
THEORY OF DATA STRUCTURES BY RELATIONAL AND GRAPH GRA~IARS

V~clav Rajlich

Research Institute for Mathematical Machines

Loret~nsk4 n~m. 3, ll8 55 Prague l, Czechoslovakia

In the paper, a definition for relational and graph grammars is
given. Data structures and expressions are defined as a special kind
of relational structure and tree, respectively. Examples illustrate
the unifying power of the definitions. Four data manipulating com-
mands are defined : assignment, conditional command, node creation,
and edge creation. A method for proof of data structure algorithms
is given; the method is based on Floyd's method.

i. INTRODUCTION

The paper may be viewed as a continuation of efforts to define

data structures in exact mathematical terms, along the lines sug-

gested in ~lS , E2S , ~15~ , and E16~ . The contribution of such ef-

forts may be manyfold : ~he efforts do produce simple and clean models

of often complex realities we encounter within data structures, and

thus they may contribute to the ~evelopment of conceptually simple

but powerfull new programmir~ tools. They also train programmers to

think in unambigous terms (with less logical errors made as a result)

and so they promote clean programming techniques. In the process of

teaching programming techniques, they put many different techniques

into one fold and hence they promote better grasp of problems and

their solutions. Exact mathematical formalization also facilitates
program proofs.

The basic mathematical formalism used is graphs or more general

relational structures. They represent the so-called snapshots of a

data structure, i.e. they consist of static interrelationships between

various elements of a data structure. Computation on ~ata structure

is represented by a sequence of snapshots, each differing from the

previous one by a local change caused by an action of processor.

392

Hence the whole apparatus reminds us of movies, where also a se-

quence of static snapshots represents a motion. For description of

changes from one snapshot to the next one, we utilize the apparatus

of graph grammars. However this apparatus was greatly simplified,

particularly by use of definition 2.1 and consequent definitions of

section 2, and hence it may be of interest on its own, particularly

in context of papers dealing purely with formal properties of sub-

stitutions into graphs and relational structures, and in relation

with graph grammars, of. [5] , ~6], L7], Ls], [9], and [i0].

It should be remarked that there exist at least two papers

where apparatus of graph grammars is applied to data structures [5],

[3] • However philosophy of this paper is distinct from both and it

represents further elaboration on ideas expressed in ~4] •

In section 3, data, expressions and four basic manipulating

commands are defined. The commands are assignment, if-statement,

creation of a new edge, and creation of a new node. This set while

being very small seems to be powerfull enough to all particular needs

to manipulate data structures. Further discussion on this point is in

section 3.

Sections 1 - 3 helped us to describe data structure at any given

instant as a mathematical object. Section 4 capitalizes on this fact

and introduces a method for proving properties of programs with data

structures, Which is a generalization of Floyd's method.

Some further elaborations on ideas of the paper will appear in

[iv].

2. RELATIONAL AND GRAPH GRM~ARS

Relational structures can be intuitively viewed as a set of

static objects and a set of static relations between them. They are

defined by the following definition :

Definition 2.1

Let L be a set of labels and X a set of ~odes, then edge is a

a \where n>~l, A ~ L and sequence of the type <A, al, ..., n i

al, ..., a n e X. Relational structure over L (structure) is a set of

393

edges, x/ 0riented graphs with labeled edges are structures G con-

sisting of edges of the type<A, al, a2>where A e L, al, a 2 a Nod G.

Similar definitions may be given for oriented graphs with labeled

nodes, nonoriented graphs, and other graphs. Hence graphs are a spe-

cial case of our notation and they will not be treated separately.

For greater convenience of the reader, edges will be denoted by ex-

pressions of the type A <al, ..., an> where A e L, al, ..., a n e X.

In the following we shall also assume that each label is associated

with a certain arity, i.e. for each label L there exists unique n

such that only edges L<al, ..., an ~ & S.

Let S be a structure, then nodes of S (denoted Nod S) is a set

of all nodes, explicitly used in the definition of S, i.e. Nod S =

{x I there exists A <al, ..., a n> E S such that x ~ {al, ..., an~ I .

