
LANGUAGES DEFINED BY

HIGHER TYPE PROGRAM SCHEMES

Werner Damm

Lehrstuhl fGr Informatik II

RWTH Aachen

i. Introduction

A recursive program scheme in the sense of Nivat [iO] abstracts the control

structure of a certain class of recursive procedures in order to investigate their

common properties. These procedures take only data elements as parameters and do not

allow procedures as parameters, in contrast, higher type procedures as definable in

ALGOL 68 have the characteristic feature, that their value as well as their parameters

can be of type procedure, procedure procedure, etc. . In this paper, we investigate

such higher type procedures. We can prove that the auxiliary use of recursion on

higher functional domains increases the computational power of a programming

language. To this purpose, we introduce a family <Rn(Z) I n 6 ~> of program

scheme classes with recursion on functional level n , ~ denoting the set of given

base function symbols.

As with a recursive program scheme [IO], we can associate with a higher type

scheme a tree grammar. Depending on the order of the derivation steps - innermost

outermost or outermost innermost, see [5], [6] - we define two classes of tree

n
T~O(Z) and ~I(Z), generated by level n higher type scheme which generalize languages,

the classes of IO- and OI-context free tree languages. The semantics of a level n

higher type scheme can be characterized by a level n IO-tree language. This

allows to compare the power of higher type schemes by comparing their IO-tree

languages. To this end, we introduce classes of string languages i~o(V) over an

that the set of branches of a tree language in TIO(Z) is alphabet V and prove

a level n IO-string language; in fact, any such string language can be obtained

this way. We define level n languages L n , such that at least L 1 ~ i~o(V) and

¢ [/o(V) . This proves all discussed hierarchies strict in the first two steps. L 2

In particular, R2(Z) is more powerful than the class of recursive program schemes

over Z .

165

The formalization of the topic in the setting of deterministic program schemes

was suggested by K. Indermark o In [7], he introduces typed combinator schemes,

which include fixpoint combinator schemes at any functional level. Then he shows

how to reduce the subclass, which, when interpreted, define functions of type i, to

certain standard forms. By a normal form theorem of Wand [ii], these coincide with

the classes Rn([) introduced in this paper.

Engelfriet and Schmidt define in [5] the corresponding nondeterministic hierarchy

of schemes, and prove that the regular, context-free and macro string languages may

be obtained as solutions over a particular interpretation at level O , i and 2 ,

respectively.

In [12], Wand indicates a proof of a similar result. He uses a categorical

generalization of his concept of a p-clone of an algebra [ii], to define a hierarchy

of string languages, which starts with the regular, context-free and indexed

languages.

I want to thank Klaus Indermark for many stimulating discussions, and Bruno Courcelle

for pointing out the necessity to start with reduced grammars in the proof of

theorem 3.21 .

2. Algebraic background

An algebraic definition of the semantics of higher type schemes requires many-sorted

continuous algebras as interpretations. In this section, we will shortly review the

basic definitions. The reader is refered to Eli for details.

Let I be a set of sorts, and I ~ be the set of strings over I . Eor w 6 I ~ ,

l(w) denotes the length of w . If l(w) = n>O , we write w = w(1)...w(n) . The

empty string will be denoted by e .

An I-sorted alphabet is a family Z = <[<w,i>> The elements of
z<w,i> <w,i> 6 14 × I .

are called base function symbols of arity <w,i> . If X = <Xa> i E I is

a family with domain I , then E(X) is the I-sorted alphabet defined by

<e,i> ~ z<e'i>u X i , w # e ~ <w,i> ~ Z <w'i>

A E-algebra is a pair ~ = (A,~ A) , where A is a fa/nily of sets <Ai>i 6 I '

and ~Aassigns to each f 6 [<w,i> a function over A of correct arity, i.e.

~A(f) : A w ~ A i . Here, A w denotes the generalization of the cartesian product

defined by A e := {I} - 1 is a new symbol , and A wi A w A i _ _ - : = x .

