
SOME MATCHING PROBLEMS

Alon Itai
Technion, Israel Institute of Technology, Haifa, Israel

Michael Rodeh
IBM Israel Scientific Center, Haifa, Israel

ABSTRACT

In certain applications it is required to find in a bipartite graph

a perfect matching which satisfies some additional properties. For one

such type of restrictions the problem is proven to be NP-complete. If

for a given subset of edges no more than r edges may be included in

the matching then an O(ne) algorithm is suggested.

Finally, an efficient algorithm to find all perfect matchings is

presented. It requires O(e) time per matching and a total of o(e)

space. This algorithm may be used to calculate the permanent of a

matrix.

i. INTRODUCTION

This paper is motivated by an attempt to find practical solutions

to the school~scheduling problem. This problem is known to be NP-

complete [EIS]. (A discussion on NP-completeness appears in [AHU].)

A solution can be considered as a matching between classes and teachers

which satisfies certain restrictions (e.g. not more than two labs at

the same time). Having this in mind, we look for a maximum matching

in a bipartite graph with restrictions. (See [El for the properties

of graphs and matchings.) This problem is shown to be NP~complete.

If no restrictions are present, then a maximum matching may be found

in O(nl/2e) time [HK] (n is the number of vertices and e the number

of edges). For the case of a single restriction, an O(ne) algorithm

is presented. The algorithm finds a minimum cost maximum flow for an

auxiliary network by augmenting along minimum weight paths [FF]. In

our case the algorithm due to Edmonds and Karp [EK] may be simplified

and implemented more efficiently using the shortest path finding tech-

niques of Wagner [W].

The restricted matching problem may be solved by enumeration.

Hence, an algorithm is presented for producing a sequence of all perfect

matchings. It has the property that at most 0(e) time passes between

the emission of two successive matchings. This compares favorably with

25g

Gal and Breitbart's algorithm EGB] where O(n 3) time may elapse without

getting a solution. Tanimoto has developed a method for enumeration of

maximum matchings for a general graph in order to analyze some biomedical

images IT]. His algorithm may require exponential space and need not

produce a new maximum matching within polynomial time.

The above enumeration technique may be used to obtain an algorithm

for finding the permanent of a matrix. See Ryser [R] for the properties

of the permanent.

2. THE RESTRICTED MATCHING PROBLEM IS NP-COMPLETE

A graph B=(V,E) is bipartite if V is partitioned into two dis-

joint sets, X and Y; all edges have one endpoint in f and one

endpoint in Y. A set M 5 E is a matching if no vertex is incident

with more than one edge of M. The size of a matching M is the number

of its edges. If IXl~IYl and every set x c X is incident with an

edge of M then the matching is complete. If in addition, IXl = IY]

then the matching is perfect. Hopcroft and Karp [HK] find a maximum

matching (a matching of maximum size) in O(nl/2e) time.

Let EI,...,E k be subsets of E, rl,...,r k positive integers.

The restricted complete matching problem (RCM) is to determine whether

there exists a complete matching M for B which also satisfies the

restrictions:

]M nEj] ~rj for j= I k,

Theorem 1: RCN is NP-complete.

Proof: It is easy to see that RCM belongs to the class NP. We show

a reduction from the satisfiability problem of Boolean expressions to

RCN. Let ~ = al...C p be a Boolean expression in conjunctive normal

form the variables of which are (x I Xq). Define the bipartite

graph B = (X u Y,E) as follows:

x= {a I Cp } ;

y= {x I Xq.~ 1 ~q}X{l p};

E-- {(aj, (xi,J)) I x i appears in Cj} u

{(Cj,(xi, J)) Ix i appears in cj} .

260

Let M be a complete matching in B. If M does not include two edges

(Cj,(xi, J)) , (Ck,(~i,k)) then it corresponds to an assignment which

satisfies @. Therefore, the following restrictions are imposed:

Bijk= {(Cj, (xi,J)) , (Ck, (~i,k))} nE ;

r ijk = 1.

Those Eij k whose cardinality is less than 2 may be ignored.

We now show that the RCM problem B with the restrictions Eij k

has a solution if and only if ~ is satisfiable.

(i) Assume that ~ is satisfiable. For each clause Cj choose a

single literal y (y=x i or y=~i) such that y is true. If

y=x i then include the edge (aj,(xi,J)) in the matching M.