If B <x> ~ S, then x is called a labeled node. Observe that there

may be several labels at one node. |

As an exercise, observe the following properties :

Observation 2.2

Let S, T be structures, Then :

Nod (S ~ T) c Nod S ~ Nod T

Nod (S u T) = Nod S ~ Nod T

Nod (S - T) ~ Nod S - Nod T. |

Let us have the following example :

Example 2.3

Consider a list whose picture in style of [13] is on figure i.

x/
In the literature, relational structure is usually defined as a
couple of sets, where the first set is set of nodes and the
second set is set of edges. Definition 2.1 enables us to use
set-theoretical operations (union, intersection, complement)
on structures and this is the main reason for its use. On the
other hand, it doesn't allow to define isolated unlabeled nodes.
However from the following text it is clear that unlabeled iso-
lated nodes do not have any reasonable intuitive meaning anyhow,
so the loss is not great. Empty set is also a structure, called
empty structure.

x L Q

394

Fig. 1

For purposes of further explanations, atoms of the list were denoted

by letters L up to Q. The list may be represented by a relational

structure in several ways. We shell choose a method, where atoms of

the list ere represented by nodes of the structure. Left and right

links will become binary edges labeled by A, and B, respectively.

Pointer X will be represented by a unary edge . NIL will be repre-

sented by both node NIL and unary edge NIL <NIL >. (The purpose of

such dual denotation will be clear after definition of expression

and its value, see definition 3.4.) The list is hence described by

a structure

S = [X k/L>, NIL<NILe, A <L,M>, B<L,N>,

A (M,N~, B<M,P~ , A<N,P>, B<N,LT,

A~(P, NIL>, B<P,P>, A k/Q,L>, B-~/Q, NIL>} ,

see also fig. 2. |

A

B

Fig. 2

395

Graphic~l notation for structures is for most parts self-expla-

natory, see fig. 2. Nodes are denoted by circles with the name of the

node inside. Unary edges are denoted by labels separated by commas in

front of the corresponding node. Binary edges are represented by la-

beled arrows. Ternary edges are denoted by a generalization of arrow,

see for example fig. 9, etc. Whenever names of nodes are not inter-

esting, nodes will be represented by unnamed circles, distinct cir-

cles always representing distinct nodes.

We shall define label-preserving homomorphism between structures

in the following way :

Definition 2.4

Let S, T be structures and let h : Nod S-*Nod T be a function

such that for every edge A <al, ..., anV e S, there exists an edge

A~h (al) , ..., h (an)> c T. Then h is homomophism and it is denoted

h : S~ T.

Let h : S-~T be a homomorphism and let R c S, then g : R-*T

is restriction of h to R (denoted h I R), iff for every a e Nod R,

g (a) = h (a).

Let X, Y be structures such that S ~ X, T c Y. Then f : X~Y is

extension of h to X, iff for every a ~ Nod S, f (a) = h (a). Homomor-

phic image of S, denoted by h (S), is the structure

h (S) = ~A~h (al) , ..., h~n)~iA <al, ..., an~ a S ~.

Substitution into relational structure is defined with the help

of productions. Formally this is done in the following definition :

Definition 2.5

A production is a couple of structures p = ~L,R ~, denoted also

L =)R where L and R are called left and right side, respectively.

Let us have structure S, production p =<L,R) and homomorphism

h : L~S. Then substitution into S according to production p and

homomorphism h gives S' (denoted S----~h(p)S,) iff the following holds :

i) for the homomorphism h we shall find an extension h to R ~ L

which must satisfy requirement Nod h (R-L) ~ Nod S =

396

(i.e. new nodes must not be i~entified with the old ones).X/

ii) S' = (S - h (L)) u h (R). |

Venn diagrsm of this situation is on fig. 3, where the

shadowed area represents S ~ .

Fig. 3

Example 2.6

Let us have structure S = ~A <l,2.b, B <2k/, A<2,37, A <3,1>}

and production p = [A ./11,12> , B<II>}=> A<12,13>.

