
The Contextsensitivity Bounds of Contextsensitive Grammars and Languages 

Franz-Josef Brandenburg 

Institut f~r Informatik der Universit~t Bonn 

Wegelerstr. 6, 53oo Bonn~ West Germany 

ABSTRACT: 

In this paper we study the derivational complexity of contextsensitive grammars and 

languages by placing hounds on their contextsensitivity. The contextsensitivity of a 

grammar is defined on its derivations, and it is determined by the maximal length of 

the strings of ancestors of any symbol occurring at any position of the derived strings. 

A total recursive function f bounds the (right-) contextsensitivity function of 

grammar G, if for every terminal string x of length n generated by G there is a 

(right-canonical) derivation from S to x in G whose contextsensitivity is less 

than or equal to f(n). 

We investigate lower and upper bounding functions for the right-contextsensitivity 

functions of contextsensitive grammars and languages and study the families of context- 

sensitive languages with right-contextsensitivity functions bounded by some particular 

sublinear functions f. 

INTRODUCTION: 

In automata theory and formal language theory much recent activity is concerned with 

the computational complexity of formal languages measured by grammars or machines 

with a bounded amount of properties, in particular with time and tape bounds. 

Time and tape are complexity measures which bound the behaviour of machines or grammars 

as a whole and do not give insight into the intrinsic structures of computations and 

derivations. They tell nothing about the efforts a machine or a grammar must do at any 

single position of the input string or the string generated. 

In terms of machines, the crossing sequences founded by Hennie (1965) and the active 

reversals studied by Wechsung (1975) and Chytil (1976) bound the activities of a 

Turing machine on any square of the input tape. For context-free grammars, the com- 

plexity of derivations may be measured by the number of occurrences of nonterminals 

at any step of the derivations, and we obtain nonterminal bounded and derivation 

bounded grammars and languages. See Ginsburg, Spanier (1968). Finally, in the case of 

cortextsensitive grammars the contextsensitivity will shed light on the derivational 



121 

complexity of grammars and languages. For any occurrence of a symbol b in a terminal 

string x generated by grammar G, the contextsensitivity states an upper bound of 

the number of ancestors of that position at any step of a derivation from S to x, 

and thus it bounds the length of the "global context" on which the distinguished b 

depends. 

In particular, we show that every context-free grammar has a (right-) contextsensiti- 

vity which is bounded by I, and that the linear functions bound the (right-) context- 

sensitivity functions of contextsensitive gra~anars and languages. Furthermore, 

log log n is a strict lower bounding function for the right-contextsensitivity of 

grammars in order to generate non-context-free languages, and 

{WlCW2e~ic~2 / Wl,W 2 S {a,b} e, lwll = lw21} is the "hardest" contextsensitive language 

in the sense that its right-contextsensitivity is at least a linear function. These 

proofs are based on similar results for f(n)-tape bounded one-way auxiliary pushdown 

automata which simulate grammars with f(n)-bounded right-contextsensitivity. 

PRELIMINARIES: 

Notice that throughout this paper we restrict ourselves to contextsensitive grammars. 

The case of type O grammars and languages will be considered in a forthcoming paper. 

Our subsequent studies of the interactions of individual applications of productions 

in a local manner and the global consequences thereof require a detailed and ~nambi- 

guous description of the positions of substrings in a string and of the rewriting 

processes in derivations. 

Suppose that x is a nonempty substring of a string w. Now, the substring property 

alone does not completely specify the relations between x and w, since x can 

occur in w several times. If w is a nonempty string and k,1 are integers such 

that o ~ k < 1 ~ lw[, where [w] denotes the length of w, then w(k,1) or w k'l 

denote the nonempty substring of w which begins with the k+l-st symbol of w and 

ends with the 1-th symbol. Thus w = w(o,k) w(k,l) w(l, lwl) with lw(o,k)] = k and 

lw(o,k) w(k,l)[ = 1. If k ~ l, then w(k,l) = e, the empty string. If w(i,j) and 

w(k,l) are nonempty substrings of w and j ~ k, then w(i,j) is said to occur to 

the left of w(j,k), and w(j,k) is said to occur to the right of w(i,j), and 

w(i,j) and w(k,1) 0verlap, if k < j and i < 1. 

Definition 1: 

If G = (N,T,S,P) is a grammar, then a derivation from QI to Qm in G is a 

sequence of m triples D = [(Qi' ~i + ~i' ti)' i=l ..... m], where QI,Q 2 ..... Qm is 

the sequence of strings derived by D. For each i, i ~ i ~ m-l, ~i ÷ ~i E P is the 

production applied in the i-th step of D to Qi to obtain Qi+l' and t i deter- 

mines the position of the application of ~i ÷ ~i such that ~i = Qi(ti ' ti+l~il) 

and ~i = Qi+l(t~ ' ti+lSi[)" am+ 8m and t m are left unspecified. 



