COMPLEXITY OF SOME FROBLEMS CONCERNING L SYSTEMS

{Preliminary Report)

Neil D. Jones *
and
Sven Skyum
Department of Computer Science
University of Aarhus
Aarhus, Denmark

1. INTRODUCTION

Recently, considerable interesi has been shown in questions concerning the

complexity of the membership problem for various types of L systems. Van Leeuwen
showed in [ 11] that there are ETOL. systems G such that L(G) is complete for n @
{nondeterministic polynomial time}. Opatrny and Culik showed in [7] that EOL mem-
bership (for fixed grammars) may be decided deterministically in time n4, and Sud-
borough gave a (log n)2 space algorithm for the same problem in [ 10], based on a
construction by van Lesuwen [12]. Sudborough also gave a deterministic log n
space algorithm for EDOL membership in [ 10], and showed in [9] that some linear
languages (and hence some EOL. and deterministic ETOL languages) are complete for
nondeterministic log space, In a companion paper [4] , we have shown that each de-
terministic ETOL. languages can be recognized nondeterministically in log n space,
and therefore deterministically in polynomial time.

In this paper we study the complexity of the emptiness and finiteness questions
for each of these classes (ETOL, EOL, and their deterministic counterparts}, as
well as the general membership problem.

Let G be a linearly encoded form of an ETOL system over a fixed alphabet inde-
pendent of G. (E.g. represent symbols VisVgyers,y Vv inthe form Vi whereT is the
binary representation of i, 1< i< m.} The problems we discuss may all be repre-
sented in terms of membership in the following sets. C denotes any of the system

classes just mentioned,

. NONEMPTY® ={G| GisinC and L(c)# @]

2. INFINITES = {G | G is inC and L(G) Is infinite]
3.  MemBer® ={<B,%> | GisinC and x is in L(G)]
4, L(G) for a fixed grammar G inC

*) At Computer Science Department, University of Kansas, Lawrence, Kansas,
USA after summer 1977. Research partially supported by University of Kansas
General Research Grant 3802-2038,
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The work referenced above establishes upper and lower complexity bounds on
problems of type 4 (except for a lower bound on deterministic EQL. membership). We
shall outline a series of constructions which suffice to establish both upper and
lower bounds on the remaining problems (in most cases rather tight}, As we shall
see, the complexity of the general membership probiem (in which the input is the sys-
tem as well as the terminal string) can be much higher than that of determining
whether x is in LL(G) for some fixed G. In the most extreme case, if C is the class
of deterministic ETOL grammars, membership for fixed systems may be determined
in log n space, while the general problem requires essentially linear space {both by

nondeterministic algorithms).
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2. TERMINOLOGY AND RESULTS

The results may be presented in the form of a table as follows. For the sake of

comparison we have included the context-free and context-sensitive classes as well.
In the system class names, D indicates '"deterministic!, and P indicates Ypropaga-

ting! (i.e. the absence of productions with the empty string on the right side).

PROBLEM
GCRAMMAR MEMBER MEMBER
~ErASE (FIXED G) (GENERAL)) NONEMPTY INFINITE BOUNDS
NSPACE
CONTEXT . {n tog n) UPPER
SENSITIVE NSPACE(R)  fee=-cmecmrnneas UNDECIDABLE | UNDECIDABLE |evoonao--
NSPACE(n) LOWER
NSPACE NSPACE(n) NSPACE(n} UPPER
{n iog n}
ETOL, ne s N DRSO AP
EPTOL NSP,éECE NSP]f\ECE NSP]/-ZCE LOWER
(n' ™) (n' ™) (n'™)
NSPACE
UPPER
epToL, ns {ntog n} NSPACE(N} NSPAEIE(EI} T
EPDTOL. NSPACE NSPACE NSPACE
1 1 — LOWER
(') n'=%) (')
Z
DSPACE(log® n)
4 DSPACE(n) NSPACE(n) UPPER
EoL, DTIME{n")
=P0oL TTTTTTTrmTn ne ot
ne ne ne LOWER
g ° s UPPER
EDOL, DSEACE{log® r)
R i BRI E ne L A
EPDOL.
5 < t OWER
DSPACE(iogz n)
3 UPPER
CONTEXT DTIME(n®)
--------------- P P I e m -
FREE
ng LOWER
TERMINOLOGY
1. DSPACE(S(n)) = {L | L is accepted by some deterministic offline Turing ma-

chine which operates within space S{n) on all inputs of
tength n}
NSPACE(S(n}) is defined analogously for nondeterministic machines, and
DTIME(S(n)), NTIME(S(n)) are defined similarly for the time measure.

[
It

2, £
P

DOGSPACE(iog nj, ng NQSPACE{JOQ nj

U bTMENS), ne = U NTIMEMY)
k=1 k=1
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A table entry of the form for problem P indicates that

a)

b}

c)
d)

P is in class U.

fLisnhE, P, 1P or NSPACE(n), then some complete problem {and so any
problem) in class L. is reducible to P,

If L is NSPACE(S(n,<c}}, then for any ¢ > 0, P is not in NSPACE(S(n,¢)).

If L is £, then any algorithm which solves P in DSPACE(S(n)) must satis-
S(n)
log n

fy sup >0

e

A table entry | LU for problem P indicates that P is complete for class L.U.
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3. OVERVIEW OF PROOF METHODS

Theorem NONEMPTYEPON is e hard.

Proof Method
By Stockmeyer & Meyer [8] the foliowing problem is h P ~hard:

Given a regular expression R of the form
0P (0% )% + ... + OPr (0% )*

to determine whether L(R)}# 0%.

