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SUMMARY 

In this work a new class of nonlinear systems is introduced, for 

which the denomination "bounded rate systems" is proposed. This class 

appears to be quite relevant for its capability of modeling important 

physical phenomena in different field such as biology, ecology,engine- 

ering. 

Bounded rate systems situate between bilinear and linear-in-con 

trol systems, so that a bounded rate system theory may be usefully in- 

vestigated and developed exploiting already available results. 
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I~ A NEW CLASS OF NONLINEAR SYSTEMS 

The need of introducing nonlinear systems in modeling the physi- 

cal world is presently an unquestioned fact especially in a number of 

important nontechnical fields like biology, ecology, socio-economics. 

It is equally well know that the main obstacle in this direction 

is the difficulties presented by the analytical study of a general no~ 

linear system. 

This situation motivates the actual trend, to spot out specific 

classes of nonlinear systems which possibly couple the advantages of 

not too difficult analytical study to the ability of modeling relevant 

classes of phenomena. 

A noteworth step in this direction was the introduction of the 

class of bilinear systems, which in fact appears quite valid from an 

applicative point of view and in the mean time allowed to achieve a 

number of important theoretical results [1,2]. 

Another significant example of this trend was the study of a more 

general class of nonlinear systems, that is the systems linear in co~ 

trol for which relevant results are available expecially on thecontro~ 

lability and optimal control [1,3,4,5,6]. 

This paper is intended to give a futher contribution along the sa 

me line by introducing a new class of nonlinear systems. Denoting as 

usual by x the n-dimension state vector (t:) and by u the p-dimension i~ 

put vector, this class is defined as follows: 

o 

x(t) = {(x) + Nxu + Bu (1.1) 

where the operator ~:~ ÷ R n, ~ open subset of R n, is assumed to be lo- 

cally Lipschitzian (2) with at most a linear growth with x, i.e. 

11+(x) i! < c~llxll + c~ , xE~ (1.2) 

and N:R n x RP+R n and B:RP+R n are respectively bilinear and linear ope 

rators. 

It is important to note that as it will be proved in Th.3.1, the 

assumptions on ~ (local Lipschitziness and at most linear growth in Q) 

(I) The state vector is taken finite dimensional only for sake of sim- 

plicity. The extension to the infinite dimensional case is immedi~ 

te. 

(2) Joe. Lipschitzian within any closed bounded set in ~. 
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guarantee existence and uniqueness of solutions of eq. (1.1) in Q.They 

furthermore appear to be large enough to include all cases of practi- 

cal interest. 

This class situates between the ones of linear in control and bi- 

linear systems. Indeed (1.1) is clearly linear in control with the re- 

strictions that the free response (u = 0) has a bounded growth rate 

and the u dependent term is at most linear in x. On the other hand, it 

is shown in the Appendix that the assumptions on ¢ are equivalent to 

assume: 

%(x) = F(x)x + f(x) (1.3) 

where the operators F:~ ÷ R n×n and f:~÷ R n are locally Lipschitzianwith 

uniformly bounded range. This enlightens the structure of ¢ and at the 

same time shows that (1.1) may be also considered as a bilinear system 

with an instantaneous, locally Lipschitzian and uniformly bounded state 

feedback h (Fig.l), as soon as one defines 

F(x) = A + N' h(x) (1 .4 )  

f(x) : Bh(x) (1.5) 

2 

h(x) 

= Ax+N'xv+ Bv [ x 

Fig.1 

Due to the result (1.3), the considered class of systems may also 

be represented by the general form: 

£(t) = F(X)X + f(x) + NXU + Bu (1.6) 

It is interesting to point out that the u-dependent part of the dyna- 

mics in (1.6) has essentially the same behaviour as in linear in con- 

trol and bilinear systems, while the free response dynamic is indeed 

characteristic of the new class of systems. In fact it is neither li- 
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near as in bilinear systems nor a general nonlinear function as in li- 

near in control systems but it is allowed to have at most a linear 

growth with x. For this reason in the following we shall denote the s~ 

stem (1.6) bounded rate system. 

The motivation for the study of bounded rate systems is twofold. 

First of all it is important to underline the relevance of sucha class 

of systems from an applicative point of view. Indeed, as is also shown 

by the few examples of sect.2, the bounded rate model (1.6) play a fu~ 

damental role in a number of important fields like in biology, ecology, 

engineering, socioeconomics. 

Second, because of the structure of bounded rate systems at mid- 

dle way between linear-in-control and bilinear systems, it is expected 

that important theoretical results may be achieved for such a class of 

systems both exploiting known results for linear-in-control systems and 

suitably extending bilinear systems properties. 

