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1. Introduction.

The filtering problem for hereditary systems has been considered by a number of
authors. To the author's knowledge, the first paper in this field is the one of H.
KWAKERNAAK [1], where simultaneously the smoothing and filtering problems for linear
differential systems with multiple constant time delays are studied. Other more re-
cent papers by A, LINDQUIST [1], A. BENSOUSSAN [2], BENSOUSSAN-DELFOUR-MITTER [1],
MITTER-VINTER [1], R, CURTAIN [1] and R. KWONG [1] have alsoc discussed the theory of
this problem and extended the well-known duality theorem of KALMAN-BUCY in various
forms.

In this paper we put our hereditary system in state form and use the work of A.
BENSOUSSAN {1]. This leads to the study of the dual optimal control problem. It al-
lows us to obtain the existence of the covariance operator N(t) and to study its
properties without deriving the Riccati differential operator equation. One major
difficulty is to make sense of that equation without adding any extra hypotheses on
the matrices defining the original systems. For instance R, VINTER [1] and MITTER-
VINTER [1} have shown that the intersection over the time t of the domains of a cer-
tain unbounded operator R(t)* (cf. eq. (4.23)) is generally not dense in the product
space X x LZ(—a,O;X}. Also the equation for the map r {(cf. section 4.2) which ap-
pears in the decoupling of the optimality system (4.6)-(4.9) (cf. Theorem 4.1) does
not belong to the class of hereditary systems; it could be interpreted as a special
type of transport equation. But the above mentionned equations are not required to
use J,C. NEDELEC [1]'s method (see also A. BENSOUSSAN [1]). As a result we obtain a
numerical scheme to compute the covariance operator for which we have convergence
proofs. A similar approach has been successfully used by M.C. DELFOUR [1],[21,[3]
and [4] to numerically solve the Riccati differential equation describing the evolu-
tion of the feedback operator for the linear quadratic optimal control problem.

Through several simple examples the numerical results cast some light on the
nature of the operator I({t). In particular delays seem to create discontinuities in
the derivative of the map o » HOI(t,u) and the covariance operator for this problem

does not seem to have the same properties as the feedback operator in M.C. DELFOUR

{11,121, (31, [4].

* This research was supported in part by a "Subvention F.C.A.C. du Minist&re de 1'E-
ducation du Québec" and by National Research Council (Canada) Grant A8730 at the
Centre de Recherches Math&matiques, Universits de Montr&al, Montr€al, Québec, Canada.
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Notation. Let R be the field of all real numbers. Let R® be the Euclidean real
Hilbert space of finite dimension n (n21, an integer). Given two real Hilbert spaces
X and Y we denote by £({X,Y) the real Banach space of all continuous linear maps
L:X - Y endowed with the natural norm [[L]]. The adjoint of L in £(X,Y) will be de-
noted by L* € £(Y,X). When X=Y, we write £(X,X) and the identity in £(X) is denoted
by IX. An element L of £(X) is said to be self adjoint (resp. positive or 20) when
L*=L (resp. for all x in X, the inner product of Lx and x in X is positive or zero).
Given F a closed convex subset of R™ and E a real Banach space, we denote by
Ep(F;E) the real vector space of all m-measurable (m, the Lebesgue measure on F) maps
F + E which are p-integrable (1sp<») or essentially bounded (p==). We denote by
LP (F;E) the natural real Banach space associated with £P(F;E) and by | | its natural
- norm. When F is an interval we use the notation Lp(a,b;E) where a and b are the end
points of the interval. Given t, in R and ty < tl < +o, we denote by Hl{to,tl;B) the
Sobolev space of all maps x in L (to,tl;E) with a distributional derivative Dx in
Lz(to,tl;E). Let I(a,b) denote the interval J-=,+=[ N [a,b]. C(a,b;E) will be the
real Banach space of all bounded continuous maps I(a,b) ~ E endowed with the natural

sup-norm. Given two reals tO < tl in R we define

6)(1:0,1:1) = {(t,s) € [ty,t,] x [ty,t]:t = sk

1]

Finally we shall denote by Lfoc(o,w;E) and Hioc(o,w;E) the Fréchet spaces of all
maps [0,%[ ~ E, the restriction of which to each compact interval of the form [0,T]
belongs to L2(0,T;E) and HL(0,T;E).

2. System description and formulation of the problem.

2.1. Deterministic features.

Let X = Rp, U= Rm, Z= Rk for some positive non-zero integers n, m and k. Let
(+,*) and |+!| denote the inmer product and norm in X, Let («,-]U (resp. (-,')Z) and
l-lU (resp. !i!z) denote the inner product and norm in U (resp. Z). We are given an

integer N 2 1, real numbers 0 < a < +o, 0 < T < o, ~a=8 <.,,< Bi+>< 8,<4,..¢ 8, =0,