122 

Definition 2: 

Let D = [(Qi' ai ÷ ~i' ti)' i=l,...,m] be a derivation in grammar G. 

For each i, i ~ i ~ m-2, step i occurs to the left of step i+l, if 

ti+I~il ~ ti+l.ste p i occurs to the right of step i+l, if ti+l+I~i+ll ~ ti, and 

step i is connected to step i+l, if t i < ti+l+l~i+ll and ti+ 1 < ti+I~il. 

It can be easily seen that these three cases are mutually exclusive and exhaust all 

possibilities. 

Definition 3: 

D is a right-canonical derivat#0n, if each step is either connected to the consecutive 

step or occurs to the right of it. 

It can be shown that for any derivation D there is a uniquely determined right-cano- 

nical derivation which is obtained from D by trivial rearrangements of the produc- 

tions applied in the steps of D. The rearrangements are based on the possibility of 

interchanging the order of the applications of productions which do not interfere with 

each other, i.e. which are applied to the left or to the right of each other. 

Two derivations are called similar, if they can be obtained from each other by rear- 

rangements of applications of productions. In this sense, the right-canonical deriva- 

tions are the representatives of the classes of similar derivations. For details and 

proofs see Griffiths (1968), Book (1969) or Buttelmann (1975). 

ANCESTORS AND CONTEXTSENSITIVITY: 

We now define the strings of ancestors of substrings occurring in the strings genera- 

ted by a contextsensitive grammar G. The notion of the strings of ancestors of 

single symbols is fundamental for the definition of the contextsensitivity of deriva- 

tions, grammars,and languages, which is the main notion of this paper and is intro- 

duced in this section. Notice that our definition of ancestors differs basically from 

that of Book (1969). 

Definition 4: 

If D = [(Qi' ~i + 8i' ti)' i=i ..... m] is a derivation from Q1 

G, then for any nonempty substring Qm(k,l) of Qm and for each 

we define the strings of ancestors of ~(k,l), Ai(k,l) by: 

Qm(km, lm) = = Am(k,l ) = , where k m k and I m i. 

If i < m, then Ai(k,1 ) = Qi(ki,li)~ where 

ki+ 1 if ki+ I ~ t i 

ki = ~i+1-1~ii+l~iL, if ti+l~il ~ ki+ I 
ti, if t i < ki+ 1 < ti+l~il, 

tO Qm in grammar 

i, 1 _-< i ~_ m, 



123 

li+ 1 if li+ 1 ~ t i 

~d i i = li+1-1Bii+1~il, if ti+l~il ~ li÷ I 

ti+l~il, if t i < li+ I < ti+l~il 

I t  can be easily seen that these cases are mutually exclusive and exhaust all possi- 

bilities. 

Informally, if Ai+i(k,1) and the right side of the production ~i ÷ ~i which is 

applied in the i-th step of D do not overlap, then the string of ancestors itself 

remains unchanged although its boundaries may be altered; otherwise Ai(k,1) is ob- 

tained from Ai+l(k,l) by substituting 8 i or that part of ~i which overlaps with 

Ai+l(k,1) by ~i" Hence, Ai(k,1 ) only depends on those applications of productions 

of D which overlap with the strings of ancestors Aj(k,1) fur j = i+l,...,m. 

I~ G is a context-free grammar, then in the tree representing a derivation from S to x 

in G, the strings of ancestors of a single symbol occurring in x are the labels of the 

nodes on the path from the root S to the leaf which corresponds to the designated symbol,and 

these labels may occur with a certain multiplicity, determined by the derivation. 

qheimportance of the strings of ancestors for the structure of derivations is made clear now. 

Theorem I: 

If D = [(Qi' ~i ÷ ~i' ti)' i=l ..... m] is a derivation from Q1 to ~ in grammar 

G, then for any nonempty substring ~(k,l) of Qm' the sequence of strings of an- 

cestors Al(k,l) = Ql(kl,ll),..., Am(k,l) = Qm(km, l m) = Qm(k,l) induces a splitting 
! 

of D into three subderivations Dkl, Dkl and D"kl. Dkl is a derivation from A1(k,l) 

to y Am(k,l) 6 for some uniquely determined strings y,~, which is built along the 

i sequence of strings of ancestors. Dkl is a derivation from Ql(o,kl) y to Qm(O,km), 

which occurs to the left of the strings of ancestors and Dkl is a derivation from 

QI(II,IQII) to Qm(im, l%l), which occurs to the right of the strings of ancestors. 

