
The Mathematics of Record Handling

Hartmut Ehrig

Faehbereich tnformatik
Teclmische Universit~tt Berlin
1000 Berlin 10
Federal Republic of Germany

Barry K. Rosen

Computer Sciences Department
IBM Thomas J, Watson Research Center
Yorktown Heights, New York 10598
United States of America

Abstract: We propose a mathematical foundation for reasoning about the correctness and computational complexity

of record handling algorithms, using algebraic methods recently introduced in graph theory. A class of pattern

matching and replacement rules for graphs is specified, such that applications of rules in the class can readily be

programmed as rapid transformations of record structures. When transformations of record structures are

formalized as applications of rules to appropriate graphs, recent Church-Rosser type theorems of algebraic graph

theory become available for proving that families of transformations are well behaved. In particular, we show that

any Church-Rosser family of transformations can be combined with housekeeping operations involving indirect

pointers and garbage collection without losing the Church-Rosser property, provided certain mild conditions on the

rules defining the family are satisfied. This leads to suggestions for the design of record handling facilities in high

level languages, especially when housekeeping chores are to be performed asynchronously by service processes that

run in parallel with the main process. We also show how to express the net effect of two transformations as a

single transformation. These results and the general theorems that support them can be used to analyze the

behavior of a large, record structure that can lie updated asynchronously by several parallel processes or users.

1. INTRODUCTION

We use some well known concepts from record handling that are reviewed in Section 2. Slight familiarity with

[Kn73, Sec. 2.1] or [WH66, See. 5.4] should be enough background for reading this introduction. One major

difference between record handling and numerical computing is the lack of a standard mathematical foundation.

Graph theory is the obvious place to look for appropriate material, since a record structure is naturally viewed as a

directed graph wherein each record is a node and each pointer from one record to another is an arc, There is a

voluminous literature on algorithms involving graphs, but the relevance of this literature to many record handhng

problems is doubtful. Running time linear in the size of an input graph is ordinarily and rightly considered fast in

the literature. But processes requiring that an entire set of records be scanned are ordinarily and rightly considered

slow in record handling. This is not to disparage the literature: we merely want to emphasize that different

problems arise in record handling. In particular, record handing algorithms often deal with local properties and

transformations on the graph, and with possibly unpleasant interactions between transformations when several

users can update a data base asynchronously, An algebraic approach to graph theory has recently been introduced,

partly to deal with these concerns. This paper's results are applicable to record handling, but the presentation of

these results is also a convenient occasion to explain the algebraic approach in a new way. The earliest work

[EPS73; Ro75] had unusual prerequisites and some technical complexities that were later eliminated [ER76, Sec.

2]. Enough results have now accumulated to support an exposition that is intelligible and perhaps even plausible

without prerequisites. Those who wish to read the proofs carefully will need to consult [ER76] and occasionally

[Ro75], but only as indicated by citations. A two pass reading is recommended, with proofs omitted on the first

pass. In this version of the paper all proofs have been shortened or omitted. Phrases like ~'can be shown" are used

to warn of shortening. The complete paper will be submitted to a journal.

Section 2 relates transformations of record structures to "productions" that can be applied to graphs. Unlike

[EK75; EPS73; ER76; Ro75], this section should be accessible to those not already familiar with some basic

aspects of category theory. Sections 3 and 4 present fundamental existence theorems that are applied here but are

not limited to record handling. Suppose G can be transformed to G # and G is a snbgraph of F. Under certain

conditions, the "same" transformations can be applied to F, yielding a graph F # with G # as a subgraph. Moreover,

207

I ~ and the embedding of G # into r # depend only on G and the embedding of G into F, not on the specific

derivation f rom G to G #. (Small liberties have been taken ira this introductory paraphrase.)

The next two sections deal with housekeeping tasks in record structures: maintainence of indirect pointers in

Section 5 and a simple form of garbage collection in Section 6. We establish conditions under which housekeeping

operations do not interfere with whatever else is being done. For example, list processing should not be stymied

because a little garbage has been collected by a second processor, operating asynchronously in parallel with the

main processor. (The resulting suggestions for language design are collected in Section 7.) Noninterference is

formalized by the "Church-Rosse r proper ty" (defined here essentially as in [Ro73, Def. 3.2]), involving an

arbitrary set of objects and a single relation among the objects. Given a set [3 and a relation > > on [3, consider

any F ~ [3 such that F is closed under > >: if G is in F and G > > H then H is in F. Then the system (F , > >) is

Church-Rosser iff

(¥ G, H, ~ in F) [(G > > * H & G > > * H ~) implies (3 X in [3) (H > > * X & ~ > > * X)], (1.1)

where > > * is the reflexive transitive closure of > > . If G is in F and

G > > * H and ~(3 X in [3)(H > > X) (1.2)

then H is a normal form for G in (F, > >) . The Church-Rosser proper ty implies that normal forms are unique

when they exist at all. Our (1.1) is a special case of the more general Church-Rosser property involving two

relations as studied in [Se74; Ro76]. Some results from [Ro73, See. 3] are cited in proofs here. By distinguishing

F from [3 we gain some notational convenience over [Ro73; Ro76; Se74] in applications.

