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i. INTRODUCTION 

There is now a fairly complete theory for filtering, prediction and smoothing 

for linear infinite dimensional systems where one assumes a Gaussian white noise type 

disturbance in the system model {see ~], [2], [3], [~. Recently in the finite dim- 

ensional stochastic control literature, there has been interest in problems involving 

jump processes (see~9]) as these have applications to a wide range of problems. For 

example in [~, Kwakernaak applies the filtering theory for linear systems excited by 

Poisson white noise with noisy observations corrupted by Gaussian white noise to solve 

a river pollution problem. In fact the model of the river is distributed and so he 

uses a finite dimensional approximation. Here we show how the same problem can be 

solved using an infinite dimensional model by appropriately modelling the Poisson type 

noise as an infinite dimensional stochastic process and applying the recent theory of 

estimation for linear systems disturbed by general noise processes in [~. The necessary 

mathematical background of stochastic differential equations in H$ibert space is out- 

lined in ~ 2 and the results on infinite dimensional estimation theory for linear 

systems corrupted by Poisson type noise processes are summarized in ~3. In the final 

section ~ 4, the model for river pollution is discussed in detail and comparisons are 

made with the model of Kwakernaak in [8]. 

2. STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT SPACES 

The theory we summarize here is a special case of the theory for stochastic 

equations with general white noise disturbance [~. 

Let ~ K be real separable Hilbert spaces,(~ z ~ a complete probability 

space and ~s~3,a real finite time interval. 

Then we shall use the following definitions 

Definition 2.1 

An ~- valued random variable is a map ~% ~ which is measurable with respect 

to the~ measure. 

If ~ £ ~,(~.~ w e _ _  define its expectation 
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If 

where 

J%, 
{& ~ L~ (J~/~ ; H) , we define its covarianee operator 

UO~ ( ~l~ ([~) is self adjoint nuclear operator given by 

0~,,~) ~, =u.~%k) fora~l h ~H 

Definition 2.2 

An H -valued stochastic process is a map &~(-~.}; TxJ~-~ H which is measur- 

able on T~.~ using the Lebesgue measure on T . 

Consider the following estimation problem: 

Estimate the random variable ~ (L~(~#) H) from the random variable 

y ~ L~ {J1.,/~,~ l(C~ Let ~ ,  ~ ~ H~ be the closed subspace of 

L4~,~/~) H) which is isometric to L&~k~ P() , where (K~) is the 

probability spaced induced by y . Then we shall be concerned with two types of 

estimates. 

Definition 2.3 

The best global estimate ~ = ~{~| 7) of ~ from ~ is the projection 

The best linear estimate ~ of X from y is ~ = A. ~ , where AOe ~(~,H) 

minimizesE{aX. A ~  over all A~ ..~.,(K)H~ 1 
If)~ and ~ are Gaussian,then the linear and global estimates are identical. 

The following class of stochastic process is used for our application model and 

is a special case of the orthogonal increments process introduced in [4]. 

Definition 2,4 
An H -valued compound Poisson process {6~,1{17 ~ (T } 

oa 
<2.1) ,,,,~) = ~" q,;(~) ¢~ 

where i e ~ )  is a complete orthone~.~l b~sis for H 
real compound Poisson process such that 

(2.2) 

is such that 

and where ( (1~(.,~,}; e(r~ is a 
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where ~" ~t) .: ~(~) -- ~ ~ and 

For convenience we rewrite (2.2) as 

~o 

w ero 

and A is the covariance operator of 

(2.4) 

We remark that 

oO 

5,,o 
£~,;j _4 h~, ~j (h,;~: = &;..) 

and is such that 

We now define a stochastic integral for these processes. 

and 

eo 

& ~ o  

Definition 2.5 

Let ~[~) be as in definition 2.4 and suppose ~ ~%(~; ~(H)~) , the 

class of strongly-measurable ~(~4 7 H) -valued functions with ~J~ ~'~$ ~ ~o 
I Then we define the stochastic integral 

o ~ o  o t.~o o 
t 

~ ( , )  ~:~?(5) is a well defined H -valued stochastic process with the properties 

(2.6) 
@ 

We shall be concerned with the following stochastic evolution equation 

(27) ~ , ~  ~ A ~ , ~ .  + 8 a,t,~ 
[ 

where A is the infinitesimal generator of an analytic semigroup 

B ~ ~[i4~, ~{~} is as in definition 2.4, ~a~ L~(~j~) •) 

-valued stochastic process. 