As far as the case of bilinear systems in a feedback loop is con 

cerned, it is important to note that if the feedback operator h in Fig. 

I is taken to be linear a quadratic system is arrived at. 

Quadratic systems may be considered bounded rate within any boun- 

ded set in the state space, so that the local properties of the two 

classes must agree. In particular, if one proves that all the possible 

solutions for a given quadratic system must be confined within a boun- 

ded set in the state space,that system may be regarded as a bounded ra 

te system. The global properties may well be different in that a qua- 

dratic system in large ( i.e. a bilinear system with a feedback which 

is linear without saturations on the whole state space) is not obviou~ 

ly bounded rate° However such a feedback is not much realistic from an 

applicative point of view and at the same time creates some difficulty 

in proving global existence and uniqueness properties of the solution. 



475 

2. SOME EXAMPLES OF BOUNDED RATE SYSTEMS 

In this section we intend to show how several natural and techni- 

cal processes may be conveniently described by means of bounded rate 

models. We shall consider some important examples in the fields of bio 

chemistry, population dynamics, and engineering. 

2.1. Immune response 

The immune response is the sequence of those phenomena which in a 

mammal are triggered by the injection of a foreign substance (antigen) 

and lead to the production of specific proteins (antibodies) able to 

bind the antigen and to neutralize it. 

As shown in [8,.9], under suitable assumptions, the immune response 

may be described by the following set of equations: 

aC(K,t) _ aC I-KH I 
at I--~Ps(KH) C(K,t) --~C(K,t) + 8Pc(K) (2.1) 

C 

aCp (K, t) 
KH Ps(KH) C(K t) - I (K t) at - 2~c ~ ' TLCp ' (2.2) 

- asC p (K,t) +as C (K,t) +2(~, ( jt aS (K,t) Ps (KH) 

at i(t-@) I +K-------H-- C(K,0)dO+ 

Kc(K) S(K,t) H(t) + c(K) B(K,t) I 
- -- S(K,t) (2.3) 

T 
S 

aB(K,t) _ Kc(K) S(K,t)H(t)-c(K)B(K,t)- I B(K,t) 

at ~B 

dH (t) _ 

dt 
-H(t) 

K 2 K 2 

f Kc(K) S(K,t)dK+ / c(K)B(K,t)dK-J~-H(t) + 
~H 

K 1 K 1 

(2.4) 

+ Hi (t) (2.5) 

where: 

C(K,t) , Cp(K,t) , S(K,t) , B(K,t) are respectively the concentration 

densities of immunocompetent and memory cells, plasma cells, 

antibody sites, immune complex, at time t, for a given affi- 

nity constant K (K ranges from K I to K2) ; 
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H(t) , Hi(t) are respectively the antigen concentration at time t and 

the amount of antigen introduced per unit volume of circula- 

ting fluids up to time t; 

Ps(KH) is the probability that a cell with affinity K be stimulated; 

Pc(K) is the original distribution of immunocompetent cells with 

respect to K; 

is the proliferation rate constant of stimulated cells; 
C 

is the production rate of immunocompetent cells from stem 

cells; 

,~ are respectively the rate constant of antibody production by 
s s 

plasma cells and the basal rate constant of antibody production 

by memory cells; 

i(t) is the additional antibody production intensity by a memory 

cell generated t instants ahead; 

o(K) is the dissociation reaction rate constant of the immune eom 

plex; 

~c~Tp,<s~TB~H are the time constants for death or removal of the 

various species. 

The set of equations (2.1)-(2.5) defines a nonlinear dynamical mo 

del for the immune response which is distributed with respect to K. In 

it Pc(K) and Hi(t) are two independent variables, which may be conside 

red as inputs: 

u(t) = 
pc(-) 

_ ~i (t) _i 

(2.6) 

Let us define the state vector x(t) : 

x(t) = i:C(',t) Cp(',t)S(',t)B(" ~t)xT(',t)H(t)_-] T (2.7) 

where ~(. ,t) is the state vector for the linear time invariant system 

with impulse response i(t). From (2.1)-(2.5) we see that the u-dependent 

part is linear in u and independent of x, while the free response part 

includes products of state variables by suitable functions of x. Thus 

the set of equations (2.1)-(2.7) may be given the form: 

x(t) = F(x) X + BU (2.8) 
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where B is a linear time invariant operator. As far as the operator F 

is concerned, it may be proved [9] that all above mentioned functions 

of x are locally Lipschitzianand with uniformly bounded range, as soon 

as we restrict them to a suitably defined open subset £ of the state 

space X. Furthermore, it was also proved that, choosing as initial sta 

te x(t o) any point in a given SC ~, possible solutions of (2.8) must 

evolve within S itself. 