Then there exists a unique homomorphism h : L-~ S, defined in

the following way : h (ll) = 2, h (12) = 3.

The right side R has new node 13. Define h (13) = 4 and than

condition (i) of definition 2.5 is satisfied. Then h (L) = [A <1,2>,

BC2> } and h (R) = A<3,4> •

Then S--~h(p)S'where S' = (S - h (L))u h (R) = A [<l,2b ,

A <3,1 ~/,A <3,4> ~ see fig. 4. J

D A ~ A

P

S Fig. 4 S'

x/ In certain situations not arising in this paper, where Nod R-Nod L
contains more then one node, we shall usually require the following
additional condition :

if x, y ~ Nod R - Nod L and x i y, then h (x) # h (y).

397

Substitution of Definition 2.5 may be extended in the following

way :

Definition 2.7

For a production p, S ~ S' iff there exists a homomorphism h
P

such that S----~h(p)S'. Let P be a set of productions. Than S~pS'

iff there exists p e P such that S-----~pS'.

Inductively let us define the following notation :

S ~ S' iff S = S'. For i = 0,1,2...,

.... i+l
S--ip S' iff S~ S'' and S''~-~ pS'.

~ S' " . Finally S~p iff there exists i>__ 0 such that S ~ S'

Context-free relational gra~ar is a system G =<S,P~where S

is a finite set of finite structures, P is a finite set of finite

productions and left sides of all productions of P are created by a

unique edge. (Productions of P are called context-free productions.)

Labels of all edges appearing on a left side are called nonterminals

and other labels are called terminals. Structure X is generated by

context-free grammar G iff S=>p X and all labels of X are terminal.

An example of context-free grammar is in example 3.5.

A notation saving vehicle is the use of variables for substruc-

tures. Whenever a substructure is connected to the rest by n nodes,

it may be denoted by an n-ary edge labeled by a variable. Always a

rule will be given which says what kind of substructure may replace

the variable. For example, let~'~<l> denote substructure ~ B 61,10~,

B~lO,11> , B <ll,l> }. Then structure {~<I >, A <1,2~ 2 denotes

structure [B ~l,iO> , B <10,11>, B <ll,l~, A <1,2~ } .

3. DATA STRUCTURES

In this section, we shall define data structures, expressions

and four basic manipulating commands for data structures. We shall

also briefly discuss reasons for the choice of the set of manipu-

lating commands. First we shall introduce sequence of definitions

3.1 - 3.4 and theorem 3.3. The reader while reading the definitiox~

may consult examples 3.5 - 3.10. Examples are here to show univer-
sality of definitions.

398

Data structure is defined in the following definition :

Definition 3.1

Let S be a structure n~l, then n-ary label L is an £~eration

in S, iff for every (n-l) tuple of nodes<al,... , an_l~there exists

at most one node a n such that L ~al, ..., an~ e S.

Nodes al, ..., an_ I are called operands, node a n is called result.

If L is unary label and it is also an operation, then it is

called entry point. (Label C is entry point iff C <x>, C<yb 6 S

implies x = y).

Structure D is data structure iff D is a structure and all its

labels are operations. |

The previous definition goes hand in hand with the following

definition of expression. We shall define expression as a tree, where

each leaf is s labeled node :

Definition 3.2

Expressio n is a structure T generated by a context-free rela-

tional grammar G = ~'<x>, P>where ~ is a nontsrminal and P is a

set of productions of two types :

~I~I~=~B<2, ..., n, 17, ~<2~2>, ..., ~<n<n~ },

1 <l>=~ C<l>

where ~i' "'''°~n are nonterminals and B,C are terminals.

Node x is called root of the tree. Edge A ~al, ..., an_l, x>

of the tree is called rooted edge. |

In the literature, expressions are often defined as strings

rather than trees. All such strings are in fact encodings of trees

into a linear form. For relevant theory, see for example [12~ .

Observe the following property of data structures and expressions :

The orem 3.3

If T is expression and D data structure, then there exists at

most one homomorphism h : T--~D.

399

Proof.