Proof: 

Notice that for each Qi+l" i ~ i ~ m-l, there are two distinguished substrings of 

Qi+l namely the string of ancestors Ai+i(k,l) = Qi+l(ki+l,li+l) and the right side 

of the production applied in the ~th step of D, ~i' which is determined by 

Qi+l(ti • ti+I~il). 

Now, there is a uniquely determined partition of the set {i .... ,m-l} into three 

strictly ordered sets of indices F = {fl,f2,...,fn}, H = {hl, .... hr} and 

J = {jl,...,js }, such that for each f'l g F, Sfi and Afl+l(k,l ) .  overlap, and for 

each h i ~ H and each Jig J' ~hi occurs to the left of Ahi+l(k,l) and ~Ji 

occurs to the right of Aji+l(k,1), respectively. 

Additionally, let fn+l = hr+l = Js+l = m. 

By the definition of the strings of ancestors, for each fie F, 

_ _ _ Ak, I kfi ~ tfi ~ tfi+l~fi I ~ A k~llf . Hence ~fi is a substring of Afi(k'l) =: fi which 

is determined by @fi fi (tfi-kfi, tfi-kfi+l~fil) , and so the production 



124 

÷ can be applied to Afi(k,l) in a similar way as to Qfi" The application ~fi ~fi 
of ~fi + 8fi to Afi(k,l) at the position tfi - kfi yields the string 

~fi' Afi+l(k'l) ~fi" where ~'fi and ~"fi occur as the "left and right overflow" of 

Afi+l (k,l)and are specified as substrings of Qfi+ 1 by ~fi = Qfi +I (kfi' kfi+l) 

and ~fi = Qfi+l(ifi+l' l~fil - l~fil + ifi )" 

' = ~fn Now define ~m ~"m = e, Y = ~'fl''" ~'fn and 6 = " "'" ~fl"" 

Then Dkl [(~fl''" fi-I Afi(k'l)~fi-1"''~fl' ~fi ~fi .... ~fi-i I+ tfi-kfi)' 

i = 1 ..... n+l]. 

Dkl = [Qhi(O,khi)~fM...~fn , ~hi + ~hi,thi ), i=l ..... r+l] 

where 9,M ~ n+l, is the least integer such that h i -<- f), and 

Dkl [Sfn'''~f~ Qji(lji'Ieji I)' <~Ji Sji, tji-lji+ISfn...~fvl) , i=l ..... s+l], 
where ~,~ =< n+l is the least integer such that Ji =< f~" 

o,k h 
By assumption, for each h i g H, thi+l~hi I -~ khi. Thus ~hi = Qhi i(thi, thi+l~hil)= 

Qh i(th i, thi+ I~hi I)- lji, IQji I 
Furthermore, for each Ji~ J' tj i ~ lji" Thus QJi (tji-lji' tji+l~Jil- lji) = 

~Ji = Qji(tji ' tji+l~Jil)" 
÷ and ÷ in ' and D~I can be carried So the applications of ~hi ~hi ~Ji ~Ji Dkl 

i and " are subderivations of D. out in a similar way as in D. Thus, Dkl Dkl 

I and " can now be combined to the derivations The subderivations Dkl, Dkl Dkl 

and D, which are similar to D and defined by 

5 = [Qm(O,k) Qm(k,1 ) x D"kl ] ' [D~'~K~ x Qm(k,1) ~ QI(II,IQII)] • 

[Ql(O,kl ) X Dkl x el(ll,Ie11)] and 

= [D~I × ~(k,l) ~(1,1Qm])] • [Ql(O,kl) y Qm(k,l) x D"kl ] " 

[Ql(O,kl ) x Dk I x QI(I, IQII)], 

where for some strings u,v and D = [(Qi' ~i + 8i' ti)' i=l,...,m] the (u,v) - 

extension of D is defined by [u x D × v] = [(uQiv , ~i ÷ ~i' ti+lul)' i=l ..... m], 

and the composition of two derivations D from Q1 to Qm and D' from Q~ to 

Q~ is the derivation D', D from Q1 to Q~, which is the serial product of D 

and D', provided Qm = el. 

Thus, D and D are obtained from the derivation D by rearranging the applications 

of productions, such that in the first phase the steps of Dkl are carried out and in 

' and " or reverse. Furthermore, within the second and third phases those of Dkl Dkl, 

the single phases the order of applications of productions coincides with the order 

of applications of the corresponding productions in D. 

Notice that the steps carried out in the second and third phases of D or D are 

separated by the strings of ancestors of ~(k,l). So the strings of ancestors 

play the role of barriers for the transmission of informations from the left sides 

of the strings of ancestors to the right sides, or reverse. 

' and " cannot influence each other; they are complete- Thus, the subderivations Dkl Dkl 

ly independent of each other as it is due to independent subderivations in context-free 

grammars. 