2. RECORD STRUCTURES AND EXPRESSION GRAPHS

Complex information can be represented in a comput ing system's memory by distributing it over many

"records" , each of which has a relatively small number of "fields". A field may directly contain a little informa-

tion, such as a short string of characters or an integer that can be represented with 15 bits, or it may contain a

"pointer" to another record that must be consulted if more information is desired. (In some applications a pointer

might loop back to the same record.) Records are often divided into "classes", so that all records in a class have the

same number of fields, the same names for the respective fields, and the same kinds of direct or pointer data in

their fields. (Different fields may contain different kinds of data.) These concepts are well known [Kn73, Sec. 2.1;

WH66 , Sec. 5.4] but appear in many places under many names. We will speak as above. A set of records such that

each pointer is to a record in the set is a record structure and we associate with each record structure a root record

accessible to the outside world. Other records can only be reached by following pointers. (For a practical situation

where records RDI , RD2 RDn are externally accessible, we assume there is a special root record with n fields,

such that field k points to RDk.) We do not assume that all records in a structure are reachable from the root or

that the record structure is acyclic, though both these properties hold and are important in many examples. We

formalize the intuitive concept of record structures with the mathematical concept of expression graphs. Such a

graph is a triple (G, m G, eG), where G is a finite directed graph. A node in G corresponds to a record. There is an

arc f rom node x to node y whenever record x has a field that points to record y. (If there are two such fields then

there are two such arcs; we do not assume that arcs are pairs of nodes.) Nodes and arcs are both called items, and

m G maps items to packets of information called colors. The color of a node tells bow many fields it has and what

their names are and what data is stored directly in fields that do not contain pointers. The color of an are from x to

y indicates which field of x is responsible for the a r t ' s being in G. Mathematically, we just have nonempty sets of

node colors and arc colors with m G mapping nodes to node colors and arcs to arc colors. Finally, the root of the

record structure corresponds to the node e G of the graph. We will be casual about the distinction between the

intuitive concepts like " reco rd" and the mathematical concepts like "node" whenever there is no danger of

confusion.

Suppose RD1 is a record and we wish to replace all pointers to RD1 in the record structure with pointers to

another record RD2. In many situations it is expensive to find all pointers to RDI : only pointers from RDI are

208

stored as fields of RD1. It is also intuitively plausible that we only really need to change whatever pointers will

actually be followed in the future. In this context it is natural to simply replace R D I ' s data without moving it. We

change RD1 so that it has just one pointer field, pointing to RD2. The direct data at RD1 is changed to indicate

that RD1 is now merely a dummy record, so that pointers to RD1 will be treated as indirect pointers to RD2. In

the future, whenever we follow a pointer from RD3 to RDI , we will update the appropriate field of RD3 so as to

point directly to RD2 if the pointer is followed again. One of the contexts where this natural use of indirection is

especially appropriate is in the efficient evaluation of recursively defined functions, as is discussed in [OD76, App.

A]. The discussion above and in [OD76, App. A] can be formalized easily. We assume there is a distinguished

node color I such that any node colored I in an expression graph has exactly one outarc, and this outarc carries the

distinguished are color ind. For an arbitrary arc color c, suppose our expression graph (G, m G, eG) includes an arc

z whose target (the node it points to) is colored I. This node tz has a unique outarc with a target w, and w is the

record indirectly pointed to by pointers to tz. Thus z should be replaced by a new arc ~" with the same color c and

the same source (the node it points from) that z has in G. In the new expression graph (H, m H, ell), the target of

is w. Otherwise the new expression graph is like the old one. For example, consider (G, raG, eG) as shown on the

left in Figure 2.1. Then (H, mH, e H) is as shown on the right in Figure 2.1. The role of the colored graph (D, m D)

in the figure is explained below.

To specify the transformation precisely without committing ourselves to any one programming language, we

use a "product ion" in the sense of algebraic graph theory. First, note that roots of expression graphs are just

carried along in this transformation: e H is the same record e G. Simplifying notation by forgetting about roots as

of ten as possible, we consider the colored graphs (G, m G) and (H, mH). We pass from (G, m G) to (H, mH) by

applying a production p = [(B 1, m 1) ~-- K --,- (B 2, m2)] consisting of a graph K, colored graphs (B i, mi), and maps

bi: K ---} B i. These maps are required to be graph morphisms: if x is an arc in K with source SKX and target tKX,

then the image arc bix in B i has sources and targets

sibix = biSKX and tibix = bitKX. (2.1)

The specific production Pind(C) that retargets an arc colored c whose target is colored I appears in Figure 2.2. In

addition to the node color I and the arc colors c, ind already introduced, we use node colors u, v in (B i, m i) as

variables to represent whatever color may actually appear on the nodes in G. The first step in applying p to (G,

m G) is to "recolor" the variables u, v to appropriate node colors ru, rv. The resulting production rPind(C) has

colored graphs (Bi, rmi) wherein any node x in B i has the color rmix. (As a map f rom colors to colors, r leaves all

colors but u, v fixed.) Fo r the example (G, m G) in Figure 2.1, we use ru = RD3 and rv = RD2. The algebraic

construction that applies rPind(C) to (G, raG) at the arc z with mGz ---- e is summarized in Figure 2.3.

The horizontal arrows at the top of Figure 2.3 come from the product ion rPind(C), and we have added

colorings mK, i of K such that b I and b 2 are colored graph morphisms now: they preserve colors as well as sources

and targets. In this example mK,1 = inK,2, but in general a production might change some colors: some x in K has

rmlblX ~ rm2bzx. The colored graph morphism g : (B 1, rm 1) ---} (G, m G) picks out the " three" nodes and " two"

arcs in G where the production is to be applied. (We use the quotation marks because there is no requirement that

g or any other morphisms here be injeetive.) The image subgraph gB 1 in G may have connections with the rest of

G: an arc in G - gB 1 may have a source or target in gB 1. We require that such a source or target be in gblK, so

that the connections can be displayed by graph morphisms d : K --~ D and el: D --*- G such that the composition c ld

is equal to the composition gb 1. These connections are retained when (B e, rm 2) replaces (B 1, rm 1) to form (H,

mH): there is a graph morphism c 2 with c2d = hb 2, where h displays how B 2 fits into H after the transformation.