If Y=~i then include (Cj,(~i,j)) in M. Thus, M is a complete

matching. Since either x i or ~i is true but not both,

IM n~ijk[~ I.

(ii) Let M be a solution to the RCM problem. The truth value of x i

is assigned as follows: If (Cj,(xi,J)) c M for some j then x i

is given the value true. Otherwise, x i is given the value false.

The restrictions imply that the value of x i is well-defined

(x i and ~i cannot both be true). Every vertex Cj is matched

in M with some vertex y. From the construction, the literal

y is true and the clause Cj is satisfied. Thus, ~ is satis-

fiable. Q.E.D.

The restricted perfect matching problem ~RPM) is a special case

of RCM when the graph B= (X u Y,E) satisfies IXI = IYI.

Theorem 3: RPM is NP-complete.

Proof: We show a reduction from RCM to RPM.

Let B= (X u Y,E) and E I, Ek, rl,.o.,r k be an instance of RCM.

Define the bipartite graph B'= ((Xu X') u Y,E u E r) as follows:

X'= {v I v t} is a set of new vertices where t= IEI- IXl and

E'= {(vi, y)Iv i ~ X',y ~ Y}. It is easy to see that B has a complete

matching if and only if B' has a perfect matching. Q.E.D.

Given an integer p ~ IxI, the restricted maximum matching problem

(RMM) is the problem of determining whether there exists a matching M

such that

IMI ~p,]M nEjl sr j j= l k.

It is easy to see that RNM is also NP-complete.

261

3. FINDING A COMPLETE MATCHING WITH A SINGLE RESTRICTION

The general RCM problem is NP-complete. However, if there exists

only one restriction (the RCMI problem) a solution can be found in O(ne)

time. Let B= (X u Y,E) and E1,r I be an instance of RCMI. We reform-

ulate the problem in terms of a network N for which a maximum flow

of cost less than or equal to r I is sought [FF]. N consists of a

directed graph G= CV, A), capacities a(u,v) and costs d(u,v) assigned

to the edges:

(i)

(i i)

(i i i)

(iv)

V = X u Y u { s , t } where s , t % X u Y ;

A= {(s,x) I x c X} u {(y,t) I y c Y} u {(x,y) I (xjy) ~ E, xc X,y~ Y} ;

a(u,v)=l for (u,v) cA ;

[t (u,v) ~ E 1

d(u,v)

L 0 otherwise.

Let f be a flow function; its value Ifl is Z f(s,x) and
xcX

its cost is [f(u,v)d(u,v).
(u,v)~A

A complete matching corresponds to a flow of value IxI from s

to t. The cost of the flow is equal to the number of edges of E 1 in

the matching. Therefore, a minimum cost maximum flow for the network

N yields a matching which uses the minimum number of edges of E l .

This number is less than or equal to r I if and only if there exists

a solution to the given RCMI problem.

In order to solve the minimum cost maximum flow problem we follow

[FF] and EEK].

A flow f is extreme if its cost is minimum among all flows of

the same value. The zero flow is extreme.

For a given flow f, the network N f is defined as follows:

(i) G f = (V,A f) ;

A f: {(u,v) l(u,v)~A~f(u,v) = O}u{(u,v) l (v,u)EA,f(v,u) = I};

(i i) cf (u,v) =I (u,v) cA f •

(iii)
r d(u,v)

a(u,v) =
I

t-d(v,u)

(u, v) ~ A

(V, u) ~ A

262

Theorem 3: ([FF], p. 121), If f is extreme and P a path of min-

imum weight in N f from s to t then a flow f' obtained by aug-

menting along P is extreme.

The above theorem suggests a method for solving the minimum cost

maximum flow problem: start with an extreme flow fO= O; compute

fk+1 from fk (k=0,1) by augmenting along any one of the

shortest paths from 8 to t in N fk (with respect to the weights A).