A family of mappings h =<h i : A i ~ Bl> i 6 I between carriers of E-algebras

and ~ is a [-homomorphism iff

166

Vf6 [<w'i>hi(~A(f)(a I an)) = ~B(f) (~(I)

homomorphism, then we write h : ~ ~ ~ .

(al) hw(n)(an)) " If h is a

A [-algebra ~ is continuous iff

(i) each A i is a partially ordered set with minimal element k . ,
A l

(2) any directed set D c A i has a least upper bound ~D 6 A i -- i

(3) all operations ~A(f) are continuous, i.e. ~A(f) is monotone and for any

directed Dj ~ A w(j) ~A(f) (~D 1 UDn) =[.]~A(f)(DI nn) .

Let A-alg[denote the class of continuous [-algebras. This class contains an
i

initial object, which will be denoted by C T[. Intuitively, we can view t 6 CTz

as an infinite Z-tree, where in addition minimum symbols k s may occur as leaves.

2.1 theorem (ADJ [I])

For all ~ 6 A-a_~[there exists a unique k-preserving continuous [-homomorphism

We denote by F T[the restriction of C T[to finite trees, and by ~[the

usual [-tree algebra.

Let, for w 6 I ~ {Yl , Y = } be a set of parameters (Y := ~).
w ,w(1)''''Yn,w(n) e

Yw can be considered as a family with domain I by setting y i {Yj,w(j := I w(j) = ~.
i W)

Because of the above theorem, an infinite tree t 6 CT~(Yw) induces a derived

operation over ~ 6 ~-alg[:

derop~(t) : A w ~ A i

is given by a = (al,..,a n) ~ hA(a) (t) , where A(~a) is the I(Yw)-algebra

obtained from ~ by letting Yj,w(j) name aj .

(t) for the derived operation of In case A = C TZ(yv) , we write S~yw

, because SUbyw(t) (tl,..,t n) is the infinite tree obtained from t by

• for Yj,w(j) " substituting t 3

t over

3. Higher type schemes

Higher type schemes will be defined as regular schemes over partly interpreted

alphabets. A regular scheme over [consists of a finite deterministic system of

regular equations with parameters ([i], [9]).

167

3.1 definition (regular scheme over ~ , R(Z))

The set R([) <w'i> of regular schemes over

set of all mappings S : X v --~ FTZ(yw) (X v)

such that v(1) = i and V l<j ~l(v) S(Xj,v(j)

Such a scheme will be written as l(v) equations

elements of X are called variables, those of Y
v w

equation is viewed as the defining equation.

of sort <w,i> 6 I* x I is the

for some v 6 I* ,

6 FTZ(Yw) (Xv)V(J) m

Xj,v(j) = S(Xj,v(j)) The

parameters. Note, that the first

example 1

In this and the following examples, [will always denote an {i}-sorted

alphabet with e 6 Z <e'i> , a , g , h 6 Z <i'i> , and f 6 [<ii,i>

Let S O 6 R(Z) <i'i> be the scheme x = f(x,y) , where we abbreviate x

Xl, i and y for Yl,i

for

The interpretation of S O in a continuous E-algebra ~ is the monadic function

[S 0 , A~ : A ~ A , which maps a 6 A onto the least fixpoint of the function

A ~ A obtained from S O by substituting a for the parameter y .