125 

Exploring, how the use of context allows a contextsensitive grammar to generate a non- 

context-free language, Book (1973) claims that the capacity of contextsensitive grammars 

to store and to transmit messages along a string in derivations is responsible for their 

ability to generate such languages. 

This intuitive explanation of the mechanism of how context works originates from our 

experience of how context is used in many examples of the generation of non-context-free 

languages, and it is supported by several results where the capacity of sending messages 

is restricted by the creation of barriers, and then only context-free languages can be 

generated. For further details see Book (1973). 

From this point of view our approach shows, that any oocurrence of a symbol in the last 

string of a derivation creates barriers by its strings of ancestors, and so any deri- 

vation contains several barriers for the transmission of messages along the strings in 

derivations. 

The restriction of the generative power of derivations and grammars imposed by these 

barriers is determined by the number of barriers and thus by the distance between 

barriers or the distance over which informations can be sent. This quantity is measured 

by the length of the strings of ancestors of symbols, which we'll consider now. 

Definition 5: 

Let G = (N,T,S,P) be a contextsensitive grammar and D = [(Qi' ai + ~i'ti )'i=I, .... m] 

a derivation from Q1 to Qm in G. 

Furthermore, for each k,l with o ~ k < 1 ~ Qm and for each i, I ~ i £ m let 

A~(k,l) = Qi(ki,li) be the strings of ancestors of Qm(k,1) l • 

The contextsensitivitY of the l-th position in ~ with respect to D is defined by 

the maximal length of the strings of ancestors of Qm(l-l,l). Formally, 

CSG(D,Qm, I) = max{IAi(1-l,1) i /i=1 ..... m} = max{li-(1-1 ~ /i = 1 ..... m}. 

The contextsensitivity of the string Qm' generated by D is 

CSG(D, ~) = max{cs G(D,Qm,I) /l=l ..... I~I }- 

The contextsensitivity of a sentential form Q of G is 

CSG(Q) = min{csG(D, Q) /D is a derivation from S to Q in G}. 

Finally, the r ight-contextsensitivity of a right-sentential form Q of G is obtained 

by considering right-canonical derivations only. Formally, 

rcsG(Q) = min {CSG(D,Q ) / D is a right-canonical derivation from S to Q}. 

Obviously, the contextsensitivity or right-contextsensitivity of any (right-) senten- 

tial form Q of a contextsensitive grammar G is greater or equal to I, CSG(Q) 

and rCSG(Q) are bounded from above by the length of Q, and CSG(Q) ~ rcsG(Q). 

Furthermore, if a non-context-free production is applied in D, then CSG(D,Q) > I, 

and rcsG(D,Q) > I, respectively. 

Finally, for every contextsensitive grammar G, CSG(D,Q,1), CSG(D,Q), CSG(Q ) and 

rcsG(Q) can effectively be computed, where the computability of CSG(Q) or 



126 

rcsG( Q ) is due to the fact, that there is only a finite number of derivations D 

from S to Q in G, such that if there is a loop in D, i.e. if 

D = [(Qi' ~i ÷ ~i'ti )' i=l ..... In] and for p,q with [ _~ p < q _~ m, Qp = Qq, then 

the "distribution" of the strings of ancestors of the single positions of Qm in 

and Qq must be different, i.e. there exist i, I ~ 1 g I%1 such that % 
Ap(I-I,I) = Qp(kp,lp), Aq(l-l,1) = Qq(kq,lq), and (kp,lp) # (kq, lq) 

Definition 6: 

For every contextsensitive grammar G, we define the total recursive contextsensiti- 

vity and right-contextsensitivit[ functions from ~ to ~ U {o} by 

max {CSG( x)/ x ~ L(G) and Ixl = n}, if G generates terminal 

CSG(n) = strings of length n. 

0 otherwise. 

max {rcsG(x) / x C L(G) and Ixl = n}, if G generates terminal 

rCS G(n) = strings of length n. 

0 otherwise. 

Notice that CSG(n) = o iff rCSG(n) = o iff 

G does not generate terminal strings of length n, 

and CSG(n) < rCSG(n) _~ n for all n. 

The contextsensitivity and right-contextsensitivity functions measure the derivational 

complexity of grammars, and the derivational complexity of languages may be measured 

by assigning to a language L the "smallest" contextsensitivity or right-context- 

sensitivity functions of all contextsensitive grammars that generate L. 

Oefinition 7: 

A total recursive function f bounds the contextsensitivity or right-contextsensi- 

tivity function of grammar G, if for every nonnegative integer n, CSG(n) ~ f(n) 

or rCSG(n) ~ f(n), respectively. Then G is termed a f-CS or f-rCS bounded 

grammar or a grammar with f(n)-bounded contextsensitivity or right-contextsensitivity. 