N i

0
The product space H = X x Lz(—a,O;X) is endowed with inner product and norm

4]
(2.1 {h,k) = [ho,ko) + f (hl(ﬁ),kl(e))de, Inf = Kh,h)%-
-a
Let Ai:[O,w[ ~£(X) (i=0,...,N) and B:[0,»] + £(U,X) be measurable and bounded maps

on compact intervals. Let A01:{0,w[ x [-a,0] = £(X) be also a measurable and bounded

map on sets of the form [0,t] x [-a,0] for each t>0. For f in Lioc(o,w,X) and £ in

Lioc(o,w;U), we consider the hereditary differential system (HDS)
N x{t+8.) , t+8.20 0 x{t+6) t+620
d ; ’
Lﬁé(t)=_2 Al )t 1 +f a0 ) de
2.2) i=0 h (t+ei), otherwise; -a h* (t+6), otherwise

+ B(£)E(t) + £(t) in ]O,T[

0

x0) = 1% n = @w%nl) €n.
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It is easily shown that for given h, & and f equation (2.2) has a unique solution x
in Hi «;X) and that the map (h,£) » x:H x L (O ;U0 » H {0 ;X) is affine and

continuous. When h belongs to the subspace
(2.3) V = {(h(0),h):h € H (-a,050)}

of H, equation (2.1) can be made equivalent to the following partial differential
equation (PDE) by introducing the fumction y(t,8) = x(t+8) if t+8 > 0 and h(t+8) if

t+8 < 0:

PDE s_at”(t’e} = e Buce,0) in 10,o[ x ]-2,0]
N

BOUNDARY

0
CONDITION ggy(t,o) = iZGAi(t)Y(t,ei)+B(t)Ect).(-{aAOl(t’e)y(t’e)de+f(t) in  10,f

INITIAL

conprtion  Y(0,8) =h(8) in [-a,0].

The above formulation very naturally leads to an operational differential equation .
To see this we define the state of system (2.2) as an element ;(t) of H,
~ 0 ~ 1 x(t+68) , -t<6<0
(2.4 x(t)" = x(t), x(t)7(6) = .
Lh (t+8), -a<ps-t
We introduce the continuous linear operators Ao(t):v + X, Al(t):V > Lz(—a,O;X),
X(t):v - H, g(t):U -+ H and the vector %(t) in H:

(2.5) Ko(t)h Z A, (t)h(e, )+f Ayq (t,8)R(8)d0, (A {(t)h) (&) = 2(9)

i=0 *
(2.6) Keon = &y on,k (0 Btw = w0, F0 = (£(t),0).

The proofs of the following two theorems can be found in M.C. DELFOUR [5].
Theorem 2.1. For a given T>0 and all h in V f in Lloc «;X) and £ in Li C(O, ;U),
X is the wnique solution in W(0,T) = {z € L (0,T;V):Dz € L (O T;H} (Dz denotes the

distributional derivative of z) of the equation

Re)zer) + Broyece) + £(0)  in 10,T[, z(0) =

2.7 Ly
and the map (h,E) = X:V % L (0,T;X) - W(0,T) is affine and continuous (V is endowed
with the gt -topology and W(0,T) with the norm “ZHW(O 7 [HZHLZ{O V) {IDzHLz(0 s H)] 3.
By den51ty there exists a lifting of thls map to a continuous affine map

H x L (0,T;U) » C(0,T;H). Moreover there exists an evolution operator 3: Po,T) >
L(H) such that (i) Y h € H, (t,s) H‘g(t,s)h is continuous, (ii) V (r,s), Osrs<s<i<T,
E(t,r) = S(t,s)afs,r), and (iii) the solution of (2.7) can be written

t ~
(2.8) R(t) = 5(t,00n + [ &t 1) [Brg(r)+£(x) Jdr.
0

We shall also need the adjoint state. Let H' (resp. V') be the topological dual
of H (resp. V). We identify elements of H and H' and denote by A:V = H and A*:H > V!
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the continuous dense injections as in the theory of operational differential equa-
tions (cf. LIONS-MAGENES [1] and J.L. LIONS [17).

Theorem 2.2. Given k in H and g in LZ(O,T;H) the equations

(2.9) Lty + K(oy*z(e) + A*g(8) = 0 in 10,T[, 2(T) = k,

has a unique solution p(-;k,g) in the space

(2.10) W*(0,T) = {z € C(0,T;H) :Dz € L2(0,T;V")}.

The map (k,g) b p(+;k,g):H % LZ(O,T;H) - W*(0,T) is linear and continuous (W*(0,T) is
endowed with the norm

HZHW*(O,T) = “Z”C(O,T;H)+ “DZ”LZ(O,T;V'))' Moreover

T
(2.11) p(t;k,g) = 3(T,t)*k + [ 8(r,t)*g(x)dr. O
t

2,2. Stochastic features.