Thus Figure 2.3 is a commutative diagram in the category GRAPHS[C] of (finite directed) graphs together with

colorings raG: (items in G) ---} C, where C is the set of colors used. (Actually, C is a pair of sets, one for nodes and

one for arcs.) The morphisms in this category are of course the colored graph morphisms defined above. Explana-

tions of the common terms from category theory just used are in [HS73, Sec. 3] and other s tandard references. For

any recolored production rp, not just our example rPind(C), Figure 2.3 is called a unit derivation (G, raG) = >

(H, m H) via rp based on g provided that two conditions hold. First, roD, 1 only differs from roD, 2 as required by

color changes specified in p:

209

(G, mG, e G) (D, m D)

c 2

(H, mH, e H)

Figure 2.1. In (G, m G, eG) the field c of record RD3 points indirectly to RD2.
In (H, m H, e H) the pointer data has been changed so as to point directly to RD2.

ix2

b I
<

O Xo

O. x2

b 2
>

b2x 2

(B I, m I) K (B2, m2)

Figure 2.2. A product ion consists of an interface graph K, left and right colored graphs (Bi, mi),
and graph morphislns b i : K ~ B i.

(Bi,rml)< bl (K, mK, 1) (K, mK, 2) b 2 >(B2'rm2)

(G,m G) < > (H, m H) c i c 2
~----(n, roD, i) (n, ~D, 2)

Figure 2.3. A derivation consists of two pushouts in the category of colored graphs
that share a graph morphism d : K ~ D.

210

mD, lY = mD.2Y for all y in D - dK. (2.2.1)

Second, the two squares in Figure 2.3 completely describe (G, raG) and (H, mH) in the following precise sense:

both squares are pushouts in GRAPHS[C]. (2.2.2)

See [HS73, See. 21] for the pnshout concept, which is fundamental for the developments in [EPS73; ER76; Ro75].

Most of this paper can be read with only the knowledge that pnshouts are commutative squares. For the example

(G, raG) in Figure 2.1, there is a unit derivation (G, m G) = > (H, m H) via rPind(C) based on g : B 1 --~ G, where B 1

is from Figure 2.2. The morphism g maps the arc colored c in (B1, rml) to the are colored c in (G, too) and it maps

the are colored ind in (BI, rml) to the arc colored ind in (G, raG). The horizontal arrows at the bottom of Figure

2.3 are shown in detail in Figure 2.1, with roD, 1 = roD. 2 in this example. In general, derivations via rpind(C) will

have roD, 1 = mD, 2 but derivations via many other productions will not. In this example the morphisms are all

injective, but this is not required in general. We could easily have g#blx 0 = g#blX 2 in an application of rPind(C) to

some other graph (G #, raG#).

Of course a derivation is a sequence of unit derivations, and it is via the sequence of productions used. The

qualifier "unit" is often omitted when confusion is unlikely. Of special interest are the natural derivations: those

with c 1 injective. In our example b I is injective, and this implies (by an elementary property of pnshouts) that any

derivation via rPind(C) is natural. We have now reviewed all but the last paragraph of [ER76, See. 2], but in a

different order and with stress on the record handling application, Reading that portion of [ER76] now would be a

good way to solidify one's understanding of the basic concepts and prevent any possible confusion between the

general requirements of the theory and the specifics of the initial example we have used.

The finiteness of graphs is not required in [ER76] but will sometimes be helpful here, so we restrict attention

to finite graphs at the start. Because of our interest in manipulating large record structures, however, we want to

avoid productions such that the work required to apply rp to (G, m G) depends on the size of G. In particular,

suppose there is a node y in B 1 - blK. Then we cannot apply rp with g : B 1 --~ G unless the node gy in G has no

inarcs or outarcs beyond those in gB I. This is a property of pnshouts in GRAPHS[C] reflecting the intuition that

such arcs would be left *'dangling" when B 2 replaced B 1. But to list all the inarcs of gy in G requires either an

exhaustive scan of G or maintainence of housekeeping information such as backpointers or reference counts. For

garbage collection we cannot escape such costs, but for other transformations we would like each production to be

amenable to rapid implementation. Given rp and g : B 1 --~ G, it should be possible to determine whether a natural

derivation via rp based on g can be constructed (and then construct one if the answer is yes) in such a way that the

costs depend on the sizes of graphs in rp but not on the size of G. Mathematically, p is said to be fast iff

b I is snrjective on nodes; (2.3.1)

b 1 and b 2 are injective. (2.3.2)

All productions in [ER76, Secs. 7, 8] are fast. Before showing that fast productions can be applied rapidly, we

state a useful general lemma that can be derived from [Ro75, Lemmas 4.1, 4.2].

LEMMA 2.4. Given an injective graph morphism b 1 : K --~ B 1 and a colored graph morphism g : (B1, ml) --~

(G, raG), consider the pair (nodes, arcs) of sets

(N o, A o) = O - gB I. (1)

There is a pushout of the form

if and only if

(BI, ml) • (K, m K)

g d

(G, m G) ~ (D, m D)
ci

(2)

211

_c N U g b i K ; (3) SGA O U tGA O 0

(¥ y, y ' in B1)[g3' = gY~ implies (y = y ' or y, y ' in b l K)]. (4)

In that case (2) is unique up to isomorphism.

COROLLARY 2.5, There is an algorithm that, given a colored graph (G, raG), a recoloring r : C --~ C, a fast

production p, and a graph morphism g : B 1 --~ G, determines whether there is a derivation (G, m G) = > (H, m H)

via rp based on g and constructs one if possible. The derivation is unique up to isomorphism and the number of

steps required by the procedure is independent of the size of G provided that evaluations of relevant maps (g, m G,

SG, tG) can be done in single steps.

