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i. Introduction 

A recursive program scheme in the sense of Nivat [iO] abstracts the control 

structure of a certain class of recursive procedures in order to investigate their 

common properties. These procedures take only data elements as parameters and do not 

allow procedures as parameters, in contrast, higher type procedures as definable in 

ALGOL 68 have the characteristic feature, that their value as well as their parameters 

can be of type procedure, procedure procedure, etc. . In this paper, we investigate 

such higher type procedures. We can prove that the auxiliary use of recursion on 

higher functional domains increases the computational power of a programming 

language. To this purpose, we introduce a family <Rn(Z) I n 6 ~> of program 

scheme classes with recursion on functional level n , ~ denoting the set of given 

base function symbols. 

As with a recursive program scheme [IO], we can associate with a higher type 

scheme a tree grammar. Depending on the order of the derivation steps - innermost 

outermost or outermost innermost, see [5], [6] - we define two classes of tree 

n 
T~O(Z) and ~I(Z), generated by level n higher type scheme which generalize languages, 

the classes of IO- and OI-context free tree languages. The semantics of a level n 

higher type scheme can be characterized by a level n IO-tree language. This 

allows to compare the power of higher type schemes by comparing their IO-tree 

languages. To this end, we introduce classes of string languages i~o(V) over an 

that the set of branches of a tree language in TIO(Z) is alphabet V and prove 

a level n IO-string language; in fact, any such string language can be obtained 

this way. We define level n languages L n , such that at least L 1 ~ i~o(V) and 

¢ [/o(V) . This proves all discussed hierarchies strict in the first two steps. L 2 

In particular, R2(Z) is more powerful than the class of recursive program schemes 

over Z . 
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The formalization of the topic in the setting of deterministic program schemes 

was suggested by K. Indermark o In [7], he introduces typed combinator schemes, 

which include fixpoint combinator schemes at any functional level. Then he shows 

how to reduce the subclass, which, when interpreted, define functions of type i, to 

certain standard forms. By a normal form theorem of Wand [ii], these coincide with 

the classes Rn([) introduced in this paper. 

Engelfriet and Schmidt define in [5] the corresponding nondeterministic hierarchy 

of schemes, and prove that the regular, context-free and macro string languages may 

be obtained as solutions over a particular interpretation at level O , i and 2 , 

respectively. 

In [12], Wand indicates a proof of a similar result. He uses a categorical 

generalization of his concept of a p-clone of an algebra [ii], to define a hierarchy 

of string languages, which starts with the regular, context-free and indexed 

languages. 

I want to thank Klaus Indermark for many stimulating discussions, and Bruno Courcelle 

for pointing out the necessity to start with reduced grammars in the proof of 

theorem 3.21 . 

2. Algebraic background 

An algebraic definition of the semantics of higher type schemes requires many-sorted 

continuous algebras as interpretations. In this section, we will shortly review the 

basic definitions. The reader is refered to Eli for details. 

Let I be a set of sorts, and I ~ be the set of strings over I . Eor w 6 I ~ , 

l(w) denotes the length of w . If l(w) = n>O , we write w = w(1)...w(n) . The 

empty string will be denoted by e . 

An I-sorted alphabet is a family Z = <[<w,i>> The elements of 
z<w,i> <w,i> 6 14 × I . 

are called base function symbols of arity <w,i> . If X = <Xa> i E I is 

a family with domain I , then E(X) is the I-sorted alphabet defined by 

<e,i> ~ z<e'i>u X i , w # e ~ <w,i> ~ Z <w'i> 

A E-algebra is a pair ~ = (A,~ A) , where A is a fa/nily of sets <Ai>i 6 I ' 

and ~Aassigns to each f 6 [<w,i> a function over A of correct arity, i.e. 

~A(f) : A w ~ A i . Here, A w denotes the generalization of the cartesian product 

defined by A e := {I} - 1 is a new symbol , and A wi A w A i _ _ - : =  x . 

A family of mappings h =<h i : A i ~ Bl> i 6 I between carriers of E-algebras 

and ~ is a [-homomorphism iff 
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Vf6 [<w'i>hi(~A(f)(a I .... an)) = ~B(f ) (~(I) 

homomorphism, then we write h : ~ ~ ~ . 