[S O ' NA~ : A --+ A

a ~-~ Y(Ib . <QA(f) (b, a))

The infinite tree of S O is T(So) := [S 0 , CTI(Yi)~(y) .

f

It is easy to see, that T(So) .=/f y

." y

In order to use S O as a regular tree grammar, we have to add x = ± as a

production. An example of a derivation is

f f f

x ~ x Y ~/f y y 6 FTx(Y i) .

x y ± "~y

We now define these concepts formally. Let ~ 6 A-alg Z , and

S : X --+ FTZ(Yw) (X v) S 6 R(Z) <w'i> l(v) = m l(w) = n v i s , o

3.2 definition (interpretation of S in ~ , [S , ~)

IS, ~ : A w --+ A i is defined by

a= (a I an) ~ Pr(~)(Y(jer°pA(.~a} S(xl,v(1)));'';~erOpA(~a~ S(xm,v(m)))))

168

3.3 definition (infinite tree of S , T(S))

T(S) := IS , C Tz(Yw)~(Yl,w(1) Yn,w(n))

3.4 definition (language generated by S , L(S))

Let Yl' T2 £ FT[(Yw) (Xv) "

T 2 derives directly from T 1 in S (Y1 ~ T2) iff T 2

substituting exactly one occurence of Xj,v(j) , some

S(Xj,v(j)) or by iv(j) .

Let ~ denote the transitive reflexive closure of

The language generated by S is

~(s) := {t 6 FTZ(Yw)ilXl,v(~) ~ t} D

is obtained from T 1 by

j 6 {I l(v)} , by

Though regular schemes are a very simple class of schemes, they are powerfui

enough to model higher type procedures. We will first demonstrate, how recursive

schemes can be retrieved in this setting.

example 2

Consider the r ecursive program scheme S' 1 6 rps([) <i'i> given by

F(y) = f(F(g(y)) , g(y)) .

Such a scheme can be used as a context-free tree grammar by adding F(y) = ± as

a production. An example of a derivation is

f f f

I~ F g Y I ~ >f ~ £ L (S'I)

g y F y 1 / \'g ~y

q ~2 g\ \ y g~ g

Y Y

Assume, that we introduce a new symbol ~ which is always interpreted as functional

substitution. Then we can rewrite the right hand side of S' 1 to ~(f, ~(F, g) , g) :

substitute into f the composition of F and g , and g . We express this

relation by

yield(~(f , ~(F , g) , g) = f(F(g(y)) , g(y)) .

Now consider the scheme S 1 given by

F= ~(f,~(F,g),g) ,

then S I is a regular scheme, but over a new alphabet, called derived alphabet of

[. This alphabet will be denoted D(E) ; it contains the base functions in E as

constants and in addition projection and substitution symbols.

169

By adding

over D(X) :

F - /¢~
F g

F = I as a production, we can use S 1 as a regular tree grammar

6 L(S i)

Note, that the yield of the last tree is f(f(l, g(g(y))) , g(y))

This suggests that we can obtain L(S~I) by using S 1 as a regular tree grammar

and then translating the D(E)-trees in L(S I) to the E-level.

As the right hand side of S 1 is in FTD(E)(X) , we have to interpret S 1 in

D(E)-algebras. Let D(~) be the D(X)-algebra, which has continuous functions over

A as carrier, the base functions of A and projections as constants, and functional

substitution as operations. Then [$! , D(~)] = IS' 1 , ~ Q

The above example has introduced informally all the concepts necessary to treat

higher type schemes. In the formal definitions, the projection and substitution

symbols will carry type informations, because we want to iterate the constructions

indicated in the example.

3.5 definition (derived index set, D(I) , derived alphabet, D(E))

The derived index set of I is D(I) := I* × I .

The derived alphabet of X , D(X) ~ is the D(I)-sorted alphabet, which contains

(i) f 6 E <w'i> as constant of sort <e , <w,i>>

(ii) ~w with l(w) >O i~j~l(w) w 6 I* i i t
3

as projection symbol of sort <e , <w,w(j)>>

(iii) sv <w,i> with v , w 6 I* , i E I , l(v) = m ,

as substitution symbol of sort <<e,i> , <w,i>> if v = e ,

<<v,i><w,v(1)>...<w,v(m)> , <w,i>> otherwise.