We now consider a noisy initial condition, that is

(2.12) x(0) = h% + %, x(o) = nlce) + £le), -a <6 <0,

where ¢ = (co,;l) belong to H. From now on £ and £ will be the noise at the input
and the noise in the initial condition, respectively. We shall also assume an ob-
servation of the form

(2.13) z(t) = C(t)x(t) + n(t),

where C:[0,T] -~ £(X,Z) is measurable and bounded on compact intervals and n repre-
sents the error in measurement. As in A. BENSOUSSAN. [1) {co,cl,s,n} will be modelled
as a Gaussian linear random functional on the Hilbert space ¢ = H x LZ(O,T;U) X

LZ(O,T;Z) with zero mean and covariance operator

P, O 0 0

0 Py o 0
(2.14) g = |, o Q) o

0 0 0 R(D)

It will be convenient to introduce the covariance operator P in L(H) defined as fol-
lows

: 0-0, 1., z1
{2.15) (Ph,h) = (Pgh b)) + f (P (0307 (8) ,h™ (8))d.
-a

In view of the continuity of the map (h,f) » x and the properties of the image of a
linear random functional under an affine continuous map, we can look at x(t) as a
Gaussian linear random functional on X (for any t), where the mean of x(t), X(t), is
a solution of (2.2) with £ = 0 and ¢ = 0. But it is easy to check that the mean of
X(t), RX(t), is obtained from the mean of x(t) and the mean,hl(8), of hl(e) as follows:

1

s 0 = 1 X(t+8) , t+620
(2.16) X(t)" = X(t), R(t)"(6) = .
h™(t+8), otherwise

As a result ?(t) is a solution of the state equation (2.7) with £ = 0 and £ = 0 and

the covariance operator I'(t) of X(t) is a "weak solution” of the equation
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(2.17) gg{t> = Reoyree) + r)ke)* + Beyae)Bey*, ro) = p.

2.3. Formulation of the problem.

For each T we want to determine the best estimator of the linear random func-
tional X(T) with respect to the linear random functional z(s), 0 < s<T. It is a
linear random functienal %{T} which can be obtained (see A. BENSOUSSAN [1]) through
the following control problem. We start with the deterministic system (2.7) with the
initial condition (2.17) at time 0 and consider the variables & and ¢ = (Co,cl) as

control variasbles., We want to minimize the cost function for a given h.

T
(2.18) Ip(EEh) = (P 7h,e) ¢ f @) Hece),e(e)
0

T
+ f RO T 20 -0 (1), 2(8)-C(EIx(£))ge
0
{provided that P, Q(t) and R(t) be invertible almost everywhere).

3. Solution of the optimal control problem (2.7)-(2.17)-(2.18).

It will be technically advantageous to work in the state space. For this pur-

pose we redefine the cost function (2.18) in terms of the state

(3.1) idi—’:i(t) = AwF) + Boyew) « £(0) in 10,T[, X(0) =h + ¢
T

(3.2) T = @7 e+ f Qe e Ee)de
0

T ~
« f (R(t)'l(Z(t)—ﬁ(t)i(t)),Z(t)—C(t)ict)%gt
o

where G(t)h = C{t)ho. It will be convenient to introduce the variables y and ¥:

(3.3) Yoy = Koy + Boew  in 10,70 y(0) = &,

i

(3.4) Tiey = Keoyen + ) in 10,70, 5(0) = b,

We notice that X(t) = y(t) + ¥(t) and rewrite the cost function (3.2) in terms of y

= T N T R "y
(3.5) I, (6, D=(F 2, 1)+] Q) lzct3,e<t))Udt+g e Emym,Emyw
0

T

,

-2} (R(t)_l{z(t}-G(t)?(t)],akt)y(t))zdt + terms independent of £ and z.
0

X . 2 .
The pair (§,E) which minimizes the cost function over all (£,z) in L7(0,T;U) x H is

characterized by

T sl T -1~ P fd
(.6) @)+ [ @ T B - [ me KONGRS
0

T A~
- [ @ofm.rm iz CmFmDhet Ve,
C

By introducing the adjoint system
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By + Koo + 18RO T EOFO-mEOFE)] = 0 in 10,7
(3.7

B(T) =0,
we obtain that (E,E) are characterized by
(3.8) T=-Pp(0), E(6) = -QOEE)H(L).
By substituting Z and 2 in (3.3) we obtain

A5 - BB m*ee) in 10,T[, $(0) = -Pp(0),

I

9 Fm

and system {(3.9)-(3.8) is called the optimality system. The optimal ¥ corresponding
to (£,%) is given by R(t) = (1) * F(1).

4, Dual optimal control problem.
We introduce the maps g:[0,T] -~ H and N:[0,T] -~ £(H),

~ -] - ~ o~
4.13 g(t) = C(LI*R{t) "[C(I¥(t)-z{t)], N(t) = B(L)Q(t)B(t)*,
and we consider the following control system and its associated cost function

4.2 Pm + Ko + m[E0®+g0] = 0 in J0.T[, p(T) = k
T
(@5 260K = @O + [ NP BOI RV w(E) e,

where k and w belong to H and,Lz(O,T;Z), respectively. Given k there exists a unique
W in LZ(O,T;Z) which minimizes J*(w,k) over all w in LZ(O,T;Z). The minimizing ¥ is

characterized by Euler's equation:

A T A
(4.4) GOR MR [OV()B(1) ,a() I+ RCEIF(E) ,w()),]dt = 0, V w,
where
(4.5) %}(t) + R(t)*q(t) + A*C(E)*w(t) = 0 in 10,T[, q(T) = 0.