The families of contextsensitive languages with f(n)-bounded contextsensitivity or 

right-contextsensitivity are defined by 

CSL(f) = U {L(G)/ G is a contextsensitive grammar with c.f(n)-bounded 
c>o 

contextsensitivity} 

CSL (f) = U {L(G)/ G is a contextsensitive grammar with c.f(n)-bounded 
r c>o 

right-contextsensitivity}. 

These are the families of languages we shall study. 



127 

LO~/ER AND UPPER BOUNDING FUNCTIONS 

For every grammar G, if G generates terminal strings of length n, then 

CSG(n) ~ I and rCSG(n) ~ i. Furthermore, if G is context-free, then CSG(n) > o 

implies rCSG(n) = CSG(n) = i. 

Hence, the function f(n) = i for all n is the "smallest" bounding function for 

the contextsensitivity and right-contextsensitivity functions of nontrivial grammars 

and languages, and f dominates the context-free grammars and languages. 

Thus, the context-free grammars and languages are almost "free of cost" of contex- 

sensitivity and right-contextsensitivity. 

On the other hand, since CSG(n) ~ n and rCSG(n) ~ n, id(n) = n is an upper boun- 

ding function for the contextsensitivity and right-contextsensitivity functions of 

contextsensitive grammars and languages, and CSL (id) = CSL(id) = CSL, where CSL 
r 

denotes the family of contextsensitive languages. 

Finally, for every bounding function f, CSLr(f) ~ CSL(f), 

and if f(n) & g(n) for all n, then CSL(f) ~ CSL(g) and CSLr(f ) ~ CSLr(g). 

We will show now, that grammars with bounded right-contextsensitivity can easily ge- 

nerate integers of the form 22n, however it is very hard to compare two binary 

numbers or to make a copy of a binary number, or something else. 

Theorem 2: 

There is a log log n - rCS bounded contextsensitive grammar G that generates the 

non-contexbfree language LI= {a 22n / n ~ i}. 

Proof: 

Suppose that the derivations of G start with applications of the productions 

S ÷ ~ 1A ~, A + OA, A ÷ O, and terminate by the use of ~iO~ ÷ aaaa. 

Furthermore, there are two phases in the derivations of G, which are carried out 

one after another. In the first phase, the binary number ~bi@ is diminished by i, 

where ~, ~ are markers and b i is the binary encoding of the integer i, and in 

the second phase, a copy of ~bi~ is made. Then L(G) = {a 22n / n ~ i} and for any 

single a occurring at any position of the terminal string a 22n, n ~ 2, the string 

of ancestors of maximal length is ~ b i @ ~ b i ~ with i = 2n-l, whose length is 

about log log (22n). Now,an appropriate speed upprecisely gives log log n. 

There is a new type of automata, called one-way auxiliary pushdown automata, which 

fits to grammars with bounded right-contextsensitivity functions. These automata are 

introduced in Brandenburg (1977), and are the one-way model of the well-known (two- 

way) auxiliary pushdown automata, studied by Cook (1971). 



128 

Definition 8: 

A one-way auxiliary pushdown automaton M, I-APDA for short, is a Turing machine 

with a one-way, read-only input tape, several read-write work tapes and a pushdown 

tape. M is f(n)-tape bounded, if its work tapes are f(n)-tape bounded, i.e. if 

for every x e T(M) there is an accepting computation such that M uses at most 

f(Ixj) squares on any of its work tapes. 

The subsequent results characterize the power of I-APDA. For proofs see Brandenburg (1977) o 

Proposition 1: 

i) If lim sup f(n)/log log n = o, then f(n)-tape bounded I-APDA accept only 

context-free languages. 

++ 
ii) The language L = {WlCW2CWlCW2/ wl,w 2 g {o,i} ~, lwll = lw21} cannot be accepted 

by f(n)-tape bounded I-APDA, unless f(n) is at least a linear function. 

In the following we show that f(n)-tape bounded I-APDA can simulate right-canonical 

derivations, whose contextsensitivity is bounded by f(n). 

Lemma I : 

Let G = (N,T,S,P) be a separated contextsensitive grammar, that is G only has 

productions of the form ~ ÷ ~ with d,~ g N + or A ÷ a with A C N and a g T. 

If D is a right-canonical derivation from Q1 to Qm' Qm c T and CSG(D,Q m) = k 

for some integer k, then at each step of the derivation the rewriting takes place 

at most k symbols to the left of the rightmost nonterm~nal occurring in the current 

string Qi" 

Proof : 

Consider the i-th step of D. Then Qi = %/i~i~i with 6 i = 6iYi, such that 

¥i,~i,6~ C N , Yi ~ T and Yi is a final substring of Qm" Now consider the 

position in Qm immediately to the left of Yi" Then ~'16"l is a final substring of 

the string of ancestors of Qm(l-l,l) with 1 = IQmj - lyiJ. Thus j@i6i j < k. 