3.6 definition (derived algebra of ~, D(~))

The derived algebra of ~ is the D(Z)-algebra (D(A) ,~D(A)) , where

(i) the carrier of sort <w,i> , D(A) <w'i> , is the set of all continuous

functions from ~ to A i and

170

(2) ~D(A) assigns operations to the symbols in D(Z) by

(i) f 6 ~<w,i> denotes ! P-~ ~A (f)

(ii) ~w denotes ± ~-~ ~(a I a n) a.
3 -- 3
e . _ (iii) ~<w,i> denotes f ~-~ l(al,. ,an) f(±)

~<Vw,i> denotes (f' gl gm) ~-~ f ~ (gl;'';gm)

It is easy to see, that D(~) 6 A-algD([)

The translation yield is actually a D([)-homomorphism~ obtained by defining a

D(Z)-structure on CTz(Y) (see [8]) .

3.7 definition (yield)

We define a D([)-structure on CTz(Y) by

i
(I) the carrier of sort <w,i> is CTz(Yw)

(2) the assignment function is given by

(i) f 6 [<w,i> denotes

W
(ii) g. denotes

3
e (iii) ~<w,i> denotes

~w,i> denotes

i ~-. f(Yl,w(1) Yn,w(n)

! ~-~ Yj,w(j)

t ~-~ t

SUby
V

The by theorem 2.1 unique homomorphism from C TD([)

denoted yield .

into this algebra will be

Q

Until now, we have indicated, how recursive schemes can be redefined as certain

regular schemes over D(Z). We will now iterate the ideas of the previous example

to demonstrate that higher type schemes allow to define new objects.

example 3

Let S' 2 be the higher type scheme

~ F(y) = <0(g,h) (y)

%0(FI,F2) (y) = f(qg(F 1 o g , F 2 0 h) (y) , FI(F2(Y))) .

Here, we define recursively a procedure <0 , which, when applied to actual parameters

of type procedure, delivers a procedure as value. %0 is called from the main

procedure F with two base functions as actual parameters, thus this scheme

computes a monadic function over an interpretation A .

In order to use S'2 as a tree grammar, we add productions F(y) = I ,

%0(F I , F2) (y) = I An example of a derivation is

171

~(g,h)

l
Y

~(g2,h2>/f~g

Y
h

Y

f

\h 2 \ Y \
Y

f

f/ ~g

J \ \ y g Y

\h
\h

\
Y

£ L(S' 2)

Note that the set of branches of L(S' 2) is {fngnhn I n 6 ~} and thus not

context-free. This will be used to prove that S' 2 is not equivalent to any

recursive program scheme, by establishing a connection between the semantics of

higher type schemes and their tree languages.

The notation employed to define S' 2 may be viewed as an informal way of

defining regular schemes over the derived alphabet of D(Z) , D2(1) , corresponding

to the fact that a variable of functional level 2 is recursively defined. Let,

for M 6 {I , Z, 5} , DO(M) := M , and Dn+I(M) := D(Dn(M)) . In general, recursion

on level n can be formalized by using regular schemes over Dn(x) .

Consider the class R(Dn(Z)) Among these schemes, there are some, which are

of sort <e,<...,<e,<w,i>>...>> , and thus, after successive applications to •

define a function of sort <w,i> 6 I ~ x I .

Let --nb : I ~ x I --e Dn(i) be the mapping given by b o<w,i> := i ,

b We will formally define higher ~l<w,i> := <w,i> , b_n+l<w,i> := <e ,_n<w,i>>

type schemes as those regular schemes over Dn(x) , which are of sort b n+l<w,i>

for some <w,i> 6 I ~ x I .

3.8 definition (level n higher type scheme, Rn([))

The class R ([)<w,i> of level n higher type schemes of sort
n

is defined by (x)<w,i> b n+l<w,i>
R := R(Dn(Z))
n

Rn(X) is the family <Rn(Z)<w'i>Xw,i> 6 I ~ x I
[]

<w,i> 6 I ~ x I

When comparing the semantics of higher type schemes, we do not distinguish
Dn+l(A)b_n+l<w,i>

between an element f 6 and the function f(~) ... (~) : Aw--~A I .