If we introduce the dual system of system (4.2)

(4.6)* i—%@) = Ky - N@p) in 10,T[, 5(0) = -PH(0),
identity (4.4) reduces to

(4.7) Ym€ LZ(O,T;Z), gT(R(t)Q(t)~akt)§(t},w(t}}zdt = 0.
Since R(t) is invertible (4.7) is equivalent to

(4.8) W) = R TIEWFe), ae. in [0,T].

If we now substitute identity .(4.8) into equation (4.2) we obtain

4.9 F® + keybo + »EmRm EFmegm] - 0 in 10,70, D = k.

* This equation must be interpreted in an appropriate weak sense, namely,

» ~ A t"' ~
Y(t) = =8(t,00Pp(0) - [ o(t,v)N(r)p(xr)dr in [0,T].
0
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Equations (4.6)-(4.9) form the optimality system of problem (4.2)-(4.3). The reader
will notice that. system (4.6)-(4.9) with k=0 is identical to the optimality system
(3.7)-(3.9) with the significant difference that (4.6)-(4.9) was derived without the
hypothesis that P and Q(t) be invertible,
Remark. In the formulation of the dual optimal control problem g can be any strongly
measurable map [0,T] - £(H,Z) which is bounded in [0,T]. It is not necessary to re-
strict ourselves to C's of the form 5{t)h = C(t)ho for some C:[0,T] - £(X,Z}.

We shall now proceed to the decoupling of optimality system (4.6)-(4.9) and to
the study of the decoupling operator as in J.L. LIONS [2] and A. BENSOUSSAN [1].

In the sequel we shall use the notation M(t) = 5Ct)*R(t)_15(t).
Theorem 4.1. Let ﬁ and § be the solution of system (4.6)-(4.9). Then there exists
a family of linear operators N(t):H - H and a family of elements r(t) in H, 0=t<T,
such that
(4.10) Fet) = -I(OP) + r(t), in [0,T].

n(t) and r(t) are obtained in the following manner: (i) we solve the system

it

(4.11)

pra sy

{ ~

1L0t) = Rwys(n - Nv(®) in 10,50, 8(0) = -Pr(0)
)

id

£

(8 + R(y»y(t) + AM(L)B(L) = 0 in 10,s[, v(s) =
and N(s)k = -8(s); (ii) we solve the system

{%‘%(t) = K(t)ﬂct) - N(t)x(t) in 10,s[, n(0) = -Px(0)
(4.12) .
i%%{t) + A()*x(t) + A*MCEIn(t)+g(t)] = 0 in 10,s[, x(s) =
and r{s) = n{s). O

4.1, Study of the operator I(t).

In order to study the operator I(t) we make use of Theorem 4.1 and consider sys-
tem (4.2) with g=0 and the cost function (4.3) in a time interval [0,s] for some s in
10,717,

Theorem 4.2. (i) If we denote by y (resp. ¥) the solution of equation

(4.13) %%{t) + [AC)*-AMT(E)]v(t) =0 in J0,s[, v(s) = k (resp. K,
then

k]
(4.14) (u(s)k,X) = (Py(0),¥(0)) + [ CIN()+N(XIM(r)T(x) Iy (r),¥ (r) Mdr
0

and in particular if W is the optimal control corresponding to k
(4.15) JEK) = (M(s)k, K.

{ii) The operator Ii(s) is a self adjoint element of L(H), there exists a constant
¢ > 0 (independent of s and h) such that

(4.16) s, ¥k, {n(s)kl s ciikfl,

and the map s & N(s):[0,T] ~ £L(H) is weakly continuous (hence strongly measurable and
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bounded). 1(s) can be decomposed in a unique way into a matrix of operators
2
e L - .
Hoo(s), HOl(s) Hoo(s) e LX), H01(s) LEL(~a,0;X),X)

(4.17) ) )
Ty (), Ty () |1y () € £00,L2(-2,030), Ty (5) € £02(-2,0:).

Moreover

(4.18) To(s)* = My(s) = 0, Myp(s) = Hlo(s)*, My,(s)*=1,(s) 20,

and

(4.19) TR = (Hoo(s),ko,ko) + 2(H01(s)k1,k0) " (H11(5)k1’k1)2'

(iii) The equation

T
(4.20) v (t) = 3(t,s)h - fva(t,r)H(r)M(r)ys(r)dr in [s,T]
S

has a unique solution Y in C(s,T;H) which generates an evolution operator A(t,s) de-
fined as A(t,s)h = ys(t) with the following properties:
8) ¥ (t,8) €P(0,T), A(t,s) € £(H);
b} ¥ 0 <s s zr<tsT, A(t,s) = A(t,r)A(r,s);
¢) Y h€EH, (t,s)m A(t,s)h:P(0,T) >+ H is continuous.
Equation (4.14) can now be rewritten in the form

S -
(4.21) (U(s)k,k) = (PA(s,0) %k, A(s,0)*k)+[ ([N()+TIM(r)L(r) JA(s, ) *k, A(s, )k )dr. O
- 0

Equation (4.21) is the "integral form' of the desired Riccati operator differen-
tial equation. It is identical to the one in MITTER-VINTER [1]}. Formally one should
obtain in ]JO,T[. an equation of the form
(4.22) g%{t} = H(t)K(t)* + K{t)ﬂ(t} - I{eIM{tIN(t) + N(t), 1(0) = P.

