s .  

C o r o u t i n e  i n s t a n c e s  n e v e r  b e l o n g  to  t h e  s e t  N even  though  t h e y  may c o n t a i n  name param- 

e t e r s .  T h i s  i s  j u s t i f i e d  by  t h e  r e s t r i c t . i o n s  c o n c e r n i n g  a c t u a l  name p a r a m e t e r s  o f  co -  

r o u t i n e s .  They g u a r a n t e e  t h a t  an  i d e n t i f i e r  o c c u r r i n g  i n  such  p a r a m e t e r  can  be  r e f e r -  

enced  even d i r e c t l y  w i t h i n  t h e  c o r o u t i n e  i , e .  when t h e  c o r r e s p o n d i n g  fo rma l  p a r a m e t e r  

can  be  r e f e r e n c e d .  Thus t h e  d e f i n i t i o n  o f  * c o v e r s  a l l  c a s e s  a l t h o u g h  c o r o u t i n e  i n -  

s t a n c e s  w i l l  n e v e r  be  added t o  t h e  s e t  N. 

The p r o p e r t i e s  we want  to  p r o v e  conce rn  p o s s i b i l i t i e s  o f  r e f e r e n c i n g  and r e l a t i o n s  

be tween  i n s t a n c e s .  I n  a d d i t i o n ,  a s t a t e  o f  t h e  model d e s c r i b e s  o n l y  i n s t a n c e s  and t h e i r  

t e x t u a l  and dynamic n e s t i n g s .  Thus i t  i s  s u f f i c i e n t  to  c o n s i d e r  o n l y  t h e  e f f e c t  o f  

a c t i v a t i o n s  and d e a c t i v a t i o n s  o f  p r o c e d u r e s ,  cogroups  and c o r o u t i n e s .  

We have  m e n t i o n e d  t h a t  t h e  removal  o f  t m i n t e r e s t i n g  d e t a i l s  l e a d s  t o  a n o n - d e t e r m i n -  

i s t i c  b e h a v i o u r .  The n o n - d e t e r m i n i s m  i s  i n t r o d u c e d  by c h o o s i n g  n o n - d e t e r m i n i s t i c a l l y  

one o f  t h e  o p e r a t i o n s  ( 5 ) - ( 8 )  be low to  p roduce  a new s t a t e .  Of c o u r s e  o n l y  such  o p e r -  

a t i o n s  can be chosen which are defined on the old state i.e. for which the required 

instances can be found. Moreover the operations themselves are non-deterministic and 
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we mark such points with footnotes. Now we give a strict definition of the sets S and 

N, and of the functions T and D. 

In the beginning of execution assertion (4) is true and thereafter the sets S and N 

and the functions T and D are changed by executing the non-deterministic operations 

S:{P} A N=~ A D(P):P 

Activation of a procedure: Let D(P)=y and z be such that y~*z i) A new instance 

x is added to the set S and functions T and D are partially redefined: D(P) =x, 

D(x) =y, T(x) =z. The instance x may 2) be added also to the set N. The instance 

x is said to have been activated and it is called a procedure instance. (See 

Fig. 2.) 

(6) ActivationL of a cogroup: Let D(P) =y and z be such that y~*z I) and n_>l 3). New 

instances g,xl,... ,x n are added to the set S and functions T and D are partially 

redefined: D(P) =Xl, D(Xl) =g, D(g)=y, s~d D(xi)=xi, 2!i!n, T(g)=z, and 

T(x i) =g, l_<i_<n. The instance g may 2) be added also to the set N. The instance 

g is said to have been activated and it is called a cogroup instance. Instances 

Xl,...,x n are called coroutine instances. (See Fig. 3.) 

(7) Activation of a coroutine: Let D(P) =y and x be a coroutine instance such that 

y~T(x) $). If there ~ is no unique coroutine instance x' such that x' has been 

added to the set S by operation (6) at the same time as x and x' * P then the 

operation is said to be Lv~roper; otherwise if x =x' then the operation has no 

effect, otherwise function D is partially redefined: D(P) = D(x), D(x) = D(x'), 

D(x') =y. The instance x is said to have been activated. (See Fig. 4.) 

(8) Deactivation: Let D(P) =x, x,P 5) and D(x) =v. All instances z such that z*x 

are removed from the set S and if some of these belong to the set N they are 

removed also from here. Moreover the function D is redefined to be its restric- 

tion on the set S and D(P) is changed to be v. If v is a cogroup instance then 

this deactivation includes a new deactivation. 

According to the above operations it is clear that as long as an instance x* P belongs 

i) z is chosen non-deterministically. 

2) Whether this is done or not~ is determined non-deterministically. 

3) n is chosen non-detemninistically. 