Moreover, we will only compare schemes over those interpretations, which respect the

intended meaning of all substitution and projection symbols.

172

3.9 definition (equivalence , ~ , translatability , <)

Let S E Rn([) , S' £ Rm([) , and S , S' be classes of schemes

S is equivalent to S' (S N S') iff V~ 6 A-algz IS , Dn(~)~ = IS'

S is translatable into S'(S ~ S ~) iff Vs 6 $3 S' 6 S' s ~ S'

S is equivalent to S'(S N S') iff S ~ S' A S' ~ S
Q

over X

Using the informal notation for higher type schemes, it is obvious

scheme in Rn(Z) is equivalent to a scheme in Rn+l(X) .

that any

3.10 corollary

Rn(X) ~ Rn+I(X)

By definition, this hierarchy starts with the regular schemes over X . We will

prove, that level 1 higher type schemes are exactly as powerful as recursive

program schemes.

3.11 theorem

rps([)

proof:

Let S 6 RI(Z) <w'i>

all right hand sides of

S N yield(S) ,

~ R I (I)

We define yield(S) 6 r2~(X) <w'i> by taking the yield of

S and replacing variables by function variables. To prove

is suffices to show, that

yield

CTD (Z) ' CTz(Y)

D (A)

commutes.

But this follows from theorem 2.1 , because derop~ is a continuous
N

D(Z)-homoraorphism. As yield is onto, we have also proved rps(Z) < RI(Z) .

In [5], Engelfriet and Schmidt define IO(n) and OI(n) equational elements of

a (completely continuous) subset algebra F(A)N £~]-algx " Let NRn (X) denote level

n higher type schemes which have finitely many terms in T (X) as one right
D n (X)

hand side, then the OI(n) equational elements are solutions of constant schemes

in NRn([) . In the OI-case, we can simulate nondeterminism deterministically. Let

E + be obtained from Z by adding symbols +. of sort <i,i> , which in completely l

continuous algebras are interpreted as join operation.

3.121~a

NRn(1) N Rn (Z +) U -alg I

173

In the IO-case, this simulation is not possible.

Now recall definition 3.3 of the infinite tree of a regular scheme: if

<w,i> C~ <w'i> Much as we defined yield, we obtain the S 6 Rn(Z) , then T(S) 6 Dn(~)

existence of a mapping b <w,i>

yield (n) : CT -~n ---+ CT[(Yw)i ,
Dn([)

which translates T(S) to an infinite Z(Yw)-tree by taking into account the meaning

of all the projection and substitution symbols. In fact, the derived operation of

this tree over A is precisely the solution of S in A .
N N

3.13 theorem

deropA(yield(n) (T(S))) = [S , Dn(~)~
N

proof:

By the Mezei-Wright-like theorem for regular schemes, [I], h
Dn(A)

As in the proof of 3.11, we show by induction on n 6 l~ , that

b <w,i> yield (n)
CT-n i

Dn(z)~ ' CTz(Y w)

hDn(~)~ / derop~

b <w,i>
Dn(A) -~I ~ D(A) <w'i>

commutes.

By the above theorem,

z ield (n) (T(S)) = [S , Dn(CTz(Yw))~(yI~w(1) Yk,w(k)) ,

thus this tree characterizes the equivalence class of S .

(T(S)) = [[S , nn(A)~.

3.14 corollary

S ~ S' iff

iff

[S , Dn(CNTz(Y w))~ = ~'S' , Dm(CTT(Yw))

yield (n) (T(S)) = yield (m) (T(S')-)

Next, we want to characterize equivalence by tree languages generated by schemes.

Much as with context-free tree grammars, we can associate an IO- and an OI-tree

language with a higher type scheme.

