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i. INTRODUCTION 

NP-problems are considered in this paper as recognition problems over some alphabet 
* 

Z, i.e. X c Z is an NP problem if there exists a NDTM [non-deterministic Turing 

machine) recognizing A in polynomial time. It is easy to show that the following 

t h e o r e m  holds t r u e .  

Theorem i: Let A be a set in NP. Then there exists a NDTM M A which recognizes 

= M~A , where A such that M A o M A o MAI 

i) The operation "o" is defined as follows: M 1 o M2(x ) is MI(M2(x)) ; 

MI, M 2 are Turing machines and x is an input tape. 

2) MAI is a polynomial time deterministic encoding machine. Its task is to encode 

an input a 6 A in some proper way to be denoted by a'. 

31 M~ is a NDTM which choses some permutation ~(a') out of a possible subgroup 

ofhhe group of all permutations of the encoded input tape a' in polynomial time. 

4) NBA is a polynomial time DTM which computes a number g(w(a')). 

6 A iff ~ ~(~(a')) ~ K a (min problem) 
5) a 

[ ~(w(a')) ~ K a (max problem) 

where K a is a number computed in polynomial time by the machine MAI (K a is 

part of the encoding of a). 

Thus every NP problem can be represented as an optimization problem and the 

recognition process can be split into three stages where the non-deterministic stage 

(the machine MWA ) is separated from the other stages. 

Example: Let A be the following (MAX SAT) problem: a 6 A iff a is a string of 

the form (CI,... ,Cp,K) where the C i are clauses over a set of variables 

{Xl,Xl,X2,X 2 .... ,Xn,%}; K is an integer (K < p) and, there exists a truth assignment 

to the variables that satisfies at least K clauses [if K=p then the problem is SAT). 

M A a machine that recognizes A can be constructed as M A = M A o M A o MAI where: 

MAI checks if the input is well formed; if so it does not change it. If not it stops 

in a rejecting state. M induces a permutation on the clauses and then induces 
~A 

another permutation on the literals within some of the clauses. 
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M performs the following algorithm : 
UA 

(1) Set ~ + 0 ; 

(2) If all clauses are marked, ,lalt and return 

(3) Let C i be the first unmarked clause, if 

t o  (2) ; 

(4) Let ~ be the first variable appearing in 

(5) For each C. if ~ E C. then mark C., 
3 ] ] 

(6) For each unmarked Cj,  Cj ÷ Cj q~} ; 
(7) Go to (2) .  

; 

C i is empty then mark C i and go 

C i. Set ~ + ~+i mark C i ; 

Set ~ + ~+i ; 

It is easy to see that the above algorithm is polynomial. After the algorithm 

is completed, the machine checks if ~ > K and stops in an accepting state if the 

inequality holds true, and in an rejecting state otherwise. It is easy to see that 

M A recognizes the set A as required. 

Proof of Theorem I follows from the fact that every problem in NP is polynomially 

reducible to SAT, which is, as mentioned above, a special case of MAX SAT. The 

reduction is then incorporated into ~M^I of the above example. 

2. NP OPTIMIZATION PROBLEM (NPOP) 

The conjecture that P # NP " is widely believed to be true. This conjecture 

prompted many researchers to develop and study polynomial approximations for problems 

in NP, when considered as optimization problems. See e.g. [Jo 73] or [Sa 76]. 

The previous section points towards the possibility of a new approach to the 

study of NP problems and NP optimization problems. In what follows, an attempt 

is made to develop that new approach. The results achieved so far are promising. 

These results provide some new insight into recently proved approximation results and 

it is hoped that they will serve as a basis for a more extensive theory of combinatorial 

approximations. 

Definition I: An NP optimization problem (NPOP) is a subscripted 4-tuple 

(A,F,t,~)EX T where : 

EXT = MIN or EXT = MAX. 

A c E* is a polynomial time recognizable recursive set over a finite alphabet Z 

(A is the set of all well formed encodings of some given combinatorial entity e.g. 

graph, family of sets, logical sentence in CNF, etc.). It is assumed that I 6 A 

where 1 denotes the empty word. 