Proof. It is easy to reduce the problem of constructing derivations to that of constructing "analyses" (the left

square in Figure 2.3). More precisely, an analysis of (G, m G) for rp based on g is any pushout as in Lemma 2.4(2)

such that

(¥ x, x ' in K)(gblX = gblX ' implies rm2b2 x = rm2b2x '). (1)

Given the pushout, we can test whether (1) holds in time independent of the size of G. By [Ro75, Thln. 3.6], an

analysis determines a unique derivation. Fo r fast productions the number of steps required to pass from an analysis

to a derivation is independent of the size of G because b 2 is injeetive. Thus the whole derivation problem reduces

to the problem addressed in Lemma 2.4. For fast productions Lemma 2.4(3) always holds because b 1 is surjective

on nodes. Whether Lemma 2.4(4) holds can be checked in time independent of the size of G. •

Colored graph concepts can be extended to expression graphs by carrying roots along. In particular, suppose

we have a natural derivation

(G, naG) = > (H, mH) via rp based on g (2.6.1)

and a node e G in G such that

e G is in ClD. (2.6.2)

Then there is a unique expression graph (H, m H, e H) with

e H = C2cl- leG, (2.7.1)

so we say there is a natural derivation

(G, m G, e G) = > (H, mH, oil) via rp based on g. (2.7.2)

Similarly for other concepts. In particular, (2.6.2) always holds if p is fast.

Graph morphisms g : B 1 -¢- G provide a flexible way to say where we are applying a production, but in most

examples we only need the values of g on a few items in B 1 to determine the rest. In particular, let y be the arc

colored c in Figure 2.2. Because nodes colored I have unique outarcs in the expression graphs we consider, g is

determined by gy. The pair (Pind(C), y) is a ru/e, as is any pair consisting of a production p and an item y in B 1. In

a derivation based on g the rule is applied at gy. This wording has no theoretical significance, but it enhances

brevity and clarity whenever the rule is such that g can be recovered from knowledge of gy alone.

We restrict the set R of recolorings r : C --~ C a little more than necessary rather than burden the statements of

theorems with assumptions about R that are weak but difficult to remember. Specializing (5.5) and (5.7) from

[ER76] for technical convenience here, we consider the fixed colors Cfi x and the variable colors Cvar:

Cfi x = { c in C [(V r in R)(re = e) } and Cva r = C - Cfi x. (2.8.1)

Now R is assumed to contain everything it might conceivably contain, with no correlation between the recolorings

of different colors:

R = { r : C - ~ C [(¥ c i n Cfix)(rc = c) }. (2.8.2)

Derivations via RPind(C) (which is to say, derivations via rPind(C) for some r in R) now have the intended effect.

212

3. EXISTENCE THEOREMS FOR DERIVATIONS

This section presents fundamental existence theorems for derivations among colored graphs and among

expression graphs. We begin by paraphrasing the early material in order to save space. Displays (3.1) and (3.2)

pose the problem of showing that natural derivations among expression graphs commute: given G = > H via Rp

and G = > H # via Rp #, can we obtain I t = > X via Rp # and I t # = > X via Rp for a single expression graph X? For

colored graphs there are several commutativity results in [ER76]. It should be possible to early along roots of

expression graphs in these results. Lemma 3.3 (and slight variants that even the complete paper need not state

explicitly) allows us to do this, so that conclusions about expression graphs can be derived from reasoning about

colored graphs. For example, Lemma 3.3 and [ER76, Thin. 4.7] yield

COROLLARY 3.4. Independent natural derivations among expression graphs commute.

The corollaries [ER76, See. 5] of the basic commutativity theorem also apply to expression graphs. In Section

6 the distinction between colored graphs and expression graphs will be important, since collecting the root of an

expression graph as garbage would be wrong even if there were no pointers to the root in the graph. Until then,

Lemma 3.3 and its variants will allow us to ignore the distinction. Considering only colored graphs simplifies the

following theorem, which is the main result of this section. Given a derivation from (G 0, m 0) to (Gn, mn) and a

morphism 70 : (Go, too) --~ (Fo, go), we would like to construct a "corresponding" derivation from (F 0, #0) to a

colored graph (F n, ktn), with an "embedding" ~'n : (Gn, ran) "~ (Fn,/~a)' This should be possible if "/0 is sufficiently

close to being injective. Moreover, details of the intermediate steps between (Go, m 0) and (G n, m n) should not

affect (F n, /z n) and 7n unless they also affect (G n, ran). To formulate this intuition precisely requires some

ingenuity, but the effort buys the ability to draw conclusions about infinite sets of large graphs from calculations

with specific small graphs. A typical application is in Section 5.

THEOREM 3.5. Let there be a colored graph (G 0, m o) and a derivation

(Go, m0) = > (G1, ml) = > > (Gn, ran) via (Pl Pn) (1)

where all productions pj are fast. The residue map r i from nodes of G O to nodes of G i is defined inductively by

r0z = z and rjz = c2jc l j - l r j_ l z for 1 _< j _< n, (2)

where Clj and c2j are from the step via pj in (1). Suppose there is a colored graph (F 0,/~0) and a morphism

¥0: (GO, m0) "* (F0' #0) such that
~/0 is injective on arcs; (3)

(V z, z ' nodes in Go) [70 z = 3~0z' implies (V j)(mirjz = mjrjz ')]. (4)

Then there are colored graphs (Fj, ~j) and a derivation

(FO,/~0) = > (F1,/zl) = > > (Fn,/Xn) via (Pl Pn)" (5)

Moreover, there are graphs S and X and graph morphisms fo : S --~ G O and a : S --~ X, depending only on 70, such

that for every i with 0 < i _< n there is a pushout

(Gi, mi) ¢ (S, hi)

7i , (6)

(ri , #i) ~ (X, v i)

with colorings n i and v i that depend only on 70,/10 and on mir i. There are no arcs in S and fi is just rif 0 on nodes.