3.15 definition (LIo(S) , level n IO-tree language , T~o(Z))

Let S 6 NR (~) . The IO-tree language generated by S is defined by
n

LIo(S) := yield(n) (L(S)) .

The class of level n IO-tree languages of sort <w,i> is

[~%([)<w,i>:=-- {L ~ T[(Yw) i I L = LIo(S) A S 6 NRn([)<w'i>} D

174

3.16 definition (LoI(S) ~ level n Of-tree language , T~I(Z))

Let S 6 R (Z+) <w'i>. The OI-tree language generated by S
n

LoI(S) := IS , Dn(~(~(Xw)))~(yl,w(1) Yk,w(k)) "

The class of level n Of-tree languages of sort <w,i> is

n (z)<w,i>
TOI := {L ~ Tz(Yw)i L = LoI(S) A S 6 Rn(Z+)<w'i>}

is defined by

The tree languages defined in examples I f 2 , and 3 are both IO- and

OI-tree languages of level O , 1 , and 2 , respectively.

It is easy to see, that the IO- and OI-tree languages form a hierarchy with

increasing n , which starts with the regular tree languages. The fixpoint

characterizations of context-free tree languages proved by Engelfriet and Schmidt

imply~, that T~O(~) and T~i(~) contain precisely the IO- and OI-context-free [5]

tree languages, respectively.

In [3,4] we show, how to construct a normalform nf of S 6 R ([) , such that
-- n

the IO-tree language of n~f(S) contains all finite approximations of T(S) .

3.17 theorem

__ f , S N S' iff Lio(nf(S)) = LIO(n[(S))

This result allows to compare the semantics of higher type schemes by comparing

their IO-tree languages. To this end, we will characterize the set of branches of

level n IO-tree languages as certain string languages. Again, two definitions are

possible.

Let V be a string alphabet. To V we associate an {i}-sorted alphabet ZV

containing v as monadie symbols and a constant symbol e . Then P(V*) is a

~-algebra with v 6 V denoting left concatenation with v , and e denoting the

set consisting of the empty word. As F(V~) is isomorphic to F(TN~) , we can

define string languages over V by specifying tree languages over % .

n n
3.18 definition (level n iO-string languages, LIo(V) , level n Of-string languages, ioi(V))

n n Z <e,i>, L~i(v) := Tn (~<e,i>
LIo(V) := TIO(v) o of" V r

D

In the following examples, we will use the informal notation for higher type

schemes. Types of variables are indicated by F : ~ , where O : i and

n+ I := <n, n> . Let a £ V .

175

example 4 x : O , F : I i ~ : 2

Let S 2 6 NR2([V)<e'i> be the scheme

Then

x

) x = %0(a)(e)

q0(F) (y) = ~0(F0 F) (y) , F(y) .

LIo(S 2) = {a2ml m 6 IN} , as the following derivation indicates:

~0(a) ~0(a 2) ~0(a 4) ~(a 8) a 8

e e e e e

/2,
Using "+" instead of ", " , we obtain m/.." ~

LoI(S 2) = {a2ml m 6 IN} , because yield(2) (T(S2)) = //'(+/ ~e

a

,' / ~a2m

\
e

example 5 x : 2 , FI ' F2 : ~ ' ~ ~i : ~ ' ~ : ~

Let S 3 6 NR3(Zv)<e,i> be the scheme

) x = ~(~)(a)(e)

~(Fl)(y) = F1 o F1 (y)

~(~i) (F2) (Y) = ~(~i o ~i) (F2)(y) , ~I(F2)(y) .