Notice, that the standard construction of an equivalent separated grammar G' from a 

contextsensitive grammar G preserves the contextsensitivity functions, i.e. 

CSG, = CS G and rCSG, = rCS G . 

Theorem 3: 

If G is a f-rCS bounded contextsensitive grammar, then one can effectively find an 

f(n)-tape bounded I-APDA M with L(G) = T(M). Furthermore, the sum of the lengths 

of the work tapes and the pushdown tape does not exceed the length of the input string. 



129 

Proof: 

Assume that G is a separated granmlar° Then M acts as a "bottum-up analyser" which 

simulates the right-canonical derivations of G in reverse. 

If D = [(Qi' ~i ÷ ~i' ti)' i=l .... m] is a right-canonical derivation from S to x 

in G with x ~ L(G) and CSG(D,x) ~ f(n), then for each i, i ~ i ~ m-l, 

= q~i~iYi , where ~{i ~ Ne and l~il = ti, Yi £ T~ is a final substring of x, %+i 
~'l E N, and ~i £ Ne or ~.i C T, and if ~.i C T, then ~i = e and ~iYi is a final 

substring of x. Furthermore, I h ~ i l  = I ~ i ~ i l -  I%1 + l~il N f(n) - l~il + l~ i l .  
Now, Qi+l is stored by M such that the pushdown tape contains Yi with the right- 

most symbol of Yi on the top, the work tape contains 8i~i , which is possibly com- 

pressed to a string of length less or equal to f(n), and the input head scans the 

first symbol of Yi" If ~i C N e, then M rewrites ~i by ~'l on its work tape, and 

if ~. £ T, then if the input head reads ~., M writes ~. on its work tape which was 
l 1 l 

empty before, and the input head moves one cell to the right. 

Now, M guesses ~i-i and its position and shifts some symbols from the work tape on 

the pushdown tape, or reverse, such that ~i-I occurs at the left end of the work tape. 

M is initiated with an empty work tape and an empty pushdown tape while the input 

head scans the first symbol of the input, and M accepts, if the total input is pro- 

cessed, the pushdown tape is empty and the work tape contains S. 

~heorem 4: 

i) If lim sup f(n)/log log n = o, then grammars with f(n)-bounded right-context- 

sensitivity generate only context-free languages. 

ii) The language L 2 = {wlcw2cwlcw2/ wl,w 2 C {o,i} e, Iwll = lw21} cannot be generated 

by f-rCS bounded grammars, unless f(n) > c.n for some c > o. 

Thus, if the "cost of right-contextsensitivity" is considered, then log log n is a 

strict lower bounding function for the generation of non-context-free languages and 

L I = {a22n/ n > I} is the "simplest" non-context-free language. 

Furthermore, the linear functions are strict upper bounding functions for the 

right-contextsensitivity functions of contextsensitive grammars and languages and 

L 2 = {wlcw2cwlcw2/ wl,w 2 ~ {o,i} , lwll = [w21} is the "hardest" contextsensitive 

language. 

The simplest and the hardest languages L 1 and L 2 are now used to pad every 

eontextsensitive language to a "simple" language and to establish dense chains of 

families of contextsensitive languages with f(n)-bounded right-contextsensitivity. 

Theorem 5: 

If L ~ ~e is a contextsensitive language and a ~ ~, then 

L = {xy/ x ~ L and Y = a 22~x~ } ~ CSLr(log log n) 
s 



130 

Proof: 

The grammar G generating L first simulates the grammar G with L(G) = L, 
s s 

and if G generates a terminal string, then G completes the tail of 222n a's 
s 

in the way described in theorem 2. 

Theorem 6: 

If f(n) and g(n) are tape constructable functions with n < f(n) ,g(n) ~ 22n, 

and lim sup f(n)/g(n) = o, then there exist a language L generated by a 

g(rlog log nl)-rCS bounded grammar G, but not generated by any f(rlog log nl)-rCS 

bounded grammar. 

rkl denotes the least integer greater or equal to k. 

Proof: 

Let L = L(G) = {wlcw2cwlcw2a22 / Wl,W 2 S {o,i} #, lWll = lw21 = g(m)}. 

G first generates strings of the form Bg(m)A m, m > I, and then transforms B g(m) 

into wlcw2cwlew2, with wl,w 2 £ {o,i} e, lwll = lw21 = g(m), and A m into a 22m. 