F is a function F: A + Po(A) (the set of all finite subsets of A) ) where for 

all a 6 A, F(a) is a subgroup of the group of all permutations of a, to be called 

"the set of proper permutation of a". An element in F(a) will be denoted by ~(a). 

It is also assumed that the many valued function a ÷ z(a) is computed in polynomial 
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time by a NDTM ('~ermutation machine"). 

t is a function t: A + Po(Z U {±~}). t is a function intended to specify the 

property of the elements of A we want to study e.g, the number of clauses which are 

satisfiable in a given CNF formula, the number of nodes that are pairwise adjacent 

in a given graph, etc. With regard to the function t we sahll use the following 

notation 

op(a) = optimum(K: K 6 t(a)) where 

optimum is "max" if EXT = MAX and it is "min" if EXT = MIN. We shall use the 

value -~ in connection with ~t~X problems and the value +~ in connection with 

MIN problems. 

It is also assumed that F is compatible with t, that is: a' 6 F(a) implies 

that tCa') = t(a), that t(/) = {0}, and that t(a) # @ for all a 6 A. 

is a polynomial time function (the measure function) ~: Z* + Z U {±=} U {m} 

Cs ~ Z) satisfying the following properties : 

(I) ~(w) = a iff w ~ A ; 

(2) (~(a )  = K) ÷ K 6 t ( a )  ; 

(3) (¥a  6 A)(3~*(a)  C F(a ) )  (V(~*(a) )  = o p ( a ) ) .  

I t  s h o u l d  be n o t i c e d  t h a t  t h e  c o m b i n a t o r i a l  p r o p e r t i e s  (and t h e  complex i ty )  o f  a 

g iven  NPOP a r e  d e t e r m i n e d  by  A, t and t h e  s u b s c r i p t  EXT. We s h a l l  t h e r e f o r e  

a b b r e v i a t e  our  n o t a t i o n  and use  the  n o t a t i o n  (A,t)EXT or  (A,t ,~)EXT whenever  t h e  

o t h e r  p a r a m e t e r s  a re  n o t  r e l e v a n t  to  t he  c o n t e x t .  

Examples: (1) The prob lem ment ioned  b e f o r e  MAX SAT can be d e s c r i b e d  i n  t h e  form 

(A,t)MAX t h e r e  A i s  t h e  s e t  o f  a l l  CNF fo rmulas  and f o r  a 6 A, K C t ( a )  i f f  

there is a truth assignment to the variables occuring in a which satisfies exactly 

K clauses. 

C2) Colorability: (G,t)MIN where G is the set of all graphs and for G 6 G, 

K 6 t(G) iff G is K-colorable. 

Remark: ¢,~en considering NP problems as recognition problems a distinction should 

be made between '~olynomially constructive" solutions and '%onconstructive" sol- 

utions. Consider e.g. the problem of ascertaining whether a given planar graph is 

4-eolorable. By the 4-color theorem recently proved, every planar graph is 4-colorable 

and therefore this problem is trivially in P. On the other hand no deterministic P alg- 

orithm for coloring a planar graph by 4-colors is known. Some of the definitions in 

this section and the following sections of our work are intended to deal with both 

constructive and nonconstructive aspects of NP and NPOP solvability. On the other 

hand, this version of the paper will not be concerned with the constructive aspects 

of the problem. Those aspects will be considered in the full paper. 
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3. REDUCT~0NS BETWEEN NPOP' s 

On the basis of the previous definitions we are able to define and study reduc- 

ibility and in particular polynomial reducibility between NPOP's. 