4) x is chosen non-deterministical]y. If such x cannot be found then the operation is 
undefined. 

5) If such x cannot he found then the operation is undefined. 

(5)-(8) in a non-deterministic order. 

(4) 

(S) 
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Figure 2: Activation of 
a procedure 

Y 

I °° • 
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Figure 3: Activation of a cogroup 
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Figure 4: Activation of a coroutine 

to the set S the value of T(x) is constant and moreover, if x is not a coroutine in- 

stance then also D(x) is constant. 

The definition pays no attention to the possible halting of an execution. Especially 

operations (5) and (6) are defined on every state (by choosing z = y). Thus any exe- 
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cution can extend to an infinite length if no ~roper activation of a coroutine is 

encountered. Infinite executions, however, bring no problem as we are interested in 

properties of states occurring somewhere in an execution but ignore the following 

states. Moreover, as the above definitions give no rules about halting an execution 

there is no need to consider halting as a special case. 

4. BASIC PROPERTIES 

Functions and relations of our model are defined as in the ~fD-model [7]. The defini- 

tion of operations (5)-(8) is based on non-determinism but this approach differs from 

the WD-model only in a philosophical sense. Moreover these operations can be dofined 

with the help of events activation and termination and operations swap and rotate of 

the WD-model: operation (5) is an activation of the WD-model, operation (6) consists 

of a series of activations and swaps, operation (7) can be performed by a rotate when- 

ever it has any effect, and finally operation (8) is a termination (or a series of 

terminations) of the WD-model. Thus we can take the following result from section 5 

of [7] as the restrictions made in the proofs are satisfied in our model. These re- 

strictions concern the right to use the operations swap and rotate and are denoted by 

CS and CR respectively. They are satisfied in our model as x i ~T(xi) A X i ¢ N, 2 < i < n 

in operation (6) and y~T(x') =r(x) ^ x' CN A xCN in (7) if the operation is not im- 

proper. 

Theorem i: Unless an improper activation of a coroutine is encountered the following 

assertions are valid during the whole execution. 

(9) P E S 

(I0) D is a bijection from S to S 

( l l )  ( '¢x)(xES ^ x * P  = T(x) ES) 

(12) (Vx)(xES A x * P  ~ D(x)*T(x))  

(13) ( '¢x,y)(xcOC A x~*y = X~y)  

(14) ( '¢x)(xCS ^ x*D(P) A x*D(P) = 

$ 
where OC is the set {xlx~P). 

D(x)*D(P) A D(x)*D(P)) 

Assertion (I0) means that the function D forms separate cycles on the set S. That par- 

ticular cycle to which P belongs is called OC (operating chain). Every time an instance 

is deactivated one (or two) instance belonging to OC is removed from S and some whole 

cycles are possibly removed. This is a direct consequence of assertion (14) because 

if an instance y.D(P) is removed then we must have y*D(P) and hence D(y)*~D(P). Thus 
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also the instance D(y) is removed. Assertion (14) states moreover that D(y) * D(P) and 

so the above proof can be repeated to show that D(D(y)) is removed. Hence it is clear 

that the whole cycle containing the instance y is removed. However, such instances that 

contain declarations of variables that can be still referenced are never removed: Let 

x be D(P) and z be such that x~z. According to (13) we have x~z and so zEOC and thus 

z E S. 

5. RELATIONS BEI~EN INSTANCES 

We will now prove that when a coroutine, say a, is activated there is exactly one ac- 

tive coroutine, say b, of the same cogroup. We will moreover find that if control re- 

turns to the point where the coroutine a was activated then this return is due to a 

call for b and not, for example, some containing or contained coroutine. Thus the over- 

all structure of cogroups and coroutines as well as the restrictions imposed guarantee 

that an activation of a coroutine defines uniquely the coroutine which will be called 

at the time of return. 

The fact that the activation of a coroutine, a in the above example, defines uniquely 

the coroutine b has important effects on implementations. For example, when a is acti- 

vated it is kno~ose parameters will be renewed when control will return: since the 

return will be due to a call for b, the parameters of b will be renewed. ~reover, as 

coroutines a and b belong to the same cogroup the balance between co-operating corou- 

tines is maintained i.e. only one coroutine of a cogroup can be active at any time. 

To assist proofs we define a set which, as we shall see later, contains all coroutine 

instances that can be activated and that do not belong to OC. The new set is named C 

and it is empty at the beginning of an execution. Thereafter the set will be changed 

by the following additions to operations (5)-(8). The activation of a procedure (5) 

has no effect on C. The activation of a cogroup (6) adds instances x2,...,x n to the 

set C. The activation of a coroutine (7) has no effect on C if x = x', otherwise it adds 

x' to C and removes x from C. Moreover the activation of a coroutine is said to be im- 

proper also if x * x' A X ~ C. Thus a coroutine can be activated only if it belongs to 

the set C or if it activates itself. The deactivation (8) removes those instances from 

C that are removed also from S. 