However it is not easy to interpret this equation properly since K{t) and K(t)* are

unbounded operators which depend on.time. In particular

(4.23) N {k € H:A(t)*k € H}
0<t<T

is not necessarily dense in H (cf. R. VINTER [1] and MITTER-VINTER [1]).
Remark. Notice that the equation

Le) + Ke)*p(t) - MUOI(DP(H) = 0 in J0,T[, p(1) = k
is perfectly legitimate and that its solution is p(t) = A(T,t)*k.

4.2, Study of the function r(t).

In order to study the function r we consider the problem (4.2)-(4.3) with k=0.
By Theorem 4.1 we know that

(4.24) x(t) = ¥(t) + L(OP(L).
Straightforward computations using equations (4.6), (4.9) and (4.21) will show that

$© = Km-1oMOLr® - 1e, i 10,1,
(4.25)
£(0) = 0,
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where the above equation is to be interpreted as

t
(4.26) r(t) = -/ A(t,s)O(s)g(s)ds in [0,T]
0
or T
(4.27) r(t) = -f §(t,s)n(s) [M(s)r(s)+g(s)]ds in [0,T].
0

5. Approximation of the dual system.

In this section we shall exploit earlier results of M, DELFOUR [1],[4] on the
standard optimal contrel problem. We assume that we can find non zero positive in-

tegers M,L,L L. and a discretization step 6§ > 0 such that T = M§, a = L8,

02 ly
8, = -L,8, i=0,...,N,
1 1

5.1. Approximation of initial data.

We approximate the product space H = X x Lz(-b,O;X) by the finite dimensional

space H6 = XL+1 endowed with inner products

-1 9
.1 @K, = (hy.kg) + 8 zZ-L(hﬂ’kﬂ)’(h’k)L - ZZ_L(hg,k@).
We introduce the maps
(5.2) ne 000 e = 0Ll e
-1
(5.3) b= (hRg.h_q,..0h ) b agh) = (hy, 2 hzxﬂ) a® > H,

where Xp 1s the characteristic function of [£6,(£+1)8] and

(£+1)6 1
[ ni(eyde, -L <2< -1,
25

5.4

O} b

i
hﬂ =
It is readily seen that Hq5r6(h)H < ||nl|. We shall also need the transformation

3
ion > 8, [, = by W], = 8%hy, £=-L,..,eL.

If we introduce the map IS = ig, we notice that for all h and k
Bk = (ghighd) = gk, = (Th.K))

5.2. Approximation of the differential equation.

We associate with Ai a family of matrices and with f an element £ in XM
(m+1) 8 (m+1)6
(5.5) A" = LA de, (=0,...,0, £ = 1 T gnde, m=0,... M1,
i & P i 8 s
With.A we associate the family of matrices
1 +1\6 0 L1 (m+1)8 ~a+(m+1)6-t
{ ’
01 == f Jo a8 Ay (t,0), A = at ds Ay, (t,0)

56 8 s -(t-ma) & ms b
G603 0, mDs (mekel)ec

A= at de Ay (t,0), £=-1,...,-(L-1),

L § ms (m+£) 8-t
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We construct a finite dimensional approximation Us = UM to the space of control

maps LZCO,T;U). We define the maps

(5.7 E b rg(E) = (EO,...,EM-I):LZEO,T;U) - o,
1 (m+1)8
(5.8) E.= 5 J &)t me0,... M-1,
mé
' M-1 5
(5.9 R RS ORI £ x U > 1200, 750,
m:

where X is the characteristic function of [md, (m+1)8[. It is reasily seen that
anrﬁ(g)ﬂz < HEHZ. It will be clear from the context whether ag and T, are associ-
ated.with LZCO,T;U] or with the product space H = X x L (-b,0;%). Flnally we associ-
ate with B the following family of matrices
. (m+1) 8
(5.10) g™ = % [ B(t)dt, m=0,...,M-1.
mé
We now associate with h in Hs, E= (Bgrevesfy () and £ = (£gs -0 26y ) the fol-

lowing numerical scheme

X, , m-L.20
v oo § K m-L i % 5 K NILWE n+20 o7 o
m+l “m im0 b hm-Li’ m—Li<0 01 hm+£’ m+L<0 m

(5.11)
m=0,...,M-1,

The following propositions summarize the results we shall need.
Proposition 5.1. (Stability). We denote by (xg,.. ’XM 1) the unique solutlon of
(5.1 correspondlng toh = s h), £ (E} and £ = N (f) for h in H, € in L 0,T;1)
and f in L (0,T;X). We deflne the maps
) M-1 s s M-1 x:]_'_l-xsl
(5.12) X (1) = 2 X 0, =<, ey - ] 5 X, (1),
m=0
where X denotes the characteristic function of [mS, m+1)§[. As § goes to zero there
exists a constant ¢ > 0 (independent of h, f, v and §) such that