N fk might contain negative wieghts. Since it is more efficient to

find shortest paths in a graph with nonnegat~ve weights, Edmonds and

Karp [EK] introduce auxiliary weights Ak(u,v) ~ O. These weights are

obtained from the original weights A(u,v) and a vertex labeling func-

tion ~k(u) to be defined in the following algorithm:

procedure MIN_COSTMAX__FLOWFORRCMI;
begin fO:=zero flow; ~O:=zero labeling function;

for k:=O step 1 Until n-I do

begin determine f-k+1 bCaugmenting along any one of

the shortest paths from s to t in N fk with
respect to the (nonnegative) weights

AkCu, v)=~k(u)+A(u,v)-~k(v);

for v~V do
'begin---ok(v);=the weight of the shortest

path from s to v;
k+1 (u):=~k(u)+~k(u);

comment if u is inaccessable from s

then ~k(u):=~
end

end

end

Finding shortest paths is the most time-consuming part of the

algorithm. Edmonds and Karp [EK] present an O(n 2) solution. The

following discussion leads to an O(e) algorithm,

Theorem 4; ([EK]). For each k and u, ~k(u) is the weight of a

shortest path from s to t in N fk with respect to the weights

A(u,v) a n d ~k+l(u) ~ ~k(u).

Corollary: During the execution of MIN_COSTMAX__FLOWFOR_RCM2
weights of shortest paths (o k) are bounded by n.

the

Proof: By Theorem 4, ~k(u) may be expressed as a sum of at most n

weights A. Since A(u,v) ~ I, ~k(u) ~ n. Moreover, O~ ~k(u). By the

263

construction ok(u) =~k+1(u) - ~k(u). Thus 0 ~ ok(u) ~ n. Q.E.D.

Following Dijkstra's algorithm [D], let S be a set of vertices

whose distance from s is known. For the remaining vertices S only

a tentative distance is known. To start S:=~; ~:=V; S(s):=O; ~(v):=~

for v c ~-{s}. At each stage, we find a vertex v c S whose tentative

distance 6(v) is minimum and transfer it to S. Then we use 6(v)

to update the tentative distances of the vertices of S adjacent to v.

If the weights are nonnegative, then S(u) is the weight of a

minimum path from s to u. The main problem is to find a vertex v ~

whose tentative distance is minimum. Dijkstra suggested searching seq-

uentially through ~. This yields an O(n 2) algorithm. Using a balanced

tree for keeping the tentative distances leads to an O(elogn) algorithm

[LS]. We take advantage of the fact that in our case the distances are

integers between 0 and n. Following Wagner [W] we keep the vertices

of S in a vector of buckets (the i-th bucket contains a list of vert-

ices whose tentative distance is equal to i). We search through the

vector for the first nonempty bucket. A vertex v of minimum tent-

ative distance is found in that bucket. Since the distances are non-

negative the index of the first nonnegative bucket does not decrease.

Therefore, the entire search through the vector requires O(n) time.

Hence, the algorithm requires at most O(e+n) time and O(n) space in

addition to the input.

Once the distances to all vertices are known, a shortest path from

to t may be found in linear time. Since there may be no more than

IXi augmenting, paths we have:

Theorem 5: MIN_COSTMAX_FLOW_FOR_RCM1 requires at most O(ne) time.

4. FINDING ALL PERFECT MATCHINGS

Let B= (X u Y,E) be a bipartite graph such that IXl = IYi =n.

A maximum matching may be found in 0(n I/2e) time [HK]. A matching is

perfect if it contains n edges. We use circuits to produce all per-

fect matchings one by one. A circuit C in B is an M-alternating

circuit if for any two adjacent edges of C exactly one is in M.

Lemma I: A perfect matching M is not unique if and only if there

exists an M-alternating circuit.

Proof: Let M' be another perfect matching. Consider the graph

H= (Xu Y,M~M) (® denotes the symmetric difference). Since M~M'

there exists a vertex v of positive degree in H. The degree of v

264

is at most two (each perfect matching can contribute at most one to the

degree of v). If the degree of v in H is one then only one edge

in M®M' is incident with v. Assume that this edge belongs to M.

Then it does not belong to M'. Moreover, none of the edges of M' is

incident with v. This contradicts the hypothesis that both matchings

are perfect. Consequently, the non-trivial connected components of H

consist of disjoint M-alternating circuits.

If M is a perfect matching and a an M-alternating circuit then

M'=M®C is another perfect matching. Q.E.D.