Proof, We begin by obtaining (6) for i = 0. Let the nodes of S be all nodes z of G O such that 3,0 z is a source

or target of an arc in F 0 - 7eGo, together with all nodes z of G o such that 70 z = 70 z t for some z t # z. Let S have

213

ro

f 0
G O

~-._~ (3)

V o <

(i)

D 1 ~ a l

[~ (2)

(4) ~ ~ I
1I

+o

6

>-

Figure 3.1. Colorings are suppressed for readability. There are colorings ml, 1 and mL2 of D I in the step via PI"
We use ml, 1 here because it is preserved by c H : (Dp ml,1) --~ (Go, mo).

f . 3.
G, <
i ~ (3)

clj ~-- Dj A//~j

(I) t~ j (2)

(4)
D i <

f~

(7)

3

>
~j

Figure 3.2. In (1) - (4) , coloring mj, 1 of Dj in the step via pj is preserved by Clj. In (5) - (8) , the other coloring
mj, 2 is preserved by c2j. As in (2.2.1), mj, 1 agrees with mj, 2 on Dj - djKj.

Blj <- K. 3 >B2j

G i < Dj) Gj

[' i < { l j A.) [~. 3 52j 3

Figure 3.3. Two pushouts, one from blj and djdj and the other from b2j and djdj,
will be shown to form a derivation from (Fi,/~i) to (Fj, #j).

214

no arcs. Let f0 be the inclusion of S in G 0. For each j with t <_ j < n let fj be rjf 0 on nodes and empty on arcs.

Because S has no arcs and clj is bijective on nodes, there is a unique

aj : S ~ Dj with Clja j = f j - I and c2ja j = fj. (7)

Lemma 2.4 is applicable to the morphisms e u and Y0, yielding the pushont in Figure 3.1(1). Lemma 2.4 is

applicable to the morphisms a t and 81, yielding Figure 3.1(2). Then Figure 3.1(3) comes from (7) and Figure

3.1(4) defines q~0 : E --~ F 0` When two pushouts are combined in this way the outer square is a pushont [ER76,

Lemma 4.9], so we have obtained (6) for i -- 0. The colorings n o and v 0 depend only on Yo and iz 0. By construc-

tion, there are no arcs in S and f0 is r0f 0 on nodes.

In seeking (6) for each j with 1 _< j _< n we use the morphism fj : S --* Gj already specified. We proceed by

induction on j. Suppose j is such that for i = j - 1 we have the situation shown in Figure 3 . 2 (t - 4) , as is the case if j

= 1 by Figure 3.1. The colorings of S, Dj, "~ in Figure 3.2(2) are n i, mj, 1, v i. There is a unique coloring nj of S

such that aj preserves colors when mj, 2 is used to color Dj. We claim there is a unique coloring vj of E such that o

preserves nj but ~'j agrees with ~i on E - oS. It will suffice to show that any z, z ' in S with z # z ' but oz = oz '

have mj.2ajz = mj ,za jz ' . But oz = az ' implies Y0foz = Y0fo z ' and hence by (7) and (4) that mj,2ajz = mjc-zjajz =

mjfjz = m i rifoZ = r a j r j £O z ' = m j , z a i z t With colorings nj, mj, 2, vj for S, Dj, E in Figure 3.2(2) we get Figure

3.2(5). Pushing out from c2j and 6j yields Figure 3.2(6), with a coloring/~j of F i as well as the graph itself. Figure

3.2(7) comes from (7) and Figure 3.2(8) defines a morphism ~j. By [ER76, Lemma 4.9] again, the outer square in

Figure 3 .2 (5-8) is a pushout. We have obtained (6) for j, with the desired limited dependencies of nj and v i. To

continue the induction we must prove a little more: (6) for j can be factored in the manner of Figure 3 .2 (1-4) but

with j + l in place of j and with j in place of i. This follows readily from the uniqueness of the pushout from fj and o

and from c2ja j = fj = Clj+l~j+ 1.

All that remains is to verify the existence of a derivation (5). For each j we want a derivation

(Fi,/zi) = > (Fj, #j) via pj based on Yigj (8)

with i = j - 1 . By [ER76, Lemma 4.9] again, the four pushouts in Figure 3.3 combine to form two pushouts like

Figure 2.3 but with lettering appropriate for (8). We must show that the colorings/~j,l and/tj, 2 of Aj agree on Aj -

8jdjKi . But it can be shown that Aj - ~jdjKj _c /3j(Z - aS) u dj(D i - djKj). On/~j(E - oS) the agreement

between v i and vj on 57 _ oS implies agreement between #j,1 and/tj, 2. On cSj(Dj - djKj) the agreement between

mj, 1 and mj, 2 on Dj - djKj implies agreement between ~j,1 and #j,2. •

COROLLARY 3.6. As in Theorem 3.5, suppose there is also another derivation

(Go, m0) = (Go #, too#) = > (GI#, ml#) = > > (Gn# #, mn ##) via (pl # pn ##)

(Gn~ mn~4') = (Gn, mn) Then single satisfying the same hypotheses. S u p p o s e rn$ = r n and , . a

colored graph (~n,/~n) has derivations

(ro, #o) = > (Fn,/~n) via (Pl p~) and (to, t~0) = > (Fn,/~n) via (pl # pn,#).