First prove the following statement :

(a) If { ~ il>, ~<2)~ =r~ n S and P are context-free productions, P
then there exist mutually disjoint structures S1, S 2 such that

Sl, ~2~ S 2. S I ~ S 2 = S, ~l>='2p

This statement is proved by induction on n.

As a consequence, we have the following statement concerning

expressions :

(b) For every expression T with rooted edge A <al, ..., a n >,

there exist mutually disjoint expressions T1, ..., Tn_ 1 such

that A<al, ..., anV ¢ T 1 v ... v Tn_ I,

T = A<al, ..., an> v T 1 ~ ... uTn_l, and al, ..., an_ 1
are roots of expressions T1, ..., Tn_ 1.

The proof of theorem 3.3 is by induction on the number of edges

in the expression.

Base :

Suppose expression T has only one edge. Then the edge is unary

one and it has the form A <x~. If h : T-TD exists, then h (T)=A<y~

where y e Nod D. Then A is an entry point for D, and hence by defini-

tion 3.1 there exists a unique node y such that A<y> ~ D, and the

theorem is true.

Induction step :

Suppose the expression T has m ~ 1 edges and for every expression

with m - l, m - 2, .., 1 edges, theorem 3.3 is true. Then as a con-

sequence of (b), T = A ~/Sl, ..., an~ ~ Tl~ .. ~ Tn_ 1 where number

of edges in T1, ..., Tn_ 1 is at most m - 1. Hence for each of the

subexpressions, induction assumption holds and there exists at most

one homomorphism h I : Tl-~ D, ...~hn_ 1 : Tn_l_ ~ D.

If all homomorphisms hl, ..., hn_ 1 do exist, then define h : T-~ D

in the following wsy : Let h I T 1 = hl, ..., h L Tn_ 1 = hn_ 1. By (b),

nodes al, ..., an_ 1 are roots of T1, ..., Tn_ 1.

Hence h (al) , . .., h (an_ 1) are uniquelly defined. In data structure D,

there exists at most one edge A ~h (a 1), ..., h (an_l) , y~ ~ D and

hence there exists at most one homomorphism h : T--~ D. |

Finally let us give the following definitions :

400

Definition 3.4

Let T be an expression, D data, and let h : T-~D be a homomorphism,

then value of expression T in D is the homomorphic image of the root

of T. Let D be data, then accessible part of data D is set of all

edges g, for which there exists an expression T and homomorphism

h : T-~D~ such that g e h (T). Expression T has value in data D iff

there exists homomorphism h : T--> D.

The definitions 3.1 up to 3.4 will be illustrated by the follow-

ing examples :

Example 3.5

In this example, we shall return to lists and to data structure S

of fig. 2 and example 2.3. Generally speaking, lists are data struc-

tures consisting of nodes and binary edges, called links. There is a

special node NIL and an entry point NIL <NIL>. Each node except NIL

has complete set of links emanating from it. There is no link ema-

nating from NIL. There also must be some entry points other than NIL,

for example X in fig. 2.

Expressions relevant to this example are derived by a grammar

G = C~<x~/, P>with the only nonterminalT where P consists of

the following productions :

<l~=> {B<2,1>, ~<2>~,
V<l>--> x<l>.

Examples of expressions are in fig. 5.

p

A

)

A

X
£

)

B

)

'B

X

A
)

A

|

B

e~

Fig. 5

401

Value of El, E2, and E 3 in data structure of fig. 2 is M,L, and

undefined, respectively. Note that accessible part of S is

S - ~A~Q,X~, B ~Q, NIL> } .

For expressions of this example, we shall use a linear notation

based on concatemation, where the entry point is followed by a se-

quence of links separated by dots. For example, El, E2, and E 3 of

fig. 5 wil be denoted by X.A.A.B.A, X.B.B.B, and X.B.A.A.B, or

X.A2.B.A, X.B 3, and X.B.A2.B, respectively.

Let A ° = Land for every expression T, T . L = T.

Let U,V be sets of link labels, then U.V = ~C.D i C E U) D ~ V }.