(al) .... hw(n)(an )) " If h is a 

A [-algebra ~ is continuous iff 

(i) each A i is a partially ordered set with minimal element k . , 
A l 

(2) any directed set D c A i has a least upper bound ~D 6 A i -- i 

(3) all operations ~A(f) are continuous, i.e. ~A(f) is monotone and for any 

directed Dj ~ A w(j) ~A(f) (~D 1 .... UDn) =[.]~A(f)(DI .... nn) . 

Let A-alg[ denote the class of continuous [-algebras. This class contains an 
i 

initial object, which will be denoted by C T[ . Intuitively, we can view t 6 CTz 

as an infinite Z-tree, where in addition minimum symbols k s may occur as leaves. 

2.1 theorem (ADJ [I]) 

For all ~ 6 A-a_~[ there exists a unique k-preserving continuous [-homomorphism 

We denote by F T[ the restriction of C T[ to finite trees, and by ~[ the 

usual [-tree algebra. 

Let, for w 6 I ~ {Yl , Y = } be a set of parameters (Y := ~). 
w ,w(1)''''Yn,w(n) e 

Yw can be considered as a family with domain I by setting y i {Yj,w(j := I w(j) = ~. 
i W ) 

Because of the above theorem, an infinite tree t 6 CT~(Yw ) induces a derived 

operation over ~ 6 ~-alg[ : 

derop~(t) : A w ~ A i 

is given by a = (al,..,a n) ~ hA(a) (t) , where A(~a) is the I(Yw)-algebra 

obtained from ~ by letting Yj,w(j) name aj . 

(t) for the derived operation of In case A = C TZ(yv ) , we write S~yw 

, because SUbyw(t) (tl,..,t n) is the infinite tree obtained from t by 

• for Yj,w(j) " substituting t 3 

t over 

3. Higher type schemes 

Higher type schemes will be defined as regular schemes over partly interpreted 

alphabets. A regular scheme over [ consists of a finite deterministic system of 

regular equations with parameters ([i], [9]). 
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3.1 definition (regular scheme over ~ , R(Z)) 

The set R([) <w'i> of regular schemes over 

set of all mappings S : X v --~ FTZ(yw) (X v) 

such that v(1) = i and V l<j ~l(v) S(Xj,v(j) 

Such a scheme will be written as l(v) equations 

elements of X are called variables, those of Y 
v w 

equation is viewed as the defining equation. 

of sort <w,i> 6 I* x I is the 

for some v 6 I* , 

6 FTZ(Yw) (Xv)V(J) m 

Xj,v(j) = S(Xj,v(j)) The 

parameters. Note, that the first 

example 1 

In this and the following examples, [ will always denote an {i}-sorted 

alphabet with e 6 Z <e'i> , a , g , h 6 Z <i'i> , and f 6 [<ii,i> 

Let S O 6 R(Z) <i'i> be the scheme x = f(x,y) , where we abbreviate x 

Xl, i and y for Yl,i 

for 

The interpretation of S O in a continuous E-algebra ~ is the monadic function 

[S 0 , A~ : A ~ A , which maps a 6 A onto the least fixpoint of the function 

A ~ A obtained from S O by substituting a for the parameter y . 

[S O ' NA~ : A --+ A 

a ~-~ Y(Ib . <QA(f) (b, a)) 

The infinite tree of S O is T(So) := [S 0 , CTI(Yi)~(y ) . 

f 

It is easy to see, that T(So) .=/f y 

." y 

In order to use S O as a regular tree grammar, we have to add x = ± as a 

production. An example of a derivation is 

f f f 

x ~ x Y ~/f y y 6 FTx(Y i) . 

x y ± "~y 

We now define these concepts formally. Let ~ 6 A-alg Z , and 

S : X --+ FTZ(Yw) (X v) S 6 R(Z) <w'i> l(v) = m l(w) = n v i s , o 

3.2 definition (interpretation of S in ~ , [S , ~) 

IS, ~ : A w --+ A i is defined by 

a= (a I .... an) ~ Pr(~ )(Y(jer°pA(.~a} S(xl,v(1)));'';~erOpA(~a~ S(xm,v(m) )))) 
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3.3 definition (infinite tree of S , T(S)) 

T(S) := IS , C Tz(Yw)~(Yl,w(1) .... Yn,w(n)) 

3.4 definition (language generated by S , L(S)) 

Let Yl' T2 £ FT[(Yw) (Xv) " 

T 2 derives directly from T 1 in S (Y1 ~ T2) iff T 2 

substituting exactly one occurence of Xj,v(j) , some 

S(Xj,v(j)) or by iv(j) . 