Proof. Apply Theorem 3.5(6) for i = n and for i = n #, then uniqueness of the pushout from fi and o. •

4. AN EXISTENCE THEOREM FOR PRODUCTIONS

The proper productions defined by four conditions (5.6.1)--(5.6.4) in [ER76] will be helpful in the next

section. The last of the conditions is made trivially true by (2.8) here, so we restate only the first three conditions

here for ease of reference:

(¥ x,y in B1)(mlx = mlY in Cva r implies x = y); (4.1.1)

(V y in B2)(m2Y in Cva r implies y in b2K); (4.1.2)

(V x in K)(mlblX or m2b2 x in Cva r implies m l b l x = m2b2x). (4.1.3)

215

A biproper production satisfies these three conditions and their mirror images, with 1 and 2 subscripts reversed.

Indirect productions Pind(e) are biproper, as are aU the productions in [ER76, See. 7]. Productions with only fixed

colors are trivially biproper. The proof of the following theorem is too long to be given here.

THEOREM 4.2. Let p and p# be biproper fast productions, There is a set [p , p ~ of biproper fast productions

(using only colors that appear in p or in p#) such that, for every derivation

G = > X via (rp, r~p #) (1)

there is a derivation

G = > X via pq for some q in [p.p#]. (2)

Conversely, for every derivation (2) there is a derivation (1).

We have some additional results of a similar nature that simulate the net effect of applying two productions

independently in parallel by applying a single production [p + p#]. These lead to a generalization of canonical

derivation sequences in formal language theory.

5. INDIRECTION

For each fixed arc color c the production Pind(C) shown in Figure 2.2 uses variable node colors u, v and fixed

node color I. As in Section 2, we can simplify notation by requiring that any node colored I in an expression graph

have a unique outarc, and that this arc be colored ind. Let y be the arc colored c in Figure 2,2, so that applying the

rule (Pind(e), y) at z = gy in (G, m G, e G) has the effect of following the indirect c-pointer from sz and changing

the pointer field at sz so as to point directly to the node in G corresponding to the node colored v in Figure 2.2.

Given any expression graphs G = (G, mG, eG) and H = (H, m H, ell), let G >>ind H iff there is a fixed arc color c,

a recoloring r in R, and an arc z in G such that

G = > H via rPind(C) at z. (5.1)

Given any family F of expression graphs for which indirection makes sense, we can try to establish the Church-

Rosser property (1.1) for the system (F, >>ind), no matter what other properties F may have. The fam~y

should be closed under >>ind:

(G is in F and G >>ind H) implies H is in F. (5~2.1)

There should be nothing analogous to the tight loop (LABEL : goto LABEL) in programming: for all G in F,

mGSGX = I implies tGX #~ SGX for all arcs x in G. (5.2.2)

In particular, (5.2.2) holds if all graphs in F are acyelic. Families that satisfy (5.2) are said to allow indirection.

LEMMA 5.3. If ~ allows indirection then every member of F has a unique normal form in (F, >>ind)"

Proof, With the aid of (5.2) it can be shown that the Church-Rosser property here will follow from

(¥ G, H, H* in ~) [(G :>>ind H & G :>:>ind H#) implies (] X)(H >>ind* X & H # >>ind* X)]. (1)

We prove (1) by assuming that G, H, H # are as above and deriving the existence of an appropriate X. Consider the

derivations (5.1) for G >>ind H and (5.1 #) for G >>ind I-1". Disposing of the easy cases with the aid of [ER76,

Cor. 5.4], we may assume z # = gblX 3 where x 3 is the unique arc in K, so that gB 1 and g~Bl# overlap as shown in

Figure 5.1 (top). Note that c # here is ind. The nodes colored ru and ~ in the picture might actually be one node

in G, but (5.2.2) requires that all other seemingly distinct nodes in the picture be truly distinct in the graph G. The

relevant parts of H and FI e are pictured in Figure 5A(teft) and Figm:e 5.1(right). As suggested by Figure

5.1(bottom), there is an expression graph X with H > > i n d > > i n d X by applying Pind(ind) and Pind(C) and with H #

>>ind X by applying Pind(C). To show this we apply Corollary 3.6 to embed Figure 5.1 into derivations G >:>ind

H > > i n d > > i n d X and G >>ind H# >>ind X. Hypothesis (4) in Theorem 3.5 follows from the fact that ml ibl i =

m2ib2i for all the productions Pi. (The transition from colored graphs to expression graphs is routine, as in Lemma

3.3.) The proof of (1) is complete. •

216

The good behavior of >>irtd is not in itself very interesting. Given some other well behaved relation >>1 on

F, perhaps induced by productions that add I nodes to expression graphs, we would like to show that the union

>>, with G >> H iff (G >>1 H or G >>ind l-I), still behaves well. Some mild restrictions on >>1 will be needed.

We are concerued with situations where >>1 is induced by a set P of productions. Productions that delete (or

change the colors of) I nodes or ind arcs could destroy opportunities to apply Pind(C). On the other hand, applying

indirect productions could destroy opportunities to apply productions in ~ such that (B b m 1) includes an I node

with an inarc. Appropriate restrictions are imposed on P in the next theorem. Before proving the theorem we

state a general Church-Rosser lemma that will be used. The lemma can be proved by a straightforward induction.

LEMMA 5.4. Let F be closed under a relation > > on B -~ F. Suppose > >4 is a relation on B such that

(>>4*) ¢-- (>>*); (1)

(¥ G, H in F) [G >>* H implies (~L)(G >>4* L & H >>* L)]; (2)

(V G, H, H e in ~) [(G >>4 H & G >>4 lte) implies (3 X)(H >>4 X & I t # >>4 X)]. (3)

Then (~, >>) is Church-Rosser.