We use the auxiliary directed graph D= (X,E') tO find an M-alter-

nating circuit in B where E'= ((u,v) iu, v~X,u~v, 3w~Y:(u,w) ~ M and

(v,w) ~ E}. (An edge in E' originates from two adjacent edges in E,

the first of which belongs to M.) A bipartite graph B with a perfect

matching M and the corresponding directed graph D are illustrated

in Figure i.

XI

Xl 0.... '" 0 Yl

xzC~e. / '~ Y2

x 4 ~ KD Y4
(a) (b)

Fig. 1

B contains an M-alternating circuit through (x,y) c M if and

only if D contains a directed circuit through x. We may find a

directed circuit in D in 0(e) time. (The algorithm for finding

strongly connected components may be employed [AHU].)

The procedure NEW__SOLUTIONS(G,M,C,L) below accepts a bipartite

graph G which is a subgraph of B, a perfect matching M of G and

an M~alternating circuit C. It finds all the additional perfect mat-

chings of G. Every perfect matching of B is obtained by adding the

set of edges L to the perfect matchings of G. Note that NEWSOL-

UTIONS is invoked only when M is not unique.

265

Method of operation: Let ~x,y) ~ M be an edge of the M-alternating

circuit C. The perfect matchings of G fall into two disjoint cat-

egories:

(a) Matchingswhich do not contain (x,y): The perfect matching M e=M@C

does not contain the edge (x,y). Let G e=G- {£x,y)}. There exist

additional matchings which do not contain (x,y) if and only if

there exists an Me-alternating circuit C e in G e, These match-

ings are found by invoking NEW_SOLUTIONS(Ge, Me, Ce,L) recursively.

(b) Matchingswhich contain (x~y): Let M v=M-{(x,y)}. Then there

exists additional matchings which contain the edge (x,y) if

there exists an My-alternating circuit C v in G v=G- {x,y}.

(M v is a perfect matching in Gv). These matchings are found by

invoking NEW_SOLUTIONS(Gv~Mv, Cv, L u {(x~y)}) recursively.

procedure NEW SOLUTIONS(G,M,C,L);

begin comment Me, Ge, Ce,Mv~Gv,C v are local variables;

i. Let (x,y) ~ M n C;

M :=M®C; e
2. Ge:=G-((x,y)} (delete the edge (x,y)

Find an alternating circuit C in G
e e

i_~f none exists then Ce:=nil ;
?

3. Mv:=M-{ (x,y) };
(delete the vertices x,y from G and M),

GV:=G-{x,y}; J

Find an alternating circuit C v in G v with respect to My;

if none exists then Cv:=nil ;

4. Output M u L;
e

S. i_~f Ce#nil then call NEW_SOLUTIONS(Ge~Me, Ce, L) ;

6. i__f Cv~nil then call NEW_SOLUTIONS(Gv,Mv, Cv,L u {(x,y)})

from G);

with respect to Me~

end

Lemma 2:

time.

The procedure NEW_SOLUTIONS finds a new matching in OCeJ

Proof: On entering NEW_SOLUTIONS, lines 1-3 are executed requiring

at most O(e) time. A new matching is output in line 4. Consequently,

a new matching is output 0(e) time after entering NEW SOLUTIONS. If

Ce#nil or Cv#nil then NEW_SOLUTIONS is called recursively and a new

matching is found in O(e) time. If both C e and C v are equal to

nil then a return from the recursion occurs without finding a new match-

ing. Checking Ce~nil and Cv~nil takes constant time. Thus the total

time to exit the recursion is bounded by a constant times the depth of

266

the recursion, which is at most e. Q.E.D.

The procedure ALL_SOLUTIONS finds all perfect matchings using

NEW SOLUTIONS.

procedure ALL_SOLUTIONS(B);

begin Find a perfect matching M;

if none exists then return;

Output M;

Find an alternating circuit C in B with respect to M~

if none exists then return;

call NEW SOLUTIONS(B,M,C,@)

end

Note that the algorithm halts at most O(e)

matching is found.

We may summarize:

time after the last

Theorem 6: (a) The procedure ALL_SOLUTIONS finds all perfect matchings;

(b) The time delay to find a new matching is O(e);

(c) If a bipartite graph contains m perfect matchings they are

found by ALL_SOLUTIONS in O(e(nl/Z+m)) time.