Let ~ denote the transitive reflexive closure of 

The language generated by S is 

~(s) := {t 6 FTZ(Yw)ilXl,v(~) ~ t} D 

is obtained from T 1 by 

j 6 {I .... l(v)} , by 

Though regular schemes are a very simple class of schemes, they are powerfui 

enough to model higher type procedures. We will first demonstrate, how recursive 

schemes can be retrieved in this setting. 

example 2 

Consider the r ecursive program scheme S' 1 6 rps([) <i'i> given by 

F(y) = f(F(g(y)) , g(y)) . 

Such a scheme can be used as a context-free tree grammar by adding F(y) = ± as 

a production. An example of a derivation is 

f f f 

I~ F g Y I ~ >f ~ £ L (S'I) 

g y F y 1 / \'g ~y 

q ~2 g\ \ y g~ g 

Y Y 

Assume, that we introduce a new symbol ~ which is always interpreted as functional 

substitution. Then we can rewrite the right hand side of S' 1 to ~(f, ~(F, g) , g) : 

substitute into f the composition of F and g , and g . We express this 

relation by 

yield(~(f , ~(F , g) , g) = f(F(g(y)) , g(y)) . 

Now consider the scheme S 1 given by 

F= ~(f,~(F,g),g) , 

then S I is a regular scheme, but over a new alphabet, called derived alphabet of 

[ . This alphabet will be denoted D(E) ; it contains the base functions in E as 

constants and in addition projection and substitution symbols. 
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By adding 

over D(X) : 

F - /¢~ 
F g 

F = I as a production, we can use S 1 as a regular tree grammar 

6 L(S i ) 

Note, that the yield of the last tree is f(f(l, g(g(y))) , g(y)) 

This suggests that we can obtain L(S~I) by using S 1 as a regular tree grammar 

and then translating the D(E)-trees in L(S I) to the E-level. 

As the right hand side of S 1 is in FTD(E)(X ) , we have to interpret S 1 in 

D(E)-algebras. Let D(~) be the D(X)-algebra, which has continuous functions over 

A as carrier, the base functions of A and projections as constants, and functional 

substitution as operations. Then [$! , D(~)] = IS' 1 , ~ Q 

The above example has introduced informally all the concepts necessary to treat 

higher type schemes. In the formal definitions, the projection and substitution 

symbols will carry type informations, because we want to iterate the constructions 

indicated in the example. 

3.5 definition (derived index set, D(I) , derived alphabet, D(E)) 

The derived index set of I is D(I) := I* × I . 

The derived alphabet of X , D(X) ~ is the D(I)-sorted alphabet, which contains 

(i) f 6 E <w'i> as constant of sort <e , <w,i>> 

(ii) ~w with l(w) >O i~j~l(w) w 6 I* i i t 
3 

as projection symbol of sort <e , <w,w(j)>> 

(iii) sv <w,i> with v , w 6 I* , i E I , l(v) = m , 

as substitution symbol of sort <<e,i> , <w,i>> if v = e , 

<<v,i><w,v(1)>...<w,v(m)> , <w,i>> otherwise. 

3.6 definition (derived algebra of ~, D(~)) 

The derived algebra of ~ is the D(Z)-algebra (D(A) ,~D(A)) , where 

(i) the carrier of sort <w,i> , D(A) <w'i> , is the set of all continuous 

functions from ~ to A i and 
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(2) ~D(A) assigns operations to the symbols in D(Z) by 

(i) f 6 ~<w,i> denotes ! P-~ ~A (f) 

(ii) ~w denotes ± ~-~ ~(a I .... a n ) a. 
3 -- 3 
e . _ (iii) ~<w,i> denotes f ~-~ l(al,. ,an) f(±) 

~<Vw,i> denotes (f' gl .... gm ) ~-~ f ~ (gl;'';gm) 

It is easy to see, that D(~) 6 A-algD([) 

The translation yield is actually a D([)-homomorphism~ obtained by defining a 

D(Z)-structure on CTz(Y) (see [8]) . 