It should be obvious that rCSG(n ) _~ cl.g(rml) with m = log log n. 

Thus, L E CSLr(g(rlog log nl)). 

Now, assu/ne that there is a f(rlog log nl)-rCS bounded gra/rm~ar G' generating L. 

Then there is a f(n)-rCS bounded grammar G", which is constructed from G' , such 

that L(G") = {wlcw2cwlcw2/ wl,w 2 ~ {o,i} ~, lwll = lw21}. 

G" imitiates G', however G" suppresses the generation of the tails of a's of 

the strings of L(G') o 

Since g(n) < 22n and lira sup f(n)/g(n) = o, this contradicts theorem 4, ii). 

The main result of Cook (1971) is the equivalence of f(n)-tape bounded (two-way) 

auxiliary pushdown automata with f(n) ->- log n and deterministic multitape Turing 

machines which operate in time 2 c'f(n) . Since (two-way) auxiliary pushdown automata 

simulate I-APDA, and f(n)-tape bounded I-APDA are stronger than grammars with f(n)- 

bounded right-contextsensitivity, we can improve the best-known lower time bound for 

the recognition of contextsensitive languages, which is exponential time, for some 

particular classes of contextsensitive language, and e.g. we obtain that the large 

class of contextsensitive languages with right-contextsensitivity functions bounded 

by log n are in P, the family of sets which are accepted by deterministic Turing 

machines which operate in polynomial time. 

However, the "hardest" language" L 2 can be recognized in linear time on a two-way push- 

down automaton. Thus, our bounds cannot be tight. 

Theorem 7: 

If L is a f-rCS bounded context-sensitive language and f(n) ~ log n, then there is 

a deterministic multitape Turing machine operating in time 2 c'f(n) that accepts L. 



131 

CLOSURE PROPERTIES AND DECIDABILITY QUESTIONS: 

If lim sup f(n)/log log n = o, then CSL (f) coincides with the family of e-free 
r 

context-free languages. (See theorem 3). Thus, CSL (f) has the same closure proper- 
r 

ties and decidability questions as the context-free languages. (See Hopcroft, Ullman 

!969). 

However, it turns out that the families of contextsensitive languages with f(n)-boun- 

ded right-contextsensitivity, where f(n) ~ log log n, have the same closure and 

decidability properties as the contextsensitive languages. 

In this sense, the bounding function log log n is a border line for the families 

of contextsensitive languages with bounded right-contextsensitivity between similarity 

to the context-free languages and to the contextsensitive languages. 

From theorem 5 and the fact that every recursively enumerable set can be expressed 

as the homomorphic image of a contextsensitive language, we obtain: 

Theorem 8: 

For every contextsensitive language L there is a homomorphism h and a 

log log n - rCS bounded contextsensitive grammar G such that L = L(G). h is 

at most a doubly exponentially erasing homomorphism. 

Furthermore, every recursively enumerable set can be expressed as the homomorphic 

image of a log log n - rCS bounded language. 

Corollary 1: 

If f(n) ~ log log n, then CSLr(f ) and CSL(f) are not closed under erasing 

homomorphisms. 

Since the context-free languages are closed under homomorphisms, the opposite result 

holds for CSLr(f ) with lim sup f(n)/log log n = o, provided we join the empty word. 

Theorem 9: 

For any bounding function f, CSLr(f ) and CSL(f) are closed under the operations 

of union,product, Kleene plus, intersection with regular sets, and substitution. 

The proofs for the closure properties easily come out by combining the constructions 

which are used for the context-free and the contextsensitive languages. 

We do not know yet, whether these families of languages are AFL's, since we do not 

know, whether they are closed under inverse homomorphisms or under k-restricted 

homomorphisms. This problem is connected with the solution of the linear speed up 

theorem, which is one of our open problems. 



132 

Theorem lo: 

If lim sup f(n)/n = o, then CSL (f) does not contain the intersections of all con- 
r 

t e x t - f r e e  l a n g u a g e s .  

Hence ,  C S L r ( f )  i s  n o t  c l o s e d  u n d e r  i n t e r s e c t i o n .  

F u r t h e r m o r e ,  CSLr(f) i s  n o t  c l o s e d  u n d e r  c o m p l e m e n t a t i o n .  

Proof: 
<- <- 

The "hardest" language L 2 = {wlcw2cwlcw2 / wl,w 2 C {o,I} ~, lwll = lw21} can be 

e x p r e s s e d  a s  t h e  i n t e r s e c t i o n  o f  t h e  c o n t e x t - f r e e  l a n g u a g e s  { w l c x c w l c y / x , y , w  1 e {o,l}:~}~ 
4~ 

{xcw2cycw2/x,y,w 2 ~ {O,i} ~} and {wlcw2cxcy/lwll = lw2l , x,y,wl,w 2 ~ {o,i}~}, 

and the c o m p l e m e n t  o f  L 2 i s  a c o n t e x t - f r e e  l a n g u a g e .  