In this section we will follow executions only to a point where an improper activation 

of a coroutine is met. If such a situation does not occur we follow actions to any de- 

sired length. 

The following lena states that exactly one element of the set C belongs to each cycle, 

excluding OCwhich contains no element of C. This means that though a cycle (different 

from OC) may contain many coroutine instances, exactly one of them (the one belonging 

to C) can be activated, as otherwise the activation would be improper, which we have 
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prohibited for the present. Moreover it is clear that the coroutine instance which be- 

longs to C will be constant as long as the cycle exists, and so we have an interesting 

result: at the time of creating a cycle we know what coroutine instance (if amy) of 

this cycle will later be activated. 

Len~na I: Assertion (15) is always true. 

(15) cn0c=~ A 

~(~x,y)(x*y A xEC ^ yCC A x'y) A 

(Wx)(xES A ~(3y)(yEC A x~*y) = xEOC) 

Proof: This proof as well as the following ones are based on induction on the number 

of operations done during execution. We start with the initial state (4) and the con- 

dition C = ~ given in the beginning of this section and prove that the assertions hold 

for this state. Then we suppose that we have a state for which the assertions and ear- 

lier lermms hold and prove that the assertions hold for each state produced by any 

defined operation with any choice of non-deterministic values. Thus the assertions 

hold for each state in every execution. 

In the beginning C = ~, S = {P) and D(P) =P and thus (15) is true. Now let the state be 

such that (15) is true. The activation of a procedure has clearly no effect on the 

assertion because it only adds a new- element to OC and does not change the set C. After 

an activation of a cogroup each new instance x of C will have D(x) = x, and as these 

instances form the new cycles assertion (15) remains valid. If an activation of a co- 

routine has no effect then (15) is clearly true for the new state. Otherwise the pre- 

vious "upper" part of OC forms a new cycle which will have one instance in the set C, 

and the upper part of OC will be replaced by another cycle which, according to the 

induction hypothesis, has only one instance in C and that instance will be removed 

from C. So assertion (15) remains valid also in this case. A deactivation may cause 

troubles only if for some x ~ OC there is y such that x ~y A y E C and y will be removed. 

In this case, however, x and y belong to same cycle and according to assertion (14) 

if y is removed from S then also x is removed from it. Thus (15) is true after each 

operation if it was true before them. = 

Lerm~a 2 convinces us that cogroups work as we thought: one coroutine instance is im- 

mediately above the associated cogroup instance while others belong to the set C wait- 

ing for activation. 

Len~aa 2: Let g,xl,... ,x n be instances added to S during an activation of a cogroup. 

Assertion (16) is true as long as g belongs to S. 

(16) (3i)(l~i~n A xi~C A D(xi)--g A 

( V j ) ( I < j < n A  j * i  A x. CS ] x. ~ c ) )  
3 
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Proof: When the activation in which g,xl,...,x n are added to S happens, assertion (16) 

becomes true and the desired value of i is i. Next we assume that (16) is true. Acti- 

vations of procedures and new cogroups clearly have no effect on the assertion. 

An activation of some coroutine instance in question retains (16) valid since the 

searched coroutine instance x' belongs to OC and hence x' ~ C which implies D(x') = g. 

Moreover the activated one must belong to C. An activation of a coroutine other than 

Xl,...,x n has no effect on (16). 

In the case of deactivation we have three alternatives: the instance x= D(P) does not 

belong to the set {g,xl,...,Xn}, it is g or it is some instance of {Xl,...,Xn). 

Consider the first case. If g is removed from S then the le~ma states nothing any more. 

If g is not removed from S then the xi, for which D(xi) = g, is not removed either: 

otherwise we should have xi~x which implies x i = x or xi~g~x as x i ~ N. The former 

is a contradiction to the hypothesis of this case and the latter is a contradiction 

to the fact that g is not removed. Thus (16) remains valid. 

When assertion (16) is true the instance to be deactivated cannot be g, since then 

D(xi) and D(P) would both be g and as x i , P this is a contradiction to the bijectivity 

of D. 

The only instance of the set (Xl,...,x n} that can be deactivated is that x i for which 

D(xi) = g, since others belong to the set C and hence cannot belong to OC according to 

lemma i. So we have D(P) = x i and D(xi) = g. The deactivation leads to situation D(P) = g 

and thus includes a new deactivation. Hence g will be removed from S and the lemma 

states nothing any more. o 

The following two len~nas are needed to get theorem 2, which states that the restriction 

made in the beginning of this section is unnecessary: no activation of a coroutine can 

be improper. 