&

(5.13) maxl[xy | me0, ., M3 + (0], o [0, < oLl gl 81,1, O

<
2
Proposition 5.2. (Convergence). Fix h in H, f in LZ(O,T;X), £ in LZCO,T;U). As §
goes to zero with M§ =T

{5.14) max{]xs—x(mé)(:OSmsM} + Hx6—xﬂ + HDx6~DxH

converges to zero, where x is the solution in W (0 T;X) of equation (2.2). DO

Corollary. Assume that A AN and B are constant matrices and that A01 is iden-

17000
tically zero. As 8 goes to zero there exists a constant ¢ > 0 {independent of §, h,

v and f) such that
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(5.15) Hx—stz + max{lx(m&)-xg]:OSmsM} < cﬁHDxHZ. a

5.3. Approximation of the differential equation for the state.

We now introduce an explicit finite difference scheme to approximate the differ-

ential equation for the state. Given h in HQ, we want to determine {xm n:OSmSM,
s
-Lsn<0} from the following set of equations

N
(5.16) - 6['20.4’;% L z A’“ b B oL me0, L M1,
i= ’

p+1,0 m, 0 01 *m, £

(517 xg g = hpy L= cLoeins00 Xy = X gy W0, ML, BT

We define an {L+1)n x {L+1)n matrix A and an {(L+1)n x mmatrix BT

A +az A‘h a1,

1A%,
[Ah L 01 g’

]0= i /@*l []} E:'L’-'-’“l’

o~ 2

0
[B%], = B, [B'W], = 0, £=-1,...,-1,
and the vectors im and ™ in H6

P ooof0,...,0

Equations (5.16) and (5.17) can now be rewritten in the more compact form

(5.18) X, = (Xm,O’Xm,—l""’xm,—L)’

(K" +8"% +£"1, m=0,...,M-1, R =h

(5.19) X . -% =s[X )= b

m+1 m

We notice that equation (5.19) has been constructed in such a way that X0 p remains
3

constant along the characteristics of the differential equation for the state

xm+1,£ = xm)£+1, m=0,...,M-1, AO=-1,...,-1.

As a result there exists y = {yO,...,yM) such that X2

2

easy to see that (yﬂ,..., M} is the solution of (5.11) with initial condition h.

Ymel? m+f > 0 and it is

Hence the scheme (5.19) has a unique solution.
Proposition 5.4. Let (x e ,x ) be the solutlon of scheme (5. 19) for h = s (h),
£ = s (2} and f = re(f} for some h in H, £ in L (0,T;U) and f in L (0,T;X). We de~
fine the map x :[0,T] -+ H as follows
(8 M-1
% (1° Z 0% (85 € [0,T, % 1) = ;%

(5.20) "0t 1 )
GROR DT Bl (80905 (600, (88) € [0,71 ¢ 2,00,
m=0 n=-L 2 ) > s

where X is the characteristic function of [ms,(m+1)8[, ﬁ n is the characteristic
function of
(5.21) {(t,8) € mé,(m+1)8[ x [né,(m+1)6[:t + & < (men+1)8},

and x; n the characteristic function of
3

(5.22) {(t,8) € mé, (m+1)s[ x [nd, (n+1)8[: (men+1) 52t+6},
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(i) (Stability). There exists a constant ¢ > 0, independent of §, h, £ and £, such
that for all h in H, £ in L2(0,T;X) and £ in L2(0,T;U)

(5.23) max{llag (&) [lim=0, ... M3 + [R3] < cllnf+l€l,+1zl,].

(ii) (Convergence). Fix h, f and . As § goes to zero with M6 = T

(5.24) max{fla (X )-¥(né) | :m=0, ..., M} + 0,

and is converges to X in Lw(O,T;H}, where ¥ denotes the solution of equation (2.7).0

5.4, Approximation of the differential equation for the adjoint state.

In this section we.introduce an approximation of the adjoint state equation

(2.9). Consider the following scheme

-1 »m My _ . 8 _ . 8
(5.25) Ppey " Pp * 8[16 A )*Iapm+l+g ]=0, m0,...,M-1, in H", Py = kinH
0 M-1. . s .2 .
where k = rs(k) and ¢ = (g ,...,8 ) is constructed from g in L°(0,T;H)
p (mel
(5.26) g =5 j rs(g(t)}dt, m=0,...,M-1.
ms

Proposition 5.5. Let (po,., ,pM) be the solutlon of the. scheme (5 25) with final
datum k for scme kinHand g = (g ,g A ) for some g in L (0,T;H). Let the
approximation p [0,T] - H be defined as

M-1
(5.27) p’(e) = L 9P, 05t <1, (D) = 4.
ms=

(i} (Stability). There exists a constant ¢ > 0 (independent of §, h and g) such
that