Let U ° = ~ and for every i~l, U i+l = U.U i. Let U ~ = i~ 0 U I.

Example 3.6

Often used data structure is arithmetics of integers (denoted I).

It is defined in the following way :

Nod I = [0,1,-1,2,-2, ...

Entry points : E = {0 <0~, 1 (l~, 2~/2~, ..., 10<lO~

Other operations are +, -, ~, ~, <,%, =, i, >/, ~ defined in analo-

gy to the following two examples :

R+ i a+b=c ,
etc.

etc.

Then I = E cR + u R- u R ~ u R~u R/~u R~u R = ~ R~ R~u R >.

Example of expression 5 ~ 10T 2 + (7 ~ lO + 2) is in fig. 6.

Its value in I is 572. Accessible part of I is the whole data struc-
ture I.

Lists of the previous example may be combined with I in such a

way that some pointers of the list point to a node of I. Example of

such case appears in section 4.|

I oZ
Fig. 6

402

Example 3.7

Arithmetics of integers is often used in connection with iden-

tifiers of Algol-like programming languages. Data structure D is

then defined formaly in the following way :

D = (~<i <Xlb ' ~2 <x2b ' "'''~n<Xn>} u I

where ~i~ 62, ..., 0< n are new entry points denoted by identifiers.

Let us have a data structure

D = {ANNA <19> , FX2 <2> , R <37} u I and expression

(R + 3) ~(FX2 + ANNA, see fig. 7.

+ ~ FX2 ""1 ANNA

Fig. 7

Value of the expression in D is 31. |

Example 3.8

Arrays are characterized by a special operation called "in-

dexing operation" symbolically denoted by square brackets ~ ~ , which

to a given identifier and given integer finds another integer as a

value. Suppose we have an array A [I] , A [22 , ..., A[NJ , then it

will be represented by a data structure

D =~A<A>, ~ 3 <A,l,Xlb , [] <A,2,x2> , "'', []<A,N,XN~ u I,

where Xl, x2~ ..., x N e NOd I and A is an entry point symbolizing

name of the array.

Expression on fig. 8 is in a standard linear form expressed as

~ KIB K A [2 + AKS~] • |

C3

403

Fig. 8

In the rest of this section, we shall ~efine commands and pro-

grams which manipulate data structures. We shall use four basic data

manipulating commands. They are in fact productions which change a

data structure into another one. Although the movement of control

through a program may also be expressed in terms of productions, for

easier reading it will be left out and explained in different terms.

There are four commands : assignment, edge creation, node creation

and conditional command.

Intuitive explanation of assignment follows the definition.

Definition 3.9

Assignment is a production of the type

~U<I>, V<2>I => [V<2~, U' <2~ ~ where U, V, U' are

expressions and there exists an isomorphism i : U-->U' such that for

every node y except root, i (y) = y. Assignment will be usually

written in form U := V.

Edge creation is a production of the type

IT1<1>, T242> , . . . , Tn<n> , V<0>} =>[T<O>, V<O>;

where T I<17, T 2<2~, ..., Tn<n ~ are subexpressions of expression

T ~0>. It will be usually written in a form CREATE T := V.

404

Node creation is a production of the type T~/I~ ~'>T ~/2~ where

T is an expression. It will be usually written in a form CREATE T.

Conditional command is a couple <T, m~ where T is expression,

m a natural number.

Program P is a sequence <Pl' P2' "''' PN ~2 of commands. State

is a couple <D,iV where D is data structure and i ~ ~l, ..., n ~.

~D' n'~ iff the following holds : Then ~D, nb ='2 p

i) if Pn is assignment, edge creation or node creation, then

D----~Tpn D' and n' = n + 1

ii) if Pn is conditional command <T, mV, then D = D' and if

there exists homomorphism h : T-~ D, then n' = m, otherwise

n' = n + 1. |

Let us return briefly to the formalism for assignment. There we

had expressions U and V. Assignment means that the data structure is

changed in such a way that after the change, value of U will become

equal to value of V. The change concerns only the homomorphic image

of rooted edge of U. All other edges of data structure are unchanged.