2 TM

Then LIo(S 3) = {a2 I m 6 IN} = LoI(S3)

~(~0) (a) ~(q02) (a) ~(~04) (a)

x~ i ~ J ~ i
e e e

%013 (a 2) q012 (a 4) ~01 (a 8)

e e e

q94 Ca)

e

t 6
a

I
e

In general, we can generate languages L n defined by

where fn is given bY fl(m) := m , fn+l(m) := 2 fn(m)

[]

Ln := {afn(m) I m 6 I~ } ,

3.19 lemma

L 6 i]no (V) N n n tOi (V)

It follows directly from the corresponding results on tree languages, that the

IO- and OI-string language hierarchies start with the regular and context-free

languages, thus the given examples proof the first two steps to be strict, if

Ivf ~ 2 .

3.20 corollary

L ^

176

2 2
Moreover, Engelfriet and Schmidt [53 prove, that iIo(V) and L~I(V) equal the

class of IO- and OI-macro languages [6], respectively.

We will now characterize the class of branch languages of level n IO-tree

languages as level n OI-string languages.

Note first that any level n tree language over a many sorted alphabet Z is

also a level n tree language over a ranked alphabet ~ obtained from ~ by

forgetting the sorts. Thus it is sufficient to prove the characterization for an

{i}-sorted alphabet Z . For technical reasons, we assume, that ~ contains at

least one constant symbol c .

Let V[be the string alphabet, which consists of all none constant symbols in

Z , and let _~ := --Z~7 E .

The set b~r(L) of branches of a tree language L is defined by b r(yj,i) = {e} ,

b__rr(a) := {e} , and b r_r(f(t I tr)) := ~ f(b_~r(tj)) for any symbol f of rank
1 ~j~' r

r > 0 ; finally, b r(L) := ~ b_~r(t) .
t 6 L

3.21 theorem
n

b_~r (T~o (Z)) = LIo(V Z)
proof:

"c" Let S ' £ NRn(Z) < w ' i > .k , W=l , and let L(S') * ~ , thus also L (S') # ~.
-- IO

As t h e e m p t i n e s s p r o b l e m f o r r e g u l a r t r e e l a n g u a g e s i s s o l v a b l e , we can e l i m i n a t e

all variables which do not derive a terminal tree, by deleting all productions,

which c o n t a i n such v a r i a b l e s . Le t S 6 NR (~)<w, i> be t h e r e d u c e d grammar c o n s t r u c t e d
n

from S' in this way, then LIo(S) = LIo(S') .

We define mappings ~m : TDm(Z) P(TDm(Z)) (0 <m<n) by sending all

constants in Z~Dm(Z) to e and f 6 Z of ~ank r > 0 to the image of

{f(yl,i),..ff(Yr,i)} at the Dm(Z)-level. Let ~ be defined as b r except that

~o(Yjri) = Yj,i " Using induction, we prove

(1)

(2)

that substitution at level n commutes with br :
---n

br o subx~(t) = subx~(b_~_nr (t)) o (~;...;b~nr)
---n

for any t 6 T (X) , and
D n (Z)

that
b <w,i> br b <w,i>

P (T~n) - - - ~ ~ p (T -n
-- ([) -- D n (Z)

yield (n) i lyield (n)

F (Tz(Yw)i) ~ ~ (T~-(Yw)i)
br

commutes.

177

Here, subx (t) and

P_(M) := P(M) TM {¢}

br are canonically extended to tree languages, and
----n

for any set M

Define b_~r (S) 6NRn(X) <w'l> by taking ---nbr of each equation in S . Then, using

(I) and the fact that S is reduced, we can show by induction on the length of a

derivation that br (L(S)) = L(br (S)) . But by (2) this implies ~(LIo(S)) =
---n ---n

LIO(~(S)) . By calling br iS) with k e's as actual parameters, we obtain
<e,i> --n]

S 1 6NRn(~) , such that b r(Lio(S)) = LIo(S I) .