Notice that CSL (id) = CSL is closed under intersection, and it is the well-known 
r 

2. LBA problem, whether the contextsensitive languages are closed under complementation. 

Theorem Ii: 

For any bounding function f with f(n) ~ log log n, and any f-rCS or f-CS 

bounded contextsensitive grammar G, the emptiness and the admissability problem 

are undecidable, where the admissability problem is the question, whether for any 

string u there are strings x and y such t/~at there is a derivation from S to 

x uy in G. 

Furthermore, it is undecidable, whether for any u,v there exists a derivation in 

G such that v is a string of ancestors of an occurrence of u. 

The proofs of the first and the second problem are based on theorem 8 and can be given 

as for contextsensitive grammars, and the third claim can be deduced from the unde- 

cidability of the admissability problem. 

OPEN PROBLEMS: 

Finally, we state some open problems, which immediately result from the afore-said. 

i) 

In connection with this question it might be of interest whether 

under reversal. 

Is CSL (f) = CSL(f) for any f? 
r 

Our attempt to prove this equality by applying the usual tactic of rearranging 

the applications of productions, such that a given derivation is transformed 

to a similar right-canonical derivation, failed, since this method does not 

necessarily preserve the contextsensitivity of strings. 

This is illustrated by the example S ÷ AB, AC ÷ aA, B ÷ CB, AB ÷ bb. If 

x = anbb is generated, then a derivation with a zigzag application of B + CB 

and AC ÷ aA yields CSG(X) = 3, however rcsG(x) = Ixl- 

CSL (f) is closed 
r 



133 

ii) Is there a speed-up theorem for grammars and languages with f(n)-bounded context- 

sensitivity or right-contextsensitivity? 

Difficulties occur, if the derivations are "balanced trees" where the test of 

balance is accomplished in the final part of the derivation~ i.e. if the 

graphical representation of the derivations is as follows 

A A 

/\ /\, 
B B B B 

/\ /\ /\ /\ 
C C C C C C C C 

/\ /\ /\ /\ /\ /\ /\ /\ 
D D D D D D D D D D D D D D D D 

E E E E E E E E E E E E E E E E 

Now, the usual "speed up" construction does not work, if the nodes themselves 

cannot be speeded up sufficiently. 

It seems to me, that a speed up may destroy the intrinsic structures of deri- 

vations. 

REFERENCES: 

R.V. Book (1969), Grammars with time functions, 

"Mathematical Linguistics and Automatic Translation, NSF 23", Harvard University 
Cambridge, Mass., 1969. 

R.V. Book (1971), Time-bounded grammars and their languages, 

J. Comput. System Sci. 5 (1971), 397 - 429. 

R.V. Book (1973), On the structure of context-sensitive grammars, 

Internat. J. Comput. Information Sci. 2 (1973), 129 - 139. 

F.J. Brandenburg (1977), On one-way auxiliary pushdown automata, 

Proceedings 3rd GI Conference Theoretical Computer Science, in: 
Lecture Notes in Computer Science, 48 (1977), 132 - 144. 

H.W. 

M.P. 

Buttelmann (1975), On the syntactic structures of unrestricted grammars, 
i. Generative grammars and phrase structure grammars. 
Information and Control 29 (1975), 29 - 80. 

Chytil (1976), Analysis of the non-context-free component of formal languages, 
Proceedings 5th Symposium Mathematical Foundations of Computer Science 1976, in: 
Lecture Notes in Computer Science 45 (1976), 230 - 236. 



134 

S.A. Cook (1971), Characterization of pushdown machines in terms of time-bounded 
computers. J. Assoc. Comput. Mach. 18 (1971), 4-18 . 

S. Ginsburg, E.H. Spanier (1968), Derivation-bounded languages, 
J. Comput. System Sci. 2 (1968), 218 - 25o. 

T.V. Griffiths (1968), Some remarks on derivations in general rewriting systems, 
Information and Control 12 (1968), 27 - 54. 

F.C. Hennie (1965), One-tape, off-line Turing machine computations, 
Information and Control 8 (1965), 533 - 546. 

J.E. Hopcroft, J.D. Ullman (1969), Formal languages and their relation to automata, 

Addison-Wesley Publishing Company (1969). 

G. Wechsung (1975), Characterization of some classes of context-free languages in 

terms of complexity classes. 
Proceedings 4th Symposium Mathematical Foundations of Computer Science 1975, in: 

Lecture Notes in Computer Science 32 (1975), 457 - 461. 