3.7 definition (yield) 

We define a D([)-structure on CTz(Y) by 

i 
(I) the carrier of sort <w,i> is CTz(Yw) 

(2) the assignment function is given by 

(i) f 6 [<w,i> denotes 

W 
(ii) g. denotes 

3 
e (iii) ~<w,i> denotes 

~w,i> denotes 

i ~-. f(Yl,w(1) .... Yn,w(n) 

! ~-~ Yj,w(j) 

t ~-~ t 

SUby 
V 

The by theorem 2.1 unique homomorphism from C TD([) 

denoted yield . 

into this algebra will be 

Q 

Until now, we have indicated, how recursive schemes can be redefined as certain 

regular schemes over D(Z). We will now iterate the ideas of the previous example 

to demonstrate that higher type schemes allow to define new objects. 

example 3 

Let S' 2 be the higher type scheme 

~ F(y) = <0(g,h) (y) 

%0(FI,F2) (y) = f(qg(F 1 o g , F 2 0 h) (y) , FI(F2(Y))) . 

Here, we define recursively a procedure <0 , which, when applied to actual parameters 

of type procedure, delivers a procedure as value. %0 is called from the main 

procedure F with two base functions as actual parameters, thus this scheme 

computes a monadic function over an interpretation A . 

In order to use S'2 as a tree grammar, we add productions F(y) = I , 

%0(F I , F2) (y) = I An example of a derivation is 
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~(g,h) 

l 
Y 

~(g2,h2>/f~g 

Y 
h 

Y 

f 

\h 2 \ Y \ 
Y 

f 

f/ ~g 

J \ \ y g Y 

\h 
\h 

\ 
Y 

£ L(S' 2) 

Note that the set of branches of L(S' 2) is {fngnhn I n 6 ~} and thus not 

context-free. This will be used to prove that S' 2 is not equivalent to any 

recursive program scheme, by establishing a connection between the semantics of 

higher type schemes and their tree languages. 

The notation employed to define S' 2 may be viewed as an informal way of 

defining regular schemes over the derived alphabet of D(Z) , D2(1) , corresponding 

to the fact that a variable of functional level 2 is recursively defined. Let, 

for M 6 {I , Z, 5} , DO(M) := M , and Dn+I(M) := D(Dn(M)) . In general, recursion 

on level n can be formalized by using regular schemes over Dn(x) . 

Consider the class R(Dn(Z)) Among these schemes, there are some, which are 

of sort <e,<...,<e,<w,i>>...>> , and thus, after successive applications to • 

define a function of sort <w,i> 6 I ~ x I . 

Let --nb : I ~ x I --e Dn(i) be the mapping given by b o<w,i> := i , 

b We will formally define higher ~l<w,i> := <w,i> , b_n+l<w,i> := <e ,_n<w,i>> 

type schemes as those regular schemes over Dn(x) , which are of sort b n+l<w,i> 

for some <w,i> 6 I ~ x I . 

3.8 definition (level n higher type scheme, Rn([)) 

The class R ([)<w,i> of level n higher type schemes of sort 
n 

is defined by (x)<w,i> b n+l<w,i> 
R := R(Dn(Z)) 
n 

Rn(X) is the family <Rn(Z)<w'i>Xw,i> 6 I ~ x I 
[] 

<w,i> 6 I ~ x I 

When comparing the semantics of higher type schemes, we do not distinguish 
Dn+l(A)b_n+l<w,i> 

between an element f 6 and the function f(~) ... (~) : Aw--~A I . 

Moreover, we will only compare schemes over those interpretations, which respect the 

intended meaning of all substitution and projection symbols. 
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3.9 definition (equivalence , ~ , translatability , <) 

Let S E Rn([) , S' £ Rm([) , and S , S' be classes of schemes 

S is equivalent to S' (S N S') iff V~ 6 A-algz IS , Dn(~)~ = IS' 

S is translatable into S'(S ~ S ~) iff Vs 6 $3 S' 6 S' s ~ S' 

S is equivalent to S'(S N S') iff S ~ S' A S' ~ S 
Q 

over X 

Using the informal notation for higher type schemes, it is obvious 

scheme in Rn(Z) is equivalent to a scheme in Rn+l(X) . 

that any 

3.10 corollary 

Rn(X) ~ Rn+I(X) 

By definition, this hierarchy starts with the regular schemes over X . We will 

prove, that level 1 higher type schemes are exactly as powerful as recursive 

program schemes. 