Definition 2: Let (AI,tl)EXTI and (A2,t2)EXT2 be two NPOP. Then g: E ÷ E is 

a (polynomial) reduction of the first NPOP into the second iff g (is a polynomial 

function which) satisfies the following conditions : 

(I) 

(2) 

a 1 E A I iff g(a) E A 2 ; 

There e x i s t s  a (polynomial  t ime) f u n c t i o n  f :  A 1 x Z ÷ Z such t h a t :  

Va 1 E A1, f ( a l ,  o p ( g ( a l ) ) )  = op(a l )  ( t h a t  i s ,  one can compute 

op (g (a l )  ) i s  known). The r e d u c t i o n  i s  order preserving 

f s a t i s f i e s  the  f o l l o w i n g  a d d i t i o n a l  c o n d i t i o n s  : 

Let a I 6 A 1 and a 2 = g ( a l )  6 A2, then 

(2.1) YK 6 t2(a2)  , f ( a l , K )  6 t l ( a l )  ; 

(2.2) VKI,K 2 6 t2 (a2)  i t  i s  t r u e  t h a t  

< K2 ¢~I  / ( a l ' K 1 )  < f ( a l ' K 2 )  i f  EXT 1 = EXT 2 

K 1 
[ f(al,Kl) > f(al,K2) e l s e  . 

That is: one can derive better approximations to op(al) 

imations to op(a2). An order preserving reduction is 

if the function f satisfies also the property; 

op(a l )  if 

if the above function 

from better approx- 

measure preserving 

(2.5) (Va I E AI)(VKEZ), f(al,K) = K. 

The measure preserving reductions have the property that any measure ~2 on 

(~,t2)EXT2 induces a measure B1 on (AI,tl)EXTI such that Bl(al) = B2(a2) 

(a I E A 1 and a 2 = g(al) E A2). It is easy to show that measure preserving reductions 

can exist only between NPOP's such that EXT I = EXT 2 . The importance of measure 

preserving reductions will be illustrated in Section 4, Le~na 3. 

THe notation "(A,tl)EXTI <~ (B,t2)EXT2" will be used to denote reducibility, 
g 

where " < " denotes polynomial reducibility and " ~< " denotes polynomial reduc- 
P P 

ibility with corresponding function g. 

As in the case of NP problems, many NPOP's are reducible one to another by a 

measure preserving reduction, For example, let MAX CLIO UE be the following NPOP: 

(G,tMc) where G i s  the  s e t  o f  a l l  g raphs ,  and fo r  g E G, tMC[g)={KtG con t a in s  a 

complete  subgraph wi th  K nodes}.  We s h a l l  show now t h a t  M~( SAT ~ MAX CLIQUE: 
P 

Le t :  { C 1 , . . .  ,%}  be an i npu t  f o r  MAX SAT, where each C i con t a in s  l i t e r a l s  from 

X = (Xl,X 1 . . . .  ,x_,x_}.nn We reduce  i t  t o  the  f o l l o w i n g  graph G(N,A), where 
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N = {Vo, i [ a 6 X, and a 6 C i} 

A = {(Vo,i,V ,j) ] T # $ and i # j} . 

(This is, in fact, the reduction mentioned by Karp ([Ka 72]), extended to NPOP's.) 

It will be shown now that the class of NPOP's can be divided into two subclasses, 

such that no problem in one class can be reduced by a measure preserving reduction to 

a problem in the second class (unless P = NP). 

Definition 3: Let (A,t)EXT be a NPOP. Then for each K 6 Z, (A,t)EXT,K = {a [ 

a 6 A and OP(a) <K}. 

Definition 4: (A,t)EXT is a "simple NPOP" iff for all K 6 Z, (A,t)EXT,K is a 

set in P. It is a "~gid HPOP" if it is not simple (i.e. for some K, (A,t)EXT,K 

is in NPkP, where the notation NP\P stands for the sets which are in NP and are 

not in P provided that P ~ NP). 