Construct an EDOL. system G = (V, P, Z?, vy Zg,Z}) where
v={zi|1sisr, 0<j<spita-1}, T =v-{zh,z%,..., 2}, and P con-
sists of the productions {i = 1,...,r}):

Z': -+ ZJi.H for j=0,... ,pi+qi-—2, and

Zl;i Ty -1, Z?i .

Then LG} # @ iTf L.(R) # 0%; consequently NONEMPTYEPOL (s 1@ hard.
O

Theorem NONEMPTYEPOL is inne.

Froof Method

Let G = (V,P,w,Z) be an EDOL. grammar. Construct a nondeterministic finite
automaton MV, {0} 16,5,,T) where S, = {a€ V | a occurs in w}, and
8(a) = fa,,az, ‘s ,am} just in case a + a,;...a_ is a production in P. It is easily
seen that L(G) # @ if and only if L{M)# 0*. By Stockmeyer and Meyer, this test can
be carried out nondeterministically in polynomial time.

i

EDOL .

Corollary NONEMFTY is NP compiete.

Theorem MEMBEREPOL isinnpP.

FProof Method

Given <G, x>, we can determine whether x € L{G) as follows:
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o = Axiom of G;

for 1 := 1Step 1 until | x| do
begin choose 8 so thatg=* 8 and |a| = [B];

if 8 = x then accept;
choosey so 8 =y and |B]| < |v |;
=y
end
This procedure will provide a polynomial time membership algorithm if the step
"choose 8 ..." can be done in polynomial time; however there can be nonrepeating
derivations of length greater than any polynomial in ‘5
- P L P P . :

B=by...b . Thena B iffa;>b,,..., anda _>b_; and g =% g iffaB g for

1
some p< k™ where k is the size of the alphabet of G. The test a; B bi can be done

. Let g =ag...a and

by forming a connection matrix M (M(a,b) = 1 i1ff a # b is a production}, and calcula~
2 4 zrm'log k
ting M,M“ ;M ", ..., M by repeated squaring. MP may be obtained as a pro-

duct of some of these matrices, chosen nondeterministically; and o B B may be

easily determined from MP,
]

Theorem NONEMPTYEO- € DSPACE(N).

Proof LetG ={(Vv,P,w,L)} be given. Define Ag =LA = fa|a-+qisapro-
duction in P such that a € A}*} . Then L(G)# @ iff w € Ai* for some i. The
DSPACE(n) algorithm is simply to calculate AO’AI’ ... ; storing only the most re~

cent one {as a bit vector), and comparing the letters in w against Ai'
O

Theorem INFINITEETOL

€ NSPACE(n).
Proof Method

L{G) is infinite if and only if there exists a derivation of a word x € L{G) such
that S=>% vjavzz:s* WTQ‘WZ:?* x, where a=¥ g, Alph(v1avz) = Alph{wiawz), and g
contains the letter a and another occurrence of a ietter, say b, yielding a nonempty

subword of x.

The algorithm simulates such a derivation by nondeterministically choosing

v avy, a, and b and checking whether the statements above are satisfied. The only

1
information needed for that, is information about the alphabet of the current senten—

tial form and two letters derived from a and b.
O
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Theorem MEMBEREDTOI’"$ NSF—"ACE(n1-€) for any € > 0.

Proof Let 2z = (K,Z,I",#,0, 9gs { qf} be an arbitrary 1 tape Turing machine
which operates in space n (# is an end marker). For any x = Ayseeap construct

the EDTOL system G, = (Vn,i'f W {0}) where

v, ={g,0}u (Al |]A€Tand 0 i1} UK

n:#m-'l

o _1
1 n

_ 2
wx-p# a,8, ... 8

for each {p,a) € (K - {qf} }x I' there will be a table T in Kn defined as follows:

H

if 8({p,a) = (q,b,R) then

T _={p+a, a’ap"

i f~1
P2 E

Ule ac cer,o<isn+1}usp

a

2

where G a contains d + g for every d € Vﬂ other than p,ao
h 4

or c' for c€ I, 0<i=sntt.

If 6(p,a) = (q,b,C) then

T _={p=+a,a’+b%ufcacl|cer, ocizsnmijuc

p,a p,a

1f 8(p,a) = (a,b,L) then

Tp a={p-vq, ao-’b1} U {ci-ac’"H | c€T, 0<i<n}
?
Ui 2l ceTiu e .
p;a
In addition, Un containg the table
i .
Tf={qf-’0} Ufc 0] ceT, o0sismtt}ufargl|acekufg,o}f —{qf}f.
i1t is easily verified that Z yields an [.D. g = bO' . ‘bi 1P bi' . 'brri-l itf G derives
) —i+ i
the siring p bg i+2 e b?f; b? . bg‘{_'{” . Consequently L(G) = {0n+3} if Z ac~

cepts x, and L(G) = @ if Z does not accept x. Further, |G| = 0(n log n). in the

EDTOL

usual way this implies MEMBER ¢ NSPACE(n ™), for any ¢ > 0.

EDTOL.

Corollary MEMBER is complete for poiynomial space.

Theorem There is a deterministic E0L language L such that if L is in
DSPACE(S(n)), then



308

sup S»{n) >0
o log n
Proof L= {abncdn ] n= 0} is clearly a deterministic EOL language. By Alt

and Mehlhorn [1], L in DSPACE(S(n)) implies that S must satisfy the condition

above.

Qo
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