3.11 theorem 

rps([) 

proof: 

Let S 6 RI(Z) <w'i> 

all right hand sides of 

S N yield(S) , 

~ R I (I) 

We define yield(S) 6 r2~(X) <w'i> by taking the yield of 

S and replacing variables by function variables. To prove 

is suffices to show, that 

yield 

CTD (Z) ' CTz(Y) 

D (A) 

commutes. 

But this follows from theorem 2.1 , because derop~ is a continuous 
N 

D(Z)-homoraorphism. As yield is onto, we have also proved rps(Z) < RI(Z) . 

In [5], Engelfriet and Schmidt define IO(n) and OI(n) equational elements of 

a (completely continuous) subset algebra F(A)N £~]-algx " Let NRn (X) denote level 

n higher type schemes which have finitely many terms in T (X) as one right 
D n (X) 

hand side, then the OI(n) equational elements are solutions of constant schemes 

in NRn([) . In the OI-case, we can simulate nondeterminism deterministically. Let 

E + be obtained from Z by adding symbols +. of sort <i,i> , which in completely l 

continuous algebras are interpreted as join operation. 

3.121~a 

NRn(1) N Rn (Z +) U -alg I 
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In the IO-case, this simulation is not possible. 

Now recall definition 3.3 of the infinite tree of a regular scheme: if 

<w,i> C~ <w'i> Much as we defined yield, we obtain the S 6 Rn(Z ) , then T(S) 6 Dn(~) 

existence of a mapping b <w,i> 

yield (n) : CT -~n ---+ CT[(Yw)i , 
Dn([) 

which translates T(S) to an infinite Z(Yw)-tree by taking into account the meaning 

of all the projection and substitution symbols. In fact, the derived operation of 

this tree over A is precisely the solution of S in A . 
N N 

3.13 theorem 

deropA(yield(n) (T(S))) = [S , Dn(~)~ 
N 

proof: 

By the Mezei-Wright-like theorem for regular schemes, [I], h 
Dn(A) 

As in the proof of 3.11, we show by induction on n 6 l~ , that 

b <w,i> yield (n) 
CT-n . ........ i 

Dn(z)~ ' CTz(Y w) 

hDn(~)~ / derop~ 

b <w,i> 
Dn(A) -~I ~ D(A) <w'i> 

commutes. 

By the above theorem, 

z ield (n) (T(S)) = [S , Dn(CTz(Yw))~(yI~w(1) .... Yk,w(k) ) , 

thus this tree characterizes the equivalence class of S . 

(T(S)) = [[S , nn(A)~. 

3.14 corollary 

S ~ S' iff 

iff 

[S , Dn(CNTz(Y w))~ = ~'S' , Dm(CTT(Yw )) 

yield (n) (T(S)) = yield (m) (T(S')-) 

Next, we want to characterize equivalence by tree languages generated by schemes. 

Much as with context-free tree grammars, we can associate an IO- and an OI-tree 

language with a higher type scheme. 

3.15 definition (LIo(S) , level n IO-tree language , T~o(Z)) 

Let S 6 NR (~) . The IO-tree language generated by S is defined by 
n 

LIo(S) := yield(n) (L(S)) . 

The class of level n IO-tree languages of sort <w,i> is 

[~%([)<w,i>:=-- {L ~ T[(Yw) i I L = LIo(S ) A S 6 NRn([)<w'i>} D 
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3.16 definition (LoI(S) ~ level n Of-tree language , T~I(Z)) 

Let S 6 R (Z+) <w'i>. The OI-tree language generated by S 
n 

LoI(S) := IS , Dn(~(~(Xw)))~(yl,w(1) .... Yk,w(k) ) " 

The class of level n Of-tree languages of sort <w,i> is 

n (z)<w,i> 
TOI := {L ~ Tz(Yw )i L = LoI(S) A S 6 Rn(Z+)<w'i>} 

is defined by 

The tree languages defined in examples I f 2 , and 3 are both IO- and 

OI-tree languages of level O , 1 , and 2 , respectively. 

It is easy to see, that the IO- and OI-tree languages form a hierarchy with 

increasing n , which starts with the regular tree languages. The fixpoint 

characterizations of context-free tree languages proved by Engelfriet and Schmidt 

imply~, that T~O(~) and T~i(~) contain precisely the IO- and OI-context-free [5] 

tree languages, respectively. 

In [3,4] we show, how to construct a normalform nf of S 6 R ([) , such that 
-- n 

the IO-tree language of n~f(S) contains all finite approximations of T(S) . 