Of course, in standard programming languages, not every expression's

value may be changed in this fashion. We should distinguish access

expressions, whose values may be changed during the computation.

Examples of access expressions are variables (ALFA, F1, etc.), array

expressions (A ill , A [B L2]+ 3] etc.), or access paths in lists

(X.A.A.B, etc.). Examples of expressions which may not be changed by

a computation are 1 + l, 3 ~ A [2] , NIL, etc. Each programming lan-

guage makes distinction between these two kinds of expressions.

Observe the following technical lemma :

Lemma 3.10

Let ~D, n~ ~p <D', n'~>where D is a data structure, then D' is

also data structure. |

It may be observed that all actions which mean removal of a node

or an edge from the relational structure are omitted from the basic

four commands. We have done this on the basis of the fact that once

a node or an edge is no longer accessible, then from the programming

point of view it is the same like when it does not exist. This is

particularly clear in view of the following lemma :

405

Lemma 3.11

Let D be a data structure, and let for some n and P

<D,nb =>p<D', n~. Let S = D - accessible part of D, S' = D' -

accessible part of D', then S' o S.|!n practical programming with

lists of a very general nature, node removal is a complex operation.

It means to look through the whole list and disconnect all links to

the atom being removed. Hence it does not possess "local" nature of

the other commands and this is another reason for its deletion from

our list of four basic commands.

Of course, even edge creation and node creation could be deleted

in view of the fact that all edges and nodes to be used may be pre-

pared in advance as a part of free memory. Their relationship to the

rest of data structure could be easily realigned by assignment. The

very basic set of commands for data structures programming is thus

assignment and conditional command.

Finally let us introduce the following definition :

Definition 3.12

Let P = <PI' "''' PN > be a program, D a data structure.

+ D' iff<D,l~ ='2p . D=>p =Tp<D', N+I~

4. PROGRAM PROOFS

The n

In [iI], Floyd's method for program proofs was described for

machines with variables and arrays. In this section, we shall extend

the methcd to general data structures.

Let us repeat briefly basic notions of Floyd's method in data

structures setting. They are illustrated by example 4.1.

Let us have program P = <PI' "''' Pn >" Let ~ be an input

.... assertion~ i.e. a statement describing all data structures admissible

to program P. Let V be an Output assertion, i.e. a statement de-

scribing relationship of input data structure and output data structure

at the completion of program execution.

We shall find the so-called cutpoints in the program, which are :

a/ begin and end

b/ additional places such that each loop of the program contains at

least one cutpoint ~ll, p. 171 ~ .

406

We shall find the set of paths from one cutpoint to another one

such that no third cutpoint is involved. For each of the paths

we shall find Condition C~ and function F~ , i.e. a property data

must satisfy in order the path to be taken, and the properties of

the data at the end of the path expressed in terms of the data at

the beginning of the path, respectively.

Each cutpoint will be associated with an inductive assertion,

i.e. a statement describing properties of data whenever control moves

through the cutpoint. For begin and end of the program, we have input

and output assertion, respectively. For other cutpoints, inductive

assertions must be supplied by "educated guess". For proof of partial

correctness, we shall make verification for every pathS-5 , i.e. from

inductive assertion for the starting cutpoint of pathS, from con-

dition C~, and function F~, we must arrive to inductive assertion

for the final cutpoint of path ~ .

For proof of termination of a loop, we shall find a well-founded

set W, ~ll, p. 183 S , i.e. a set W together with relation ~ which is

transitive, antisymetric and there is no infinite chain of elements

a I ~ a 2 ~ a 3 ~ We shall find a partiall function G from all

data structures to W (again the well-founded set and function G must

be supplied by an educated guess). We have to verify the following

statement :

For every path of a loop ~U and every data D, for which G (D) is

defined, G (D) ~ G (F~ (D)). Also we must verify that G (D) is de-

fined for entry point of the loop.

The method is illustrated by the following example. For assertions,

we shall use an informal assertion language based on example 3.5.