§
(5.28) max{lqs (o) ll:m=0,...,M} + lIpll, < c[likll+]igl,]
(i1) (Convergence). Let p denote the solution of equation (2.9) in the spuce
W*(0,T). Then for all h in H

max{{(qs(pm},h)~«p(m6),h)!:m=0,...,M} + 0 as § + 0 with M§ =

and the map t » (h, ps(t)B converges to the map t+v {h,p(t)) in Lm(O ™R). O
Corollary. Assume that the matrices A .. AN are constant, that A01 is identically
zero and that k = (k ,0) and g(t) = go(t} 0). As 8 goes to zero there ex1sts a
constant ¢' > 0 (independent of ko, g and &) such that

(5.29) llp“pﬁll2 + max{l[p (m§) ~q(p )| :0smsM} < c'é[lkohllgollzl- o

6. Approximation of the dual optimal control problem.

We now construct an approximation to the dual optimal control problem of sec-
tion 2.4. We start with the approximation (5.25) to system (4.2):
-1 . ol s
Py Pyt LIy A Ip  + @ +g™ = 0, ne0,...,M-1, in H°

(6.1)
. . 2
PM=E=T5(k) for some k in H, g=(w0,...,wM_l)=r6(w) for w € L7(0,T;2),



712

where
, (m+l}§ . (m*+1}8,,

(6.2) =i [ rqgmlde, @ =3 [ Eadt, m=0,...,M-1,
50 T 5 5

We associate with system (6.1) the following approximation of the cost function

M-1
m
(6.3) T5w.K) = (Bpy,py)y * smzetcrs P Py * (R W) gl
where
o (m+1)8 1
P = qiPqy, "= BN E™ x, BT ='§’ J R()dt{, m=0,...,M1,
(6.4) mé
a1 (m+1)8 1 (m+1)8
<=5 [ Quad, B" = 5 [ rsE)d
mé mé

The approximate optimal control problem consists in minimizing Jg(w,g) over all w in
ZS:
Inf{Jg(w,k):ﬂ S Za}.

Lemma 6.1. Given kX in H§, the approximate optimal control problem (6.1}-(6.3) has a

unique solution Q in UG. This solution is completely characterized by the optimality

system:
(6.5) BB s [T A™*I D +(EN*h g™ =0, 0 cm <M1, B, =k
: Ppe17Pp*Clts )7 sPme1 n'E T *AM o =
~ A ewvme o-1oma s o rlpa
(6-6) Ym+1-ym - ‘S[A ym‘Is N. m-r-l}’ 0<ms M"lﬁ YO - 18 EPO’
6.7) =@M S, 0<msMl, O

m)

Proposition 6.2. (i) Given h in H, for each § > 0 the approximate optimal control
6

problem with initial condition h = r (h) has a unique solution w in U As § goes

to zero, qs(w) converges to ¥ in L (O T;Z), where @ is the optlmal control in the

minimization problem (4.2)-(4.3). (ii) We define the maps p and y [0,T] ~ H

s M-1 s ~
(6.8) p°(t) = ] qétp Ix, (1), 02t < T, p (T = qslpyy,
n=0
5 M-l s n
(6.9) Yo = g (), 05t < T, y (D) = q5(ny.
m=0

As & goes to zero Js(ﬁ,rs{h)) converges to J@,h),

i
B

{v s € [0,T], qé(f;m) > p(s) in H weak with mé

(6.10) 5

IV h € H, the map t ¥ {p (t),h)) converges to

) the map t » (P(t),h) in L7(0,T;R),

¥ s € [0,T], q6(§ } =+ ?(s) in H weak with m§ = s
(6.11) m s

Y h € H, the map t = {y (t),h) converges to

AN

the map t > {(F(t),h) in L (0,T3R),
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where ﬁ and § are the solutions of system (4.6)-(4.9). Q

Proposition 6.3. Let the sequences {p } and {y } be the solutlons of the optimality
equations (6.5) to (6.7). There exists a fam11y of matrices {Hm im = 0,...,M} in
£{H6) and a family of elements {pm:m = 0,...,M} 1n‘H6 such that

(6.12) 1.5, = 'Hiﬁm fol, m= 0, LM

Moreover Hi and P, are obtained in the following manner: (i) we solve the system

MM B <r-1, vy

iUt
(6.13) TAREALT Lol (o 1 PR

(6.14) 8m+1 - S[A 8 Ié N m+13’ 0<m<or-l, 50 = I‘S gyo,

and nig = ~1,8, (where Mw = (€™M 1~m), (ii) we solve the system

(6.15) Ere1~En 5[16 (A" )*14E +M?Ién +g" =0, 0 <m<r-1, £ =k

m+1 m+1

~ m ~-1.m o
(6.16) Noe1 M = S[R npls N Epqls 0 S m<r-1, ny = I7PE
and oy é%qr. ]

7. Approximation of the equations for I and p.

To study the family of operators N(s}, 0 < s £ T, we have considered the optimal
control problem in the interval [0,s] with g=0. By analogy we fix an integer r,
0 <r <M, and consider the system. )

-1 ~m e - - » -
(7-1) Pm+1'Pm“‘5{Ié (A )*I6Pm+1“’{c )*Wm] - 0: m= 0:---:M 1’ PM - I.S,

and the optimal control problem for the cost function Jg P(w,h) (that is, (6.3) on
H

[0,r]) associated with (7.1).