Therefore, as soon as x(t o) is chosen in S (which is the only pos 

sible choice in agreement with the physical meaning of x components), 

eq. (2~8) may be regarded as a particular case of (1.6). 

2 . 2 .  Enzyme K ~ n e ~ c s  

Let us denote by S,E,P,C respectively the substrate,the enzyme, 

the final reaction product and the substrate-enzyme complex. Once we 

keep the total amount of enzyme e ° and substrate s o positive and con- 

stant, the general stoichiometric equation for the enzyme kinetics is 

[10]  : 

Ka K2 
S + E ~--~ C --~P+E (2.9) 

K- I 

where KI , K_I , K2 are positive reaction rate constants. Denoting the 

concentrations by low case letters eq. (2.9) leads to the dynamical 

equation of Michaelis-Menten: 

s = K-I c- KI s e 

p=K2c 

e + c = e  
o 

S + c + p = s  
O 

(2.10 

Defined: 

txll I:l 
g ~ X 2  ~- 

U2 e 0 

(2.11 

(2.12 
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eq. (2.10) take the form: 

x = F(x)x + N x u + Bu ( 2 . 1 3 )  

where: 

i--K- i 

Fix )  = i 

L-K~ 

, =  

KI 

N1 -- 

~0 

- K, (x~+x2) 

oj 

- K_ 1 -If 

I 

-K2 I 

N2 = I 

Lo 
o] 
o 

(2.14) 

( 2 . 1 5 )  

B = 

K-I 0-  

!_ K~ 0 _] 

( 2 . 1 6 )  

The system (2.13) is a quadratic one and may be looked at as boun 

ded rate as soon as we show that for any initial condition x(t o) in a 

bounded subset S of R 2 , any possible solution stays in S. Indeed, de- 

fined: 

S = {xE R2: x,E [0,So] ~ x2E[0, So] } (2.17) 

for x(t o) E S let t ! t o the first time in which any of the two compo- 

nents x~ , x2 changes its sign. Due to the continuity of solutions, we 

have the following cases: 

a) xl ({) = 0 , xl ({) < 0 (2.18) 

Recalling (2o13), this means: 

K_~ (ul (t) - x2 ([)):< 0 (2.19) 

and therefore x2 ({) > s O . This implies the existence of a 0 < tw<[ such 

that: 

x2 (t ~) = s o , x2 (t') h 0 (2.20) 

From (2.13) we then deduce: 
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-K*xl (t') >0 (2.21) 

which is in contrast with (2.18). 

By a similar proof, we can also reject the possibility that xl 

changes its sign in ~ through a horizontal tangent flex point. 

b) x2 ({) = 0 , x2 ([) < 0 (2.22) 

Recalling (2.13) this means: 

xl (t) >_ul ([) = s O (2.23) 

This implies the existence of a 0 < t'< such that: 

xl (t') = s O , Xl (t') ~0 (2.24) 

From (2.13) we then deduce: 

-x2 (t') (KI +K_I)-KISoeo>0 (2.25) 

which is in contrast with (2.22). 

c) x, ({)=x2 (~)= 0, x, ({)< 0 , x2 (t)<_0 (2.26) 

Recalling (2.13), this means: 

K=ul (t) = X2s o!0 (2.27) 

which is in contrast with the positiveness of s o . 

By a similar analysis, it can also be rejected the possibility 

that xl (t) > s o , or x2 (t) > s O , for t~ t O 

2.3. Bacterial growth 

The continuous bacterial colture problem is a typical problem in 

biochemical engineering [11]. A dynamical model for that process which 

was proposed in [12[ in connection with an optimal control problem is 

the following: 

= K2s2+ s +K~ - q b (2.28) 
" sb 
s =(I - s)q K2s2+s +K~ 
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where bt s are respectively the bacterial and nutritive substrate con- 

centration in the growth vessel, q is the input and output flow rate 

and K, , K2 are suitable positive constants which determine the bacte- 

rial growth rate as a function of s. Defining: 

X = 

xl -] 

I = 

I_ x2 _[ I_ s 

(2.29) 

u = q (2.30) 

eq. (2.28) take the form: 

= F(x) x + Nx u + Bu (2.31) 

where: 

F ( x )  
I h(x2) 0- I 

= I [ 
L-h (x~) 0 _I 

h(x2 ) = X2 
K2X2 2+  x 2 +  I<1 

( 2 . 3 2 )  