Since the depth of the recursion is at most e and each circuit

may have at most n edges, the space requirements in the above form-

ulation are bounded by O(ne). By recomputing the alternating circuits

instead of storing them then the algorithm may be implemented within O(e)

space. (The execution time may be doubled,)

The procedure ALL_SOLUTIONS may be used to compute the permanent

of a matrix. Let A = (a..) be a real matrix, then its permanent is

defined by perm(A) = ~ N a. The summation is over all perm-
i=I ~,~(i)"

utations ~ on n letters. Let B = (Xu Y,E) be a bipartite graph

where X= {x I Xn}, Y= {YI'''"Yn } ~nd (xi,Y j) c E if and only if
n

. = N a i is nonzero if and only if M' = {(xi,Y) [aij = O. S ~=I ,~(i) ~ ~(~)

=i, n} n E is a perfect matching. The value of the permanent is

equal to the sum of S T over all permutations which correspond to

perfect matchings. Thus, we may use ALL_SOLUTIONS to find the value of

the permanent in O(e(nl/2+m)) time, and (n-l)m multiplications.

(m is the number of perfect matchings.)

267

5. CONCLUSIONS

Certain aspects of the school-scheduling problem may be formalized

in terms of perfect matchings with restrictions. However, in practice

the number of teachers is not equal to the number of classes. In this

case maximum matchings should be found. An algorithm for finding max-

imum matchings in a general graph will appear in a forthcoming paper by

the authors and S.L. Tanimoto.

For the case of a single restriction an #(ne) solution has been

presented. However, it is not known whether there exists a polynomial

solution even for two restrictions.

If M is a matching which satisfies most of the restrictions,

then in many cases there exists a matching M' such that M and M t

have many edges in common and M' satisfies all the requirements.

Therefore, it might be worthwNile to find all matchings such that suc-

cessive matchings are close to one another. This may be done by using

minimum length alternating circuits [IR].

REFERENCES

[AHU]

[B]

[D]

[EK]

[E]

[EIS]

[FF]

[GB]

[HK]

[IR]

[LS]

A.V.Aho, J.E.Hopcroft and J.D. Ullman, "The Design and Analysis
of Computer Algorithms" , Addison-Wesley (1974).

C. Berge, "Graphs and Hypergraphs", North-Holland (1973).

E.W. Dijkstra, "A Note on Two Problems in Connexion with
Graphs", Numerische Mathematik 1 (1959)~ 269~271.

J. Edmonds and R.M.Karp, "Theoretical Improvements in Alg-
orithmic Efficiency for Network Flow Problems", J. ACM, 19
(1972), 248-264.

S. Even, "Algorithmic Combinatorics" , MacMillan (1973).

S. Even, A. Itai and A. Shamir, "On the Complexity of Timetable
and Multi-Commodity Flow", SIAM J. on Computing, 5 (1976),
691-703.

C.R. Ford Jr. and D.R. Fulkerson, "Flows in Networks", Princeton
University Press (1962).

S. Gal and Y. Breitbart, "A Method for Obtaining all the Sol-
utions of a Perfect Matching Problem", IBM Israel Scientific
Center TR-16 (1974).

J.E. Hopcroft and R.M. Karp, "An n 5/2 Algorithm for Maximum
Matching in Bipartite Graphs", SIAM J. on Computing, 2 (1973),
225-231.

A. Itai and M. Rodeh, "Finding a Minimum Circuit in a Graph",
Proc. of the 1977 ACM Symp. on Theory of Computing, Boulder,
Colorado (May 1977).

L.L. Lang and J.D. Starkey, "An O(elogn) Shortest Path Alg-
orithm for Sparse Graphs", Proc. on the Symp. on Algorithms and
Complexity, Carnegie-Mellon University (April 1976).

268

REFERENCES (cont'd)

ER]

IT]

[W]

J.R. Ryser, "Combinatorial Mathematics 't, The Mathematical
Association of Amerida, distributed by John Wiley & Sons (1963).

S.L. Tanimoto, "Analysis of Biomedical Images Using Maximal
Matching", Proc0 of the 1976 IEEE Conf. on Decision and Control
Adaptive Processes, Clearwater Beach, Florida (Dec. 1976).

R.A. Wagner, "A Shortest Path Algorithm for Edge~Sparse Graphs",
J. ACM, 23 (1976), 50-57.