Theorem 2: If (A,tl)EX T is a rigid NPOP and (B,t2)EX T is a simple NPOP, then 

(A'tl)EXT ~ (B't2)EXT • 
g 

6 NP\P. Assume that ._[A,tl]EX T ~< 
P 

r.* w 6 if 

Proof. Let K o 6 Z be such that (A,tl)EXT,Ko 

(B,t2)EX T. The following polynomial algorithm will check for each 

w £ (A,tl)EXT,Ko : 

(a) check if w 6 A, if not reject ; 

(b) reduce w by g to b 6 B ; 

(c) check whether b 6 (B,t2)EXT,Ko . If so accept else reject. 

(Clearly, b 6 (B,t2)EXT,Ko ~ w 6 (A, tl)EXT,Ko ) • 

All three steps of the algorithm are polynomial, so that the algorithm is polyn- 

omial as a whole. It follows that (A,tl)EXT,Ko E P, which is impossible. The 

theorem is thus proved. 

If P # NP, then a set A is NP complete implies that A £ NP\P. Combining 

this with the known NP completeness results, all known NPOP's can be shown to be 

either rigid or simple. Some examples are given below : 

RIGID NPOP ' s 

(a) Colorability (see [S 73]). Planar colorability is a special type of rigid NPOP 

as there is only one K(=3), for which (A,t)EXT,K is NP complete • 
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(b)  Bin Packing = (IS,tBp)~,U N 

IS = { ( a  1 . . . . .  a n , a n +  1 ) I Yi a i 6 Z} 

tSp((al,...,an,an+l) ) = {K I the set {a I ..... a n } can be divided into 

subsets, the sum of numbers in each of them < an+ 1 } . 

SIMPLE NPOP's 

( a )  MAX SAT 

(b)  MAX CLIQUE. 

Some additional properties of reducibility will be studied and proved in the full 

paper. In particular, a theorem similar to the Cook theorem ([Co 71]) will be shown 

to hold true, i.e. we shall show that the NPOP described below has the property that 

any other NPOP can be reduced to it by a measure preserving reduction. The NPOP is 

OSAT = (OCNF,tos)EXT where: 

OCNF = {(CI,...,Ct, yo,...,y £ I the Ci's are clauses over a set of 

variables X, and {Yo .... 'Y~} c X}. The Yi'S are the "Measure variables". 

For a 60CNF, tos(a) will be defined as follows: Let X a be the set of variables 

appearing in a, and let: 

B a = {B I B: X a ÷ {0,i} is a Boolean function} 

- such that B does not satisfy the Boolean Then +~6tos(a) iff there is a B 6 B a 

formula appearing in a. For K 6 Z, K 6 tos(a ) iff there is a B K 6 B a such that 

B K satisfies the Boolean formula appearing in a, and 
£ 

K = Z BK(Yi)21 . 
i=0 

The proof that every NPOP can be reduced to the above NPOP 

"a~usiTnent" of Cook's theorem for recognition problems, to 

of the proof will be given in the full paper. 

is derived by an 

NPOP 's. The details 

4. P-APPROXIMATION FOR NPOP 

The last section of the paper will deal with the problem of approximating NPOP 

in polynomial time. 

Definition 5: A function h: Z* -> Z U {_+~} U {a} is a p-approximation for an 

NPOP (A,t)EX T iff h is a polynomial (in the length of a) time function satis- 

fying the following properties : 

(i) h(w) = ~ iff w ~ A ; 

(2) h(a) i> op(a) if EXT = MIN and h[a) <~ op(a) if EXT = MAX. 
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The performance of a p-approximation h can be defined (see [Sa 76]) 

follows : 

{ min(h(~(a)),op(a))lh(~(a))'°P(a)l } (Va, a # X) Ph,(A,t)ExT(a) = max . ~(a)6F(a) 

as 

And as a function of the length of the input the performance is defined as : 

(Vn 6 Z) Ph(A,t)ExT(n) = max {Ph(a,t)EXT(a)I£(a) <n}. (Z(a) =length of a.) 

Definition 6: An NPOP (A,t)EXT is p-approximable iff for any e > 0 there is a 

p-approximating function h for (A,t)EXT such that Ph,(A,t) (a) ~< ~ for all a 6 A. 