//
fir3

C , y '°d

(-
(I

/
Figure 5.1. Difficult case in the proof of Lemma 5.3.

217

THEOREM 5.5. Let F allow indirection and let > > l be a relation on expression graphs such that, for some

set P of biproper fast productions wherein no node in B 1 is colored I and no arc in B 1 is colored ind or in Cvar,

G >>1 H iff (7 p in P) (] r in R)(G = > H via rp); (I)

is closed under > > 1 ' (2)

Let > > be the union of > > 1 and > >ind, Then (F, > >) is Church-Rosser if (F, > > 1) is Church-Rosser.

Proof. Let

G >>2 H iff G > > I * H;

G >>3 H iff [G has normal form H in (F, >>ind)];

G > > 4 H iff (3 X)(G > > 2 X >>3 H).

We will apply Lemma 5.4. Assume for the moment that

(G > > 2 H & G >>3 I-l*) implies (2 W, X)(H >>3 X & H # > > 2 W >>3 X). (3)

By filling circles in diagrams as in [Ro73, Sec. 3], (3) can be shown to imply

(G > > X >>4* Y > > 4 L) implies (G >>4" L). (4)

We can now verify the three hypotheses of Lemma 5.4. Lemma 5.4(1) is trivial. Lemma 5.4(2) can now be

verified by induction on n in G > > n H. For Lemma 5.4(3) we apply the hypothesis that (F, > > l) is Church-

Rosser and then apply (3) and uniqueness of normal forms in (F, >>ind)- By Lemma 5.4, (F, > >) is Church-

Rosser.

All that remains is to prove (3). Suppose G >>2 H and G >>3 H#. If G = H then we may let W and X be H #,

so we may assume G # H. Therefore there is a derivation from G to H with one or more steps. Theorem 4.2 will

aUow us to deal only with the case of one step. Let Q be the smallest set of productions that includes P and all

productions [p.p#] whenever p and p# are in Q. In Theorem 4.2 we observe that members of Q satisfy all the

restrictions on members of P. From G >>2 H and G # H it follows that there is a unit derivation

G = > H via rq based on g (5)

for some q in Q, r in R, and g : B 1 --~ G. We want to construct a similar derivation

H # = > W via c#q based on g# (6)

such that W and H have the same normal form X in (~, >>ind)" A closer look at such normal forms will be

helpful. From G >>3 H# it follows that FI # has the same (under the obvious bijection between pairs of sets) nodes

and arcs as does G. The roots, the colorings, and the source maps are the same. Targets of arcs, however, are

different:

tH#X = if mGtGX # I then tGX else tH#Y, (7)

where y is the outare from tGX in case mGtGx = I. The rest of the proof is a somewhat delicate verification that (5)

can be systematically transformed to (6) in light of (7). []

218

6. GARBAGE COLLECTION

Given a string A = (ll...)kN) of fixed arc colors we consider a production Pga r (h) as shown in Figure 6.1. This

is not a fast production. The rule (Pgar(X), y), where y is the node colored u in Figure 6.1, may be used to delete a

node with outarcs colored A t, . - , A N and with no inares. Much as in (5.1) but with roots of expression graphs

involved now, let G > > g a r H iff there is a string A of fixed arc colors, a recoloring r in R, and a node z # e G in G

such that

G = > H via rpgar(h) at z. (6.1)

(Bl,m I)

x I xN

@...@
b2x I b2x~ N

K (B 2 , In 2)

Figure 6.1. The node colored u in the production Pgar(A) is collected as garbage if it has no inarcs and has
no other outares beside those colored h l A N.

LEMMA 6.2. If F is closed under > > g a r then each member of F has a unique normal form in (F, >>gar)"

Proof. If G > > g a r H and G > > g a r l-I# and H ~ I-I*, then [ER76, Cor. 5.4] and Lemma 3.3 provide X with H

> >gar X and H ~ > >gar X. This clearly implies the Church-Rosser property. Existence of normal forms follows

f rom the fact that > > g a r decreases the size of an expression graph. II

It is easy to define a family F and relation > > 1 on ~ such that (~, > > I) is Church-Rosser and ~ is closed

under garbage collection, but the union system (~, > >) is not Chureh-Rosser. Premature garbage collection may

destroy opportunities to add arcs between nongarbage nodes. Considering the recent interest in collecting garbage

in parallel with list processing [Do77; Gr77] , we seek simple condit ions such that the union will inherit the

Church-Rosser property f rom (F, > > 1) . Let s i and t i be the source and target maps of B i in a product ion p. Then

p is treelike iff

B 2 is acyclic (6.3.1)

and there is a node r in K such that

every node in B 1 is reachable from b i t ; (6.3.2)

mlblX = m2b2x for all items x ~# r in K (6.3.3)

and, for t = 1,2 and for every are z in B i and node x # r in K,

bix = siz implies (3 y arc in K)(biY = z and tKY # r). (6.3.4)

All productions Pind(C) are treelike. So are all productions considered in [ER76, Sec. 7]. Suppose p is a treelike

fast production. The nodes in bi(K - {r}) and their outarcs in B i generate a subgraph of B i. By (6.3.4), all nodes

in this subgraph are in bi (K - {r}) and all arcs in this subgraph are in biK. By injeetivity of b I and b 2, the

subgraphs of B 1 and B 2 are isomorphic. By (6.3.3), the colored subgraphs of (B i, m i) are also isomorphic.

219

THEOREM 6.4. Let F be closed under >>gar and let >>1 be a relation on expression graphs such that, for

some set [9 of treelike fast productions,

G >>1 H iff (3 p in P) (] r in R)(G = > H via rp); (1)

is closed under > > 1. (2)

Let > > be the union of >>1 and >>gar" Then (F, > >) is Chureh-Rosser if (F, >>1) is Church-Rosser.