3.17 theorem 

__ f , S N S' iff Lio(nf(S)) = LIO(n[(S )) 

This result allows to compare the semantics of higher type schemes by comparing 

their IO-tree languages. To this end, we will characterize the set of branches of 

level n IO-tree languages as certain string languages. Again, two definitions are 

possible. 

Let V be a string alphabet. To V we associate an {i}-sorted alphabet ZV 

containing v as monadie symbols and a constant symbol e . Then P(V*) is a 

~-algebra with v 6 V denoting left concatenation with v , and e denoting the 

set consisting of the empty word. As F(V~) is isomorphic to F(TN~) , we can 

define string languages over V by specifying tree languages over % . 

n n 
3.18 definition (level n iO-string languages, LIo(V) , level n Of-string languages, ioi(V)) 

n n Z <e,i>, L~i(v) := Tn (~<e,i> 
LIo(V) := TIO( v ) o of" V r 

D 

In the following examples, we will use the informal notation for higher type 

schemes. Types of variables are indicated by F : ~ , where O : i and 

n+ I := <n, n> . Let a £ V . 



175 

example 4 x : O , F : I i ~ : 2 

Let S 2 6 NR2([V )<e'i> be the scheme 

Then 

x 

) x = %0(a)(e) 

q0(F) (y) = ~0(F0 F) (y) , F(y) . 

LIo(S 2) = {a2ml m 6 IN} , as the following derivation indicates: 

~0(a) ~0(a 2 ) ~0(a 4) ~(a 8) a 8 

e e e e e 

/2, 
Using "+" instead of ", " , we obtain m/.." ~ 

LoI(S 2) = {a2ml m 6 IN} , because yield(2) (T(S2)) = //'(+/ ~e 

a 

,' / ~a2m 

\ 
e 

example 5 x : 2 , FI ' F2 : ~ ' ~ ~i : ~ ' ~ : ~ 

Let S 3 6 NR3(Zv)<e,i> be the scheme 

) x = ~(~)(a)(e) 

~(Fl)(y ) = F1 o F1 (y) 

~(~i) (F2) (Y) = ~(~i o ~i ) (F2)(y) , ~I(F2)(y) . 

2 TM 

Then LIo(S 3) = {a2 I m 6 IN} = LoI(S3) 

~(~0) (a) ~(q02) (a) ~(~04) (a) 

x~ i ~ J ~ i 
e e e 

%013 (a 2 ) q012 (a 4 ) ~01 (a 8 ) 

e e e 

q94 Ca) 

e 

t 6  
a 

I 
e 

In general, we can generate languages L n defined by 

where fn is given bY fl(m) := m , fn+l(m) := 2 fn(m) 

[] 

Ln := {afn(m) I m 6 I~ } , 

3.19 lemma 

L 6 i]no (V) N n n tOi (V) 

It follows directly from the corresponding results on tree languages, that the 

IO- and OI-string language hierarchies start with the regular and context-free 

languages, thus the given examples proof the first two steps to be strict, if 

Ivf ~ 2 . 

3.20 corollary 

L ^ 
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2 2 
Moreover, Engelfriet and Schmidt [53 prove, that iIo(V) and L~I(V) equal the 

class of IO- and OI-macro languages [6], respectively. 

We will now characterize the class of branch languages of level n IO-tree 

languages as level n OI-string languages. 

Note first that any level n tree language over a many sorted alphabet Z is 

also a level n tree language over a ranked alphabet ~ obtained from ~ by 

forgetting the sorts. Thus it is sufficient to prove the characterization for an 

{i}-sorted alphabet Z . For technical reasons, we assume, that ~ contains at 

least one constant symbol c . 

Let V[ be the string alphabet, which consists of all none constant symbols in 

Z , and let _~ := --Z~7 E . 

The set b~r(L) of branches of a tree language L is defined by b r(yj,i) = {e} , 

b__rr(a) := {e} , and b r_r(f(t I .... tr) ) := ~ f(b_~r(tj)) for any symbol f of rank 
1 ~j~' r 

r > 0 ; finally, b r(L) := ~ b_~r(t) . 
t 6 L 

3.21 theorem 
n 

b_~r (T~o (Z)) = LIo(V Z) 
proof: 

"c" Let  S '  £ NRn(Z) < w ' i >  .k , W=l , and let L(S') * ~ , thus also L (S') # ~. 
-- IO 

As t h e  e m p t i n e s s  p r o b l e m  f o r  r e g u l a r  t r e e  l a n g u a g e s  i s  s o l v a b l e ,  we can e l i m i n a t e  

all variables which do not derive a terminal tree, by deleting all productions, 

which  c o n t a i n  such  v a r i a b l e s .  Le t  S 6 NR (~)<w, i>  be t h e  r e d u c e d  grammar c o n s t r u c t e d  
n 

from S' in this way, then LIo(S) = LIo(S') . 