Ler~na 3: When any coroutine instance x is activated such unique coroutine instance x' 

which has been added to the set S at the same time as x and which belongs to OC 

always exists. 

stance 

gEOC. 

find i 

x k E C) 

Xv=X. 
2 

Lemma 

Proof__~." Let g,xl,... ,x n be as in lerr~na 2 and x=xj for some l_<j_<n be a coroutine in- 

to be activated. Since D(P)~*T(x) =g we have according to assertion (13) that 

The proof of lemma 2 implies that D(P) • g and hence according to lemma 2 we can 

such that D(xi)=g and therefore xi60C. Since (Vk)(l_<k_<n ^ k*i ^ Xk6 S m 

and CnOC=~ we have (Vk)(iik<n ^ k*i ^ XkES ~ Xk~OC ). Now we can choose 

and this is the only one satisfying the requirements of the lemmm. [] 

4: When any coroutine instance x is activated then x 60C U C. 
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Proof: In order to be able to activate x we must have g E OC, where g = T(x). According 

to ler~aa 2 either x C C or D(x) = g (since x C S as the activation of x is defined). In 

the latter case we have x E OC and so x ~ OC U C. 

Theorem 2 is a direct consequence of len~nas 3 and 4. 

Theorem 2: An activation of a coroutine is never improper (as defined in the operation 

(7) and supplemented at the beginning of this section). 

According 

S as long 

coroutine 

to the discussion after theorem 1 each cogroup instance belongs to the set 

as its coroutines can be referenced. We must, however, still prove that these 

instances do exist i.e. also they belong to S. This is done in theorem 3. 

Theorem 3: Let g,xl,...,x n be as in lemma 2. Assertion (17) is true as long as g be- 

longs to S. 

(17) (Wi)(l<i<n D x. ES) 
1 

Proof: When the cogroup is activated assertion (17) becomes valid and it can become 

false only through a deactivation. Let D(P) = y be to be deactivated so that x. will 
1 

be removed from S for some 1 < i < n. We claim that g will also be removed from S. Ac- 

cording to the definition of deactivation we have x i ~y and thus either x i =y or an 

instance v exists so that xi~v~y. This follows from the fact that xi~N as it is a 

coroutine instance. Since T(xi) =g we have in the latter case v=g and then g~y which 

implies that also g will be removed from S. In the first case x i =y we have x i C OC and 

so x i ~ C and hence D(xi) = g which implies that the deactivation of x i includes the 

deactivation of g which therefore will be removed from S. u 

As we have already noticed theorem 1 implies that each time an identifier is referenced 

the instance containing the declaration of that identifier belongs to OC. ~Dreover each 

label can be thought of as being declared in the innermost block in which it occurs. 

Thus at the time of a reference to a label the instance containing the declaration of 

that label and the corresponding program point can be found in 0C. This means that the 

effect of a K~ to-statement can be modeled by zero or more deactivations and hence our 

former results remain valid. 

To complete the proofs we show that the dynamic ancestors of an instance remain con- 

stant. 

L~a 5: Let x,P be an instance. Then we have a unique y such that xCOC mx~y. 

Proof: If x is a procedure or cogroup instance the value D(x) is constant all the time 

x belongs to S. If x is a coroutine instance D(x) can be changed but according to 

lemmas 1 and 2 x E OC m x ~ g where g is the corresponding cogroup instance. [] 
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Theorem 4 follows easily from lenma 5. 

Theorem 4: Let x be an instance. Then we have unique yl,...,y k , k~l, such that Yl =x' 

yk =P and xEOC = (vi)(l<i<k o Yi~Yi+l )" 

6. CONCLUSION 

We have sketched a method and notation for expressing coroutine control and given a 

model for its executions. Using this model we have proved that the balance between co- 

operating coroutines is maintained in every execution and that it is impossible to re- 

ference terminated coroutines and variables declared in any terminated instance.These 

results convince us that the use of the coroutine system is safe: invalid references 

cannot occur and the nesting of coroutines cannot lead to unsuspected situations. 

The result concerning the balance between coroutines of any cogroup obtains more im- 

portance if the coroutine system is extended to include some advanced concepts. For 

example, typed coroutines and "subcoroutines", which always return control to their 

callers, are easier to define and use when co-operating coroutines cannot call each 

other in unobvious ways [ 6 ]. 

The restriction imposed on actual name parameters transmitted to coroutines has dual 

effect. On one hand it guarantees the balance between coroutJnes and the safety of 

their use, on the other hand it prevents the referencing of identifiers declared in 

terminated instances. If the coroutine system is incorporated into a language using 

retention instead of for example stack techniques in memory management then the second 

effect is not needed and can be removed by mitigating the name parameter restriction 

not to cover arithmetic and Boolean variables other than formal parameters. 
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