'ProEosition 7.1. We fix an integer r > 0. (i) If ﬁ is the minimizing control

Ao 8 § _ .8
(7.2) I3 L@ = gk, T = 0D 20,

where * denotes the adjoint in HS with respect to the inner product ( , }L’ (ii) As
8§ goes to zero, there exists a constant ¢ > 0 such that

(7.3) Yk EH, (r (0,700, < clk.

(iii) If Yy Bm’ m=0,...,M, are the solutions of (6,13)-(6.14), then
§

Hmym = _IGBm’ r<ms<M O

Theorem 7.2. We define

8
(7.4) Pm = rGHmrd, 0 <m< M,
We introduce the map HS:[O,T] -+ L(H)
M-1
(7.5) (o) = 1 Py (®) in 10,70, ’(n) =
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(i) (Stability). As & goes to zero, there exists a constant ¢ > 0 (independent of §)
such that

(7.6 max{HPmﬁfcﬂ):m =

(ii) {Convergence}. For fixed s in [0,T] and all h and k in H

0,...,M} < c.

(7.7 «th,k» + {((s)h,k) as § + 0 withm§ = 5. O

Corollary. We can easily verify that

. 5 T TS 1
(7.8) Polog = [Mlogs [Pplosh = [a nZ~L6 [, 1%, (8)h7 (8)d8
0 -1 -1 2.8 1
(7.9) SRRSO I S A W PR O PR O I OLCN
-a £=-L n=-1L

For fixed s in [0,T], as § goes to zero with mé = s

(7.10) [P 1y + [0(8)]p, in £0X), ¥ n! e 1%(-a,0;%), [Pm]01h1 > [H(s)]Olhl in X,

1
(7.11) v nte ¥(-a,050, [P 1,00 > [H(s)]llhl in 1%(-a,0;X) weak

and the norms of [pm]OO’ [Pm]O1 and [Pm}11 are uniformly bounded. O
Theorem 7.3. For § small enough the family Hm, 0 £ m <M, as defined by equations
(6.13)-(6.14) of Proposition 6.3 is the solution of the following set of equations:

oo, sm. -1 -1 MR, -1
oz To,q = SN+ (I+sT AT )nm(1+stnm) (161 A" )%, 0 < ms M,
My = P, where I is the identity matrix in £(H6). 0
To study the family of vectors p(s), 0 < s £ T, we have considered the optimal
control problem in the interval [0,s] with k=0. By analogy we can fix an integer r,
0 < r <M, and consider the system {6.1) with k=0 and the optimal control problem

for the associated cost function (6.3). We will obtain a set of equations for O

8. Numerical examples.

In this section we consider a number of examples which will illustrate the
behaviour of the map o> HOI (t,o) as a function of the time t in [0,T]. In all
examples a=1, T=2, X = U = Z = R and the observation equation is z(t) = x(t)+n(t)
with R(t) = 1, 0 < t £ 2, All equations are to be interpreted in an appropriate way
as stochastic differential equations.

Example 1. This example has an analytical solution. Consider

8.1) 2(1) = x(t-1), 0 = t s 2, x(0) = h%+z°, x(8) = n'(e), -1 s 8 < 0.
Let ¢ = Pal. It can be shown that
(s+c)'1 3 , 0 <5 <1
s”-1.-1 <s g2

(8.2) HOO(S] = { 5

] (1+c+~j§-0 s 1
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(s+c)'lx[_s O](e) , 0sssl
(8.3) H01(s,e) = 3 ?
s”-1 —1{s+6, 1-5<820

s(Irc+s5=) 1 , otherwise

3 }, 1<s%2

1.
Example 2. We now consider a system with two delays

The results appear in Figures la and 1b for P0

(8.4) X(t) = x(e-D)ex(t-1), 0sts2, x(0) = h¥+:0, x(8) = hl(e), -1s8<0.

The results appear in Figure 2 for PO =1,

Example 3. We allow input noise in (8.4)
(8.5)  %(t) = x(t-1)+x(t-1)+£(t), 0st<2, x(0) = h0+z%, x(8) = nl(e), -lsse<0.

The results appear in Figure 3 for PO =1 and Q(t) = 1, Ost<2,
Example 4. We consider system (8.5) but without noise in the initial conditiom,
x(0) = ho. The results are shown in Figure 4.

Example 5. We consider the system

(8.6) k(1) = A (t)x(t-1), 0sts2, x(0) = w0420, x(8) = nl(o), -1<8<0.
The results appear in Figures la and 5 for PO =1 and

_f1, n/10 < t < (n+1}/10, n even
(8.7) A8 = {a, n/10 < t < (a+13/10, n odd J°

Example 6. It is similar to Example 5 but without noise in the initial condition
and with input noise:
(8.8) X(t) = A, (£)x(t-1)+£(t), 0st<2, x(0) = h°, x(8) = hl(e), -1<0<0.

1

The results appear in Figure 6 for Q(t) = 1, 0<t<2, and A, as in (8.7).

1
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