Formal assertion language for Rosenberg's data structures ~ 15~ appeared

in 143.

Example 4.I

We shall give a proof of a program for lists marking. Marking is

part of the algorithm for garbage collection, see K 133 and its purpose

is to mark all accessible atoms of a list. The marking will be done

by program P of fig. 9. (It is given in a form of flowchart for easier

readability.) Cutpoints in it are ~ START, 2, END ~ .

407

Fig. 9

no

U.D=O
CREATE W
CREATE ~.A: = U
CREATE ~. B: = Z
Z:,, W/
U: = U.A

The program does the following thing :

The original list has entry point X, links A,B, and D, where link D

points to arithmetics of integers. We shall consider values stored

on links D at the beginning to be different from O; value 0 will mean

the marking. Example of the list without links D is on fig. 2.

During the computing, we shall use a stack consisting of entry

points Z, W, and links A and B, see fig. lO. Also we shall use entry

point U which moves through the list. Marked nodes in fig. lO are

~enoted by black circles.

All paths of program P with their conditions and functions are

in fig. ll. In it, data structures, values of expressions, a~d links

before and after taking the path are denoted by subscript i and j,

respectively. Elements unchanged by a path are not listed. Data

structure under consideration is denoted H.

408

A

Fig. I0

O

Path from to
9~ cutpoint

p START 2

q 2 2

r 2 2

s 2 2

t 2 END

u 2 END

condition C qU

TRUE

function F SU

uj = x i

U i = NIL and Z i M NIL Uj = Zi.AI.Bi, Zj = Zi.B i

U i W NIL and Ui.D i = 0
~0t__

and Z i / NIL

U i ~ NIL and Ui.D i ~ 0 Ui.D j = 0, Wj ¢ Nod Hi,

Wj.Aj = Ui, Wj.Bj = Zi,

Zj = W j, Uj = Ui.A i

U i / NIL and Ui.D i = 0

and Z i = NIL

U i = NIL and Z i = NIL

Fig. Ii

For proof of partial correctness, we shall associate each cut-

point with an inductive assertion in the following way : (In the

following, T ~ X . [A,B} ~.)

409

I START

~ END

: For every expression T.D i O.

: For every expression, one of the following conditions

holds :

(i) T.D = 0

(ii) for some T' e ~A,B~ ~ and some k ~ O,

Z.B.A.T' = T

(iii) T = U.T' and U.D ~ O.

: For every expression T, T.D = O.

As an example, let us verify path s which goes from cutpoint 2

back to cutpoint 2.

Let us rewrite all our basic assumptions for s. Ivariant ~ 2

will appear with indices i as an inductive assumption. We have to

prove that the same invariant with indices j holds.

i : (i) Ti.D i = 0

(ii) Zi.Bik.Ai.Ti ' = T i

(iii) T i = Ui.T i' and Ui.D i # 0

C s : U i i NIL and Ui.D i # 0

F s : Ui.D j = O, Wj ~ Nod Di, Wj.Aj = Ui, Wj.Bj = Zi,

zj = w j, uj = ui.A i

We shall verify each step separately : Observe that for every

T ~ X. [A,B~, T i = Tj. For every link Ai, B i of Hi, A i = Aj, B i = Bj.

(i) If Ti.D i = O, then also Tj. Dj = 0 and ~ 2 j holds.

(ii) Suppose T. = Zi.B..k.A..T.'. Then Z i W..B. = Z..B.~ and
j.Bj.Bi~.A i Ti ~ J O J J k+l Ti = T32= ~ .I = Zj.Bj.Bj .A .T.' = Z .B .A .T '

and 9 j holds, j i 3 J 3 J

(iii) Suppose T i = Ui.T i' and Ui.D i = O. Then we have to verify three

separate cases :

(a) T i = U~, then Ui.D j = O, hence Ti.D j = Tj.D = 0

and ~ j holds.

(b) T i = Ui.Ai.Ti' , then T i = Tj = Uj.T i' = Uj.Tj' and ~ 2 j holds.