Proof. Suppose (F, > > I) is Chnrch-Rosser, so that (]=, > >) is a union of Church-Rosser systems by Lemma

6.2. By [Ro73, Thin. 3.5, Lemma 3.6], it wiU suffice to show

(:1X)[H >>gar* X and (H # >>1 X or H # = X)] (3)

under the assumption G >>1 H and G >>gar H#" Let G = > H via rp in (1) and let G = > H # via l~p # at z # in

(6.1), with z # # e G. There are two cases to consider. If z # is not in gB 1 then the two derivations can be shown to

be independent in the sense of [ER76, Sec. 4]. Cot. 3.4 yields X with H >>gar X and I-I # >>1 X, so (3) holds.

Otherwise it can be shown that H >>gar* H~' SO (3) holds, •

7. LANGUAGE DESIGN SUGGESTIONS

Results like Theorem 5.5 and Theorem 6.4 can be interpreted as suggestions for the low level language

programmer or for the high level language designer. Their significance is clearest in a multiprocessing context.

One or more main processes under user control manipulate a record structure while service processes operate

asynchronously in parallel with the main processes. The service processes follow paths of ind pointers or collect

garbage. For the sake of definiteness, consider garbage collection and suppose that a list of backpointers is

maintained for each record. Writing at low level, the user can inspect and manipulate backpointer information.

Without some synchronization between the user and the garbage collector, a very unpleasant interaction can occur.

The user looks at a backpointer and decides to follow it to a record RD. Then the garbage collector deletes RD.

Then the user follows the invalid pointer. To prevent this interaction the user should lock out the garbage collector

during some user computations, but locked oat periods should be kept brief to obtain the benefits of parallelism.

Theorem 6.4 suggests that garbage collection between applications of treelike fast productions can do no harm.

The user could apply a production, give the garbage collector free rein while he does a long private computation not

involving the record structure, and then apply another production. If other user's activities during the private

computation do not cause trouble [the Chureh-Rosser property for (F, > > 1)], then no combination of other user's

activities and garbage collection during in the private computation can cause trouble [the Church-Rosser property

for (F, > >)]. This is a slight overstatement, in that "trouble" is an intuitive concept and does not perfectly

coincide with any precise mathematical concept like lack of the Church-Rosser property. As in our backpointer

example, many particular troubles do correspond to failures of the Church-Rosser property.

Of course it is difficult to correlate low level code with the definition of treelike fast productions. Rather than

ask programmers to wTite at low level and keep Theorem 6.4 in mind, we would ask language designers to insure

that the record handling facilities of high level languages have the same net effect when high level programs are

compiled. Garbage collection can take place "during" execution of a single high level operation, provided that the

compiled code corresponds to a sequence of applications of treelike fast productions interspersed with private

computations. The garbage collector is only locked out during each application of a production. Similar but more

complex recommendations can be made for user communities with several record structures, for synchronization

mechanisms that can lock the garbage collector out of a region rather than the whole structure, and so on. In

practice it may be necessary to give programmers more flexibility, so that some high level programs will be such

that the compiler does not guarantee good interaction with the garbage collector. In that case the language

facilities that put the burden of assuring good interaction on the user should be very clearly visible whenever t h e y

occur in a program. The facifities for which good interaction is guaranteed should be rich enough that only expert

programmers with stringent performance goals will ever feel a need to use the dangerous facilities. This is like the

220

consensus that is beginning to emerge regarding control structures: goto should be provided, but a varied collection

of more disciplined control structures should be provided to serve the needs of most programmers most of the time.

The main limitation on the significance of Theorem 6.4 for language design is the simplicity of the garbage

collection considered here. Unreachable cycles are not recognized as garbage, so we needed to assume that B2 is

acyclic in a treelike production. The basic theory has no such limitation, but its role in the more complex situation

remains to be worked out.

REFERENCES

[Do77] T.W. Doeppner, Parallel program correctness through refinement, Proe. 4th ACM Syrup. on Principles of
Programming Languages, Santa Monica, January 1977, pp. 155-169.

[EK75] H. Ehrig & HJ, Kreowski, Categorical theory of graph grammars, Rept. 75-08, Teeh. U. Berlin,
February 1975.

[EPS73] H. Ehrig, M. pfender, & HJ. Schneider, Graph grammars: an algebraic approach, Proc. 14th Ann.
IEEE Syrup. on Switching and Automata Theory, Iowa City, October 1973, pp. 167-180.

[ER76] H. Ehrig & B.K. Rosen, Commutativity of independent transformations on complex objects, IBM
Research Report RC 6251, October 1976.

[Gr77] D. Gries, On believing programs to be correct, CACM 20 (1977), 49-50.

[HS73] H. Herrlich & G. Strecker, Category Theory, Allyn and Bacon, Roekleigh, 1973.

[Kn73] D.E. Knuth, The Art of Computer Programming, Vol. 1 (2nd ed.), Addison-Wesley, Reading, 1973.

[Ro73] B.K. Rosen, Tree-manipulating systems and Church-Rosser theorems, JACM 20 (I973), 160-187.

[R075] B.K. Rosen, Deriving graphs from graphs by applying a production, Aeta Inf. 4 (1975), 337-357.

[Ro76] B.K. Rosen, Correctness of parallel programs: the Church-Rosser approach, Th. Comp. Sci. 2 (1976),
183-207.

[Se74] R. Sethi, Testing for the Church-Rosser property, JACM 21 (1974), 671-679.

[WH66] N. Wirth & C.A.R. Hoare, A contribution to the development of ALGOL, CACM 9 (1966), 413-431.