~ on ~ ~ 

and tL(~} is an 
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By a solution of (2.7) we shall mean the following: 

Definition 2.6 

(2.7) has a strong solution ~,if L~ ~ C(~'~ ~&{~)I,~G ~ ) )  w.p.i. 

and ~] satisfies (2.8) almost everywhere on ~X~ . ~ is unique if whenever 

~I and ~ are strong solutions, 

~ T  
Theorem 2. i 

(2.7) has the unique solution 

o 

provided the following extra assumptions are satisfied. 

(=8) x,: j,, II A $ 8e : Iff a, < 

(2.9) 

3. ESTIMATION THEOREY FOR INFINITE DIMENSIONAL 

SYSTEMS WITH POISSON TYPE DISTURBANCE 

We summarize the results of ~], specialized to time invariant systems corrupted 

by Poisson type noise disturbance. 

With ~ "~ and ~j ~ ~) as in § 2, consider the following abstract 

system and observation models. 

J 

(3.2) 
o 

where J~ is an analytic semigroup on N with generator A , B ~ ~(H~j ~) 

is as in definition 2.4, ~o ~ L&[-~j~)~) , C ~ ~j ~K) and W is a ~- 

dimensional Wiener process with incremental eovariance matrix the identitiy. 

The estimation problem is to find the best linear unbiased estimate &~o) 

of the state ~[~ at time ~ , based on the observations ~ ~ O_ ~ ~ ~, 

Under the above assumptions, the optimal filter ~(~ .~ & ~ ~) is given 
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by 

(3.3) 

where 

and 

(3.4) 

~ ~) is the unique solution of 

P(~:) is the unique solution of the Rieeati equation in the class of self 

absolutely 

and 

adjoint weakly continuous operator-valued functions with ~ AI P~)~ 

continuous for x~ y ~ ~A'). 

PLo) ~. ro 

- < A S x ,  P(f2~> 

= 4 B A S ' x , j  

x , 2  r. W C A ' ) .  

Moreover, P(O ~ ~aD~ ( ~ } - - ~ J ) .  

The optimal smoother ~ ( ~ I ~o) , where ~, y £ is given by 

(3.6) 

where 

(3.7) 

The optic1 p~edictor ~ (Clio) , where ~ 7 ~o is giwn by 

.o  t 

~"0 ' • 

To obtain differential equations for the estimators we need to impose the 

following extra assumptions 

£.~o o 
(3.8) 

(3.9) 
L~.o 
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Then writing & (~) = ~l[:J + ~ )  
stochastic evolution equation 

, 9(~) is the unique solution of the 

(3.1o) 

and V(e) 

~I (ol  = 

is hhe unique solution of the deterministic differential equation 

V(o )  '= o 

For the smoothing problem ~o ~ ~ , writing 

& (~1%o) = V~) ~" ~(~/~o) , we have that ~(~,) is the unique strong 

solution of the stochastic evolution equation 

l 

For the prediction problem 

where ~m= E { ~ #  , we h~ve that 

solution of the stochastic evolution equation 

(3.13) 

and ~ ~) 

~ 6 0 , writing 

is the unique solution of 

is the unique strong 

(3.14) 

~.(0|  = o  

0O 

4. POLLUTION MODEL 

The problem considered by Kwakernaak in ~] is an environmental problem of river 

pollution. For his model of the pollution by chemical wastes he assumes that the number 

of deposits in a section of the river of infinitesimal length ~)~ ( ~ being the 

distance coordinate along the river) behave according to a Poisson process with rate 
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parameter ,~,(~ ~ where ~) is a given function. He assumes that the number 

of deposits in non-overlapping sections are independent processes and that the amounts 

of chemical deposited each time at location N are independent stochastic variables 

with given distribution H ~ and characteristic function ~X The time evolu- 

tion of the concentration of the chemical at location ~ at time ~ 7 ~IE~) is sup- 

posed to be given by 

(4.1) ~ ~.~X) a-. ~/ ~ 

where D is the dispersion coefficient, V the water velocity and ~{~,~) is the rate 

of increase of the concentration at {~j~ due to the deposits of chemical wastes 

described above. 

Along the river are a finite number of measuring stations which continuously 

measure the observed local concentrations of the chemical. Kwakernaak solves the 

problem of reconstructing the times, locations and amounts of deposits from the meas- 

ured data by approximating (4.1) by a finite dimensional model and applying the finite 

dimensional filtering theory using a martingale approach. 

Here we consider the problem of estimating the concentration of the chemical at 

any point along the river at any time in the past or future, based on continuous noisy 

measurements in time at a finite number of measuring stations along the river. Our 

approach is quite different in that we retain the infinite dimensional character of 

the problem throughout and show how the final equations can be solved by eigenfunction 

approximations. 