(A,t)Ex T is fully p-approximable iff for any e > 0 there is a p-approximating 

function h as above with the additional property that h can be computed in polyn- 
1 omial time Q where Q = Q(£(a)), ~- ) i.e. Q is a polynomial in both the length 

1 
of a and the value -- 

The importance of measure preserving reductions follows from the following : 

g 
Lemma 3. If (A, tl)EX T ~ (B,t2)EX T then the following holds t rue : I f  (B,t2)EX T 

is  ( fu l ly )  p-approximable then so is  (A,tl)EX T provided tha t  g is  measure preserv ing .  

Proof: Let the time complexity of g be Po(n), for some polynomial Po" Then, 

by definition for all a 6 A, ~(g(a)) ~ Po(~(a)) 

Assume that (B,t2) is fully p-approximable in P(Z(a), 1 ) time for some 

polynomial P. One can assume that P is nondecreasing in both its variables, other- 

wise the negative terms may be omitted. We must show that (A,tl)EX T is fully p- 
i approximable in P' (Z(a) , ~- ) time for some (other) polynomial P' . 

Let a 6 A and e > 0 be given. Then we can find an e approximation to op(a) 

using the following algorithm : 

(la) Reduce a by g to b 6 B; 

(lb) Find an e-approximation to op(b) = op(a) (g is measure preserving). 

Due to the fact that for measure preserving reductions EXT 1 = EXT2, every 

s-approximation to op(b) is also an e-approximation to op(a) (both approximations 

will have the same value and op(a) = op(b)). The time required by Step (la) of 

this algorithm is bounded by Po(Z(a)) and the time required by Step (lb) of the 

1 ) ~< p(po(£(a)), I) P~'(£(a), i) (P was algorithm is bounded therefore by P(£(b), ~- = ± e 
1 

, ~ ) is the required assumed to be nondecreasing). P (Z(a), ~ ) = Po(Z(a)) + P~(£(a) 

polynomial. 

Remark: This proof will fit also the p-approximation case with some minor changes 

which are left to the reader. 
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Some results concerning p-approximable, and in particular fully p-approximable 

NPOP's, are represented below. 

4.1 Necessary Condition for p-Appr0ximabili~y 

Theorem 4: (A,t)EXT is p-approximable then (A,t)EXT is simple. 

Proof. Let (A,t)EXT be p-approximable, and let K 6 Z be given. Then (A,t)EXT,K 

is in P: by definition, for each e >~ 0 there is a polynomial (time) function 

, [heCa)-opCa) ] 
he: Z ÷ Z U {t), such that Va 6 A, minihE(a),op(a). ~ < e . 

Let EXT = MAX. (The other case is similar and is omitted.) he(a) and op(a) 

are integeres by definition and h Ca) ~< op(a) . Thus, he(a) > K implies that op(a) > K. 

On the other hand, choosing e = ]~ , the inequality 

I he (a)-op (a) [ 1 op(a)-he(a ) 1 op(9) 1 
min{h (a),0p(a)T < K implies that hs(a ) < ~ or hs(a ) - I < --I{ 

and for hE(a) <~ K this inequality is impossible unless op(a) = h (a). 
e 

It follows that 

[hl(a  ) ~< K] ~ [op(a) ~< K]. 

In other words h I is polynomial function that recognizes (A,t)EXT,K. 

Q.E.D. 

It can be shown that the converse of Theorem 4 is not true, and that there are 

some simple NPOP's which are not p-approximable (the TSP (*) problem [PS 76] is an 

example), assuming P ~ NP. 

4.2 Necessary Condition for Fully p-Approximability 

Definition 7: (A,t)EXT is p-simple iff there is some polynomial Q(x,y) such 

that VK £ Z, (A,t)EXT,K is recognizable in Q(Z(a) ,K) time. 

Theorem 5: (A,t)EXT is fully p-approximable implies that (A,t)EXT is p-simple. 