410

(c) T i = Ui.B i~_m.,, then T i = T~ = Wj.Aj°Bi.T i' =

= Z A .B..T ' = Z .B °.A~.B .T. ' =
~" 003 3 J J J J 0

Zj.Bj .Aj.Tj" where Tj = Bj.Tj' and

holds.

Verification of other paths is done in a similar way.

For proof of termination, we shall use the following well-

-founded set :

W = ~ ~a,b~ I a,b ~ 0, a, b, are integers } and lexicographic

ordering, i.e. ~/a,b~ ~ ~c,d~ iff a~c or a = c and b ~d. Let E

be set of all possible lists, then F : E~W is given by the fol-

lowing relationship :

F(D) = ~a,b~ iff a is number of accessible unmarked nodes and b is

number of nodes of the stack.

Then if data D are data in the cutpoint 2 on the beginning of one

traversal of the loop, and D' data in the cutpoint 2 on the end of

the traversal, then F (D') ~ F (D) and hence the program terminates.~

REFERENCES

I. Jay Early : Towards an understanding of data structures,

Comm. ACM, vol. 14, 1971, 617-625.

2. A.C. Fleck : Towards a theory of data structures, J. Computer and

System Sci, 5, 1971, 475-488.

3. A.L. Furtado : Characterizing sets of data structures by graph

grammars, Proc. of conference on computer graphic, pattern recog-

nition and data structure, May 14-16, 1975, Univers. of California,

Los Angeles, IEEE Catalog Number 75 CH 0981-1C, 103-107.

4. V~clav Rajlich : Relational definition of computer languages, in

J. Be~v~ edited, Mathematical Foundations of Computer Science

1975, September 1-5, 1975, Mari~nsk@ L~zn~, Czechoslovakia, Lec-

ture Notes in Computer Science vol. 32, Springer Verlag, Berlin,

1975, 362-376.

5. Hans J~rgen Schneider : Syntax-directed description of incremental

compilers, in D. Siefkes edited, GI-4, Jahrestagung, Berlin, 9-12.

October 1974, Lecture notes in computer science, vol. 26, Springer

Verlag, Berlin, 1975, 192-201.

411

6. Terrence W. Pratt : Pair grammars, graph languages and string-

-tegraph translations, J. Computer and System Sci, vol.5,

December 1971, 560-595.

7. A. Rosenfeld and D.C. Milgram : Web automata and web grammars,

Machine Intelligence vol. 7, 1972, University of Edinburgh

Press, 307-324.

8. V~clav Rajlich : Relational structures and dynamics of certain

discrete systems, in Proe. Symposium on Mathematical Foundations

of Computer Science, High Tatras, Sept. 3-8, 1973, available from

Computing Research Centre, Bratislava, Czechoslovakia, 285-292.

9. Vgclav Rajlich : Dynamics of discrete systems and pattern re-

production, J. Computer and System Sci., 11/1975, 186-202.

i0. H. Ehrig, M. Pferaer, H.J. Schneider : Graph grammars : an alge-

braic approach, Switching and automata theory conference 1973.

ll. Z. Manna : Mathematical Theory of Computation, Mc Graw Hill, 1974.

12. W.J. Meyers : Linear representation of tree structure, Third

annual ACM symposium on theory of computing, Shaker Heights,

Ohio, May 3-5, 1971, 50-62.

13. D. Knuth : The art of computer programming Vol. i, Addison

-Wesley Publ., Reading, Mass. 1969.

14. S.A. Cook, D.C. Oppen : An assertion language for data structures,

Conf. rec. of the 2. ACM symposium on principles of programming

languages, Palo Alto, Calif., Jan.20-22, 1975, 160-166.

15. A.C. Rosenberg : Data graphs and adressing schemes, J. Computer

and System Sci., June 1971, 193-238.

16. K. ~ul~k : Algorithmization of algebras and relational structures,

Comentationes Mathematical Universitatis Carolinae, 13,3 (1972),

457-477.

17. V&clav Rajlich : Theory of computing machines, to be published

by SNTL, Prague, in Czech.