4.1 Characterization of the pollution process 

In order that (4.1) describes a stochastic differential equation it is necessary 

to define ~ {~ as some suitable distributed stochastic process. Following the 

discussion in ~ 2, we try a model of the following type 

where ~ ~ H = L ~ , O  for each ~ C [ o j ' r ~  models the amount of 

pollutant dumped at ~t~X~ and Ao is the diffusion operator defined by 

f ~ :  s ~ ,  ~ H  and ~=o at ~o ,L~  
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In order to apply the theory of stochastic differential equations on a Hilbert 

space from ~2, we need to establish that ~) is a compound Poisson process 

according to definition 2.4. 

In [8~, Kwakernaak defines %(~J formally in terms of a random functional, that 

is 

~#e : ~ -~ L,. ( -% X,T) R) is defined by 

From his assumptions on the polluting process, he deduces that for each ~ ~ .~ 

F~. [~ is a real valued compound Foisson process with rate parameter ~ ' ~  

and jumps with characteristic function ~ i ~ ~J ~ ( ~ Lk(r@) ~JK. F~ ¢al has 

characteristic function 

( 
o 

We now show that provided ~) and H~ are suitably chosen ~'GI~(.o ~ induces 

an H -valued stochastic process ~) defined by (4.4) 

Lemma 4. I 

Suppose ~-~ ~-~ o~X_~L}is a real stochastic process with characteristic 

function ~)X (if) and )k(~) is a real function on ~02~). 

Let H"  L,~{o,t.) and ~¢#¢t be the following orthonormal bases for 
I(=o 

Under the following assumptions on ~ and H2¢ 

2. 

% ~) induced by (4.4) is a well-defined H -valued stochastic process 

Poisson process with characteristic function 

6 

where ~kL~) is a real compound 

If we further assume that 
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then ~) 

(4.9) I 

where A 

A t ,  K, = 

is compound Poisson process according to definition 2.4 with 

clO 

K, '=  

is a nuclear, self adjoint operator on H , given by 

and 

(4. i0 

Proof 

So 

~j ~ A~kj 

From (4.4), ~[*~ =" ~ ~)~k ; where ~ I =  ~(eK.~ . 

~ )  is a real compound Poisson process and has the character~ ~tic function 

E,,~p ~ (; ~ [~j((~(~--#] ~ ~ and hence its moments are 

-~" p~ t , say 

(4.12) E{~.(,)~-,. Eiq,:t,~} 'z'- £JA(x,)o~£{H~xS,~[x.. .  %ke say 

L.LIJtxT ", H3 provided Z /~ 
k=o 

and ~(.~) 
o¢) 

K-- I 
From (4.6), it may be verified that 

6zk6,O e~ (:~(~c = o for C~ k 

oo ~ ~o 

dlO 

and similarly i~/~ ~ ~ " (Note that ~ = 0 =, /~, o )" 

~O and 
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So under assumption (4.7), q~e) e L ~ d ~ T ~ 4 )  

By construction ~ ~) has independent increments and assumption (4.8) 

ensures ~[~) satsfies definition 2.4,(4.9) and (4.10) follow from (4.11), (4.12). 

Remark 

(4.7)(b) is necessary, since as ~ ~ for odd 

4.2 State and observation models 

In the filtering theory, both A and its adjoint appear in the equations and 

since A0 is not self adjoint this makes an eigenfunction expansion approach 

difficult. So instead we transform the original model (4.2) to the following: 

(4.13) 

where 

A 

(4,14) 

is a self adjoint operator on ~ given by 

and ~ ~ ~H) is given by 

We suppose that the initial state ~m has zero expectation and covariance 

operator ~m given by 

(4.16) ~ = 4~$~, +j ~ ~ ~ ~ ~ ~o--O, 

A has the eigenfunctions 

semigroup ~ given by 

(4.17) 

I~ given by (4.6) and generates the analytic 

~h,e.> = e.tx) for h ~ 

(4.13) has the well-defined mild solution 
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(4.18) 

6 

which we can take as our state model for the evolution of the concentration of 

pollutant in the river. 

Now we show that (4.18) is a strong solution of (4.13) (see definition 2.6). 

From theorem 2.1, we need to verify 

C= 1 

(4.20) 

Writing 

and 

(4.21) 

~ t  

B e c -  = ,,~q,~j ~ o , we find 

e t .a So A J~-~ lS~ "za, -" c,~t. i . .  (J' -~'c") 
By direct calculation, we find that for ( . ' ~ j  

and since 

~ , ~ .  ,'j ( ~a ' -L~ '~ ' - j  ") 
m 

d~  

• ~ A; (~ , we have 
. ~1, 3 # . A  

c--t j-t - (~" - - i  ¢-} 
and (4.19) is satisfied. 