P~,oof. Let (A,t)EXT be fully p-approximable and let K 6 Z be given. Then 

(A,t)EXT,K is recognizable in Q(i(a) ,K) time for some polynomial Q(x,y): by defin- 

ition there is 1 some polynomial Q' (x,y) 1 such that (A,t)EXT 1 is e p-approximable 

in Q' (£(a) , ~- ) time, choosing e = ~ , (A,t)EXT is [ p-approximable in 

Q'(Z(a),K) time, and applying the same argument as in Theorem 4 we see that 

(A,t)EXT,K is recognizable in Q'(£(a),K) time (that is: Q = Q'). 
Q.E.D. 

(*) See Appendix 
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Definition 8: Let f: Z + Z be a (recursive) function and let 

NPOP. Then : 

(A,t)EXT,f(n) = {a E A I op(a) ~ < f ( z ( a ) ) }  

(A,t)EXT be a 

The following Lemma 4 introduces a useful tool for recognizing p-simple NPOP's: 

Lemma 6: (A,t)EXT is p-simple implies that (A,t)EXT,Pl(n) E P for any polyn- 

omial Pl(n). 

PrOOf" (A,t)EX T is p-simple implies that there exists a polynomial Q(x,z), such 

that for all K £ Z, (A,t)EXT, K is recognizable in Q(Z(a) ,K) time. This implies 

that (A,t)EXT,PI(n) is recognizable in Q(~(a) ,pl[(Z(a))]) = p(Z(a)) time, where 

p is a polynomial. Q.E.D. 

By the above lena one can show that many of the simple NPOP's are not p-simple 

if P ~ NP (e.g. MAX SAT, l~,X CLIQUE, MAX CUT ([GJS 74]),), by showing that for some 

polynomial p(n) (in general p(n) = n will do), (A~t)EXT,p(n) is NP complete. 

i~L~X SUBSET SLH and JOB SEQUENCING NITH DEADLINE (JSD) ([Sa 76]) are p-simple. 

In the full paper there will also be given sufficient conditions for fully p- 

approximability, and it will be shown that among most known NPOP's, all those problem 

that satisfy the necessary conditions for fully p-approximability also satisfy the 

sufficient conditions, while most known NPOP's which are not known to the fully 

p-approximable do not satisfy the necessary conditions and therefore cannot be fully 

p-approximable (unless P = NP). We shall also give sufficient conditions for p- 

approximability and discuss the relation between them and the necessary con~ditions. 
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APPENDIX 

The following NPOP's were mentioned in the paper, but were not formally defined: 

(1) TSP (Travelling Salesman Problem): = (W(G),tTSP)MIN, where W(G) is the set of 

all weighted graphs W(G), (that is graphs combined with a weight function W: 

A ÷ Z), and for a given weighted graph W[G(N,A) ], tTsp(W[G(N,A ) ]) = {K I there 

exists a Hamiltonian cycle in the graph whose weight is K} U {±~} (we add ±~ 

to tTsp(W[G(N,A)]) to make sure that it is not empty). 

(2) MAX CUT: = (W(~ ,tCUT)MAX, where W(G) is as above and tCuT(W[G(N,A ) ]) = {K I 

A contains a cutset of weight K}. 

(3) MAX SUBSET SUM = (IS,tss)MAX where IS = {(al,... ,an,an+l)} is the set of all 

finite integer sequences, and tss((a I ..... an,an+l) ) = {K I K < an+ 1 and there 

s 

<n, ~ a.. = K}. are 1 ~i I <'"< is j=l zj 

(4) JSD (Job Sequencing with Deadlines) = (IS3,tjS)MAX where: 

IS3 = {(TI,DI,PI,..',Tn,Dn,P n) I {Ti,Di,P i} c Z for i = i .... ,n) , 

and 

tjs((TI,DI,PI,...,Tn,Dn,Pn)) = {K I there is a permutation 

(1,2,... ,n) such that 

n 
~o(i)Pq(i) = K 

i=l 

of 

where 

6 (i) = [if T(1) + T (2) +o..+ T~(i) >i D (i) then i else 0]. 