We define mappings ~m : TDm(Z ) P(TDm(Z )) (0 <m<n) by sending all 

constants in Z~Dm(Z) to e and f 6 Z of ~ank r > 0 to the image of 

{f(yl,i),..ff(Yr,i)} at the Dm(Z)-level. Let ~ be defined as b r except that 

~o(Yjri) = Yj,i " Using induction, we prove 

(1) 

(2) 

that substitution at level n commutes with br : 
---n 

br o subx~(t) = subx~(b_~_nr (t)) o (~;...;b~nr) 
---n 

for any t 6 T (X) , and 
D n (Z) 

that 
b <w,i> br b <w,i> 

P (T~n ) - - - ~  ~ p (T -n 
-- ([) -- D n (Z) 

yield (n) i lyield (n) 

F (Tz(Yw)i) ~ ~ (T~-(Yw)i) 
br 

commutes. 
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Here, subx (t) and 

P_(M) := P(M) TM {¢} 

br are canonically extended to tree languages, and 
----n 

for any set M 

Define b_~r (S) 6NRn(X) <w'l> by taking ---nbr of each equation in S . Then, using 

(I) and the fact that S is reduced, we can show by induction on the length of a 

derivation that br (L(S)) = L(br (S)) . But by (2) this implies ~(LIo(S)) = 
---n ---n 

LIO(~(S)) . By calling br iS) with k e's as actual parameters, we obtain 
<e,i> --n] 

S 1 6NRn(~) , such that b r(Lio(S)) = LIo(S I) . 

"~" Let S 6 NR (X) <e'i> be reduced. We define Dm(X) - homomorphisms 
n -- -- 

ext : T --* T by imposing the following Dm(x)-structure on T 
m Dm(x) Dm(X) -- Dm(z) 

(i) X 9 e denotes i ~-~ c 

(ii) [ 9 f denotes 
t ~-* f(t,..,t) if m = O 

~-~ tbe image of f(Yl,i .... Yl,i ) 

at the Dm(Z)-level 

(iii) all other symbols in Dm(X) retain their meaning. 

Using induction, we show, that 

(i) br o ext = idF(Ti) , 

(2) substitution at level 

(3) b <e,i> 
p (T -n ) 

- -  D n ([) 

yield (n) 

P (T[ i ) 

commutes with 

ext 
--n 

ext , and 
n 

b <e,i> 
P (T -n ) 
-- . D n (Z) 

yield (n) 

~_(Tz i) 

Here, b r = ~O , and ext := e~ O . 

commutes. 

Define eXtn(S) 6 NRn([) <e'i> by taking ext of each equation in S . Then 
n 

ext (S) is reduced, and using (2) we can show ext (L(S)) = L(eXtn(S)) . But then 
-----n n 

Lio(~(eXtn(S))) = br(ext(yield (n) (L(S)))) = LIo(S ) . [] 

In [2], Courcelle proves that OI-context-free tree languages have context-free 

branch languages. We conjecture that in general the branch language of a level n 

OI-tree language is a level n OI-string language, and that any such string 

language can be obtained this way. 
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By these characterizations and the examples, the tree language and scheme 

hierarchies are strict in the first two steps, if Z contains at least a binary and 

a constant symbol. 

3.22 theorem 

T 2 (Z) :r oC"  

Thus recursion on higher types allows to define new objects at the base level. In 

particular, R2(Z) is more powerful than the class of recursive program schemes 

over Z . 

We conjecture that for all n 6 ~+ 1 ,Ln+ 1 ~ iio(v)n n ioi(v)n . To prove that 

Ln+ 1 is not a level n language, we have to find characteristic closure operations 

for each level. A result in this direction is the increase in copying power for the 

IO-hierarchy: 

let In : F(V*) --+ F(V*) be given by 

In(L ) := {wfn(m) I m61~ Aw6L} , 

then 

L n ~ L n 
In(I0(V)) c r0(v) . 
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