"~" Let S 6 NR (X) <e'i> be reduced. We define Dm(X) - homomorphisms
n -- --

ext : T --* T by imposing the following Dm(x)-structure on T
m Dm(x) Dm(X) -- Dm(z)

(i) X 9 e denotes i ~-~ c

(ii) [9 f denotes
t ~-* f(t,..,t) if m = O

~-~ tbe image of f(Yl,i Yl,i)

at the Dm(Z)-level

(iii) all other symbols in Dm(X) retain their meaning.

Using induction, we show, that

(i) br o ext = idF(Ti) ,

(2) substitution at level

(3) b <e,i>
p (T -n)

- - D n ([)

yield (n)

P (T[i)

commutes with

ext
--n

ext , and
n

b <e,i>
P (T -n)
-- . D n (Z)

yield (n)

~_(Tz i)

Here, b r = ~O , and ext := e~ O .

commutes.

Define eXtn(S) 6 NRn([) <e'i> by taking ext of each equation in S . Then
n

ext (S) is reduced, and using (2) we can show ext (L(S)) = L(eXtn(S)) . But then
-----n n

Lio(~(eXtn(S))) = br(ext(yield (n) (L(S)))) = LIo(S) . []

In [2], Courcelle proves that OI-context-free tree languages have context-free

branch languages. We conjecture that in general the branch language of a level n

OI-tree language is a level n OI-string language, and that any such string

language can be obtained this way.

178

By these characterizations and the examples, the tree language and scheme

hierarchies are strict in the first two steps, if Z contains at least a binary and

a constant symbol.

3.22 theorem

T 2 (Z) :r oC"

Thus recursion on higher types allows to define new objects at the base level. In

particular, R2(Z) is more powerful than the class of recursive program schemes

over Z .

We conjecture that for all n 6 ~+ 1 ,Ln+ 1 ~ iio(v)n n ioi(v)n . To prove that

Ln+ 1 is not a level n language, we have to find characteristic closure operations

for each level. A result in this direction is the increase in copying power for the

IO-hierarchy:

let In : F(V*) --+ F(V*) be given by

In(L) := {wfn(m) I m61~ Aw6L} ,

then

L n ~ L n
In(I0(V)) c r0(v) .

179

4. References

[i] ADJ: Goguen, J.A./Thatcher, J.W./Wagner, E.G./Wright, J.B.
Initial algebra semantics, IBM-report RC 5701, 1975

[2] Courcelle, B. Ensembles alg~briques d'arbres et langages d~terministes;
quelques applications aux schemas de programme, IRIA report, 1975

[3] Damm, W° Higher type program schemes and their tree languages, Proc. 3rd GI
conference on Theoretical Computer Science, Lecture Notes in Computer Science,
48, Springer Verlag, 1977

[4] Damm, W. Higher type program schemes, to appear as a technical report of the
RWTH Aachen

[5] Engelfriet, J./Schmidt, E.M. IO and OI, Datalogisk Afdelning report, DAIMI
PB-47, Aarhus University, Denmark, 1975

[6] Fisher, M.J. Grammars with macro-like productions, Proc. 9th IEEE conference
on Switching and Automata Theory, 1968

[7] Indermark, K. Schemes with recursion on higher types, Proc. 5th conference
on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science, 45, Springer Verlag, 1976

[8] Maibaum, T.S.E. A generalized approach to formal languages, JCSS 8 (1974),
409-439

[9] Nivat, M. Langages alg~briques sur le magma libre et s~mantique des schemas de
programme, in: Automata, Languages and Programming, ed. M. Nivat, North-
Holland Publishing Company, Amsterdam, 1973

[iO] Nivat, M. On the interpretation of recursive program schemes, Symposia
Matematica, VQ1. 15, Academic Press, 1975

[11] Wand, M. A concrete approach to abstract recursive definitions, in: Automata,
Languages and Programming, ed. M. Nivat, North-Holland Publishing Company,
Amsterdam, 1973

[12] Wand, M. An algebraic formulation of the Chomsky hierarchy, in: Category
Theory applied to Computation and Control, Lecture Notes in Computer Science,
25, 1975