(4.20)is similarly verified. 

For our observation process we take 

(4.22) gzle) -- C u l ~ ) d k  + d ~ o - ~  

where 

and C ~ ~ ~H, R K) is given by 

(4.23) ( C " l j  " J ~ ( X i  (I.,,~, for small ~ >O 

xj -¢  
This approximates point observations at the fixed locations ~Is "" / X K • 

W IE~ is a ~ dimensional Wiener process with covariancematrix the identity 
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4.3 Solution to the estimation problem 

Our model in ~4.2 satisfies all the assumptions of the theory of ; 3 and so 

there exists a unique optimal estimator, given by (3.3) - (3.7). 

In order to obtain computable solutions we first obtain recursive equations for 

our estimates and the covariance of the error process P~6). From /3 ~) is the 

unique solution of the differential Riceati equation 

(4"24) I~ < P[+I ~Jhlor - + P(x;~+j ~ h ) =  4 BA[~'-f-, h)-'~/~P(e')h~4"4Pfe)C')'C)C'hT~,#.,. 

P(O) = ?0 ~, h e *~ ~(A) (note that . 

We shall try for a solution ~ )  of the form 

t,j. 1 

Substituting (4.24) into (4.23) and equating coefficients of ~ 5" ~ C  ~--- ~ 
we obtain £~I ~I 

l O) r)= J 

I ( : t  n=! 

and Amn = ~ ~m~Qn¢,' 

~L.+p~ ++ ~T+"-~ 
We now verify that the additional assumptions (3.8) and (3.9) are satisfied and 

hence ~ ~ ~ [~e) may be expressed in differential form. 

From ~ 3, we must verify the following 

(4.28) ~ A+ + j~ It A J + e ~  lld.~ < - ,  

(4.29) 

Now A % ~ e i -  - 4 i  -i'~ e e i 

and so ~ A ~ ~ e~ [[ _~ constant for ~'O 
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and ~ A~" ~ ~o 

Y. II A Is e," 

• ensures that (4.29) holds. 

--~ const. 

and so again (4.28) is satisfied since ~ ~ ,<,o0. 

So ~ ~ ~ t ~ )  may be expressed in differential form. 

let us try the following expansion: 

For the optimal filter 

~'I  g=l 

where 

we obtain the following equations for /~£~ 

(4.31) 

(4.32) 

is deterministic. Substituting in (3.10) and (3.11) 
o,0 

V(t) - c~ v,'ct) ~Z 
and V[ (() 

n = I n. - /  

• o ;. 
+ ~" p,,,~ t'~ 2" a.,r d z,- &) 

r/~l Y = /  

I V~'lo) =o 

So the filtering problem may be solved recursively from the infinite systems, (4.26), 

(4.31), (4.32) for ~ ~£)~ U((e~ ~ Vi (~) respectively• using the usual 

truncation methods. 

For the prediction problem ~ ~o writing 

and substituting in (3.13) and (3.14) we obtain the following equations for ~ (~)~ 
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(4.34) [ ~ ( ~  ~ ~ ~ . ~  ~ i ~ / ~ .  

Similarly for the smoothing problem ~ , writing 

you may obtain equations for ~ r ~ )  
We remark that ~(~) j ~(~j('b) and ~ ' ( ~  t . )  

of stochastic evolution equations, whereas V¢" (~) and 

functions. 

are unique strong solutions 

~)s~(~) are deterministic 

Returning to the original problem of estimating the amount of concentration 
A 

~ ~o) 7() of pollutant at C@j~) based on measurements ~ |  ~) 

. .  o we have 

A 
Finally we note that the estimators ~ (~ ~o) obtained are the best linear 

estimates and not the best global estimates, because the noise process ~/~) is 

Poisson-like, In the Gaussian case the best linear estimates are also the best global 

estimates (see # 2), The advantage with working with linear estimates is that you 

obtain Kalman-Bucy type recursive equations. 

In his finite dimensional approximation Kwakernaak found the best $1obal estimate 

and so obtained an infinite set of filtering equations which he then proceeded to 

develop approximation algorithms for, In his conclusions he notes that little if any 

improvement was obtained over the Kalman filter and this is not surprising since the 

K~Iman filter approach obtains the best linear estimate to a high degree of accuracy; 

whereas the global estimate was obtained using approximating algorithms, which will 

incur errors. 

In our infinite dimensional approach we again obtain Kalman Buey type equations, 

but an infinite system this time. However they can be conveniently solved by an 

eigenfunction approach. 
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