N = 

~_ 0 

o iol 
, B = 

-1  _l 1 

( 2 . 3 3 )  

As in previous cases~ defined 

S = {xER 2 : x,>0 , x2> 0} (2.34) 

we first show that for x(t o) C S and for non negative u, any possible 

solution of (2.31) stay in S. Indeed by integrating the first equation 

in (2.31) we obtain: 
(t 

xl (t) x~ (to)e -jtO[u(~) | 
h(x2 (T))]dT 

= (2.35) 

which for x~ (t) > 0 is always nonnegative. As far as xz is concerned, 
o -- 

assume there exists a { > t such that: 
-- o 

x2 ([) = 0 , x2 (t) < 0 (2.36) 

From (2.31) it then follows x~ ({) = u([) < 0 which is in contrast 
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with the assumed nonnegativeness of u. With a similar reasoning, we can 

also reject the possibility of x2 changing its sign through a horizon- 

tal tangent flex point. 

Finally, h and therefore F is easily seen to be uniformly Lipschi- 

tzian and with uniformly bounded range on an open set ~CS.In fact,the 

derivative of h(x2) vanishes for x2 = ± /KI/K2 = ± x2 

In the case 4KIK~> I, h is uniformly Lipschitzian on ~ = R 2 

suplh(x~) I = lh(-x2)[ < 

xE~ 

(2.37) 

On the contrary, in the case 4KIK2 ~ I, we may take 

X2 = {xER 2 : x2 >-~--} (2.38) 

where x2 is the greatest singular point of h(x2) ; again ~CS,h is uni- 

formly Lipschitzian on S and 

suplh(x2) I = max(lh(~) I , lh(+x2)I) < ~ (2.39) 

x~ 

In conclusion, eq. (2.31) may be looked at as a bounded rate sys- 

tem, for any x(t o) E S and nonnegative u. 

2.4. Interacting Populations 

A well-known and fairly general model to describe the dynamics of 

n interacting species is given by the Volterra-Lotka equations [13,14] 

n 
= + ~ i = I 2 ..,n (2.40) xi Kixi 9 ~ijxj xi . . . .  

where the xi's are the population numbers of the i-th species, the Ki's 

are real numbers, not all positive, representing the intrinsic increa- 

sing rates and the ~ij are antisimmetric real numbers (aij=-aji; ~ii=0) 

representing the "predation efficiency" of the i-th species on the j-th 

one. 

The model (2.40) is clearly a quadratic one and may be rewritten 

as: 

x = F(x)x (2.41) 

where: 
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F ( x )  = 

T 
K, + a l  x 0 " • • 0 

T 
0 Ks + ~2 x •-- 0 

........................ ° ~'" i 

[ 

0 0 • • - K +s T x 
n n 

(2.42) 

T 
a = [s, ~ "'" e ] (2.43) 

1 11 12 in 

The model (2.41) is therefore bounded rate as soon as we prove that 

all possible solutions with initial state within a given bounded set 

S, stay in S itself. 

Indeed, it was proved that if det[aij] ~ 0 (which may happen only 

for n even) then, the system (2.40) admits a unique nontrivial equili- 

brium point x, which is in R+ = {x:x. > 0, i = 1,2, .... n}and is stable. 
n l 

Furthermoref a scalar function %(x) may be defined on R+ : 
n 

which on each trajectory takes a constant value, greater than or equal 
n 

to $i xi" As a consequence, any trajectory starting in R+n stays in R+.n 
n 

F o r  e a c h  c o n s t a n t  c ~ ~ i  x i '  w e  n o w  d e f i n e  t h e  s e t :  

S c = {x~R+n : %(x) _< c} (2.45) 

Clearly, being % constant along the trajectory, S c contains all 

the trajectories starting from points belonging to S c itself. Finally, 

S c is bounded; indeed, if xE Sc , it easily follows that: 

X. x. 
i ! C 

- -  - in _ .  < -=- , 

x i  x i  -- x i  
i = 1,2 ..... n (2.46) 

which implies a finite upper bound for each x i. 

2.5. Chemical reactor 

The system under consideration is a continuous-flow stirred tank 

reactor, in which a single irreversible chemical reaction takes place. 

The dynamics of this system are easily described by material and heat 

balance equations [15]: 
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= F 
~ (C o - c)-Koexp [- ~T ]c 

F -T) u (T-Tk)+(-AH) +--V (To V pCp pCp o exp(- R~)C 

2.47) 

where: c,T are respectively reactant concentration and reactor inter- 

nal absolute temperature; Co, T o are the reactant concentration and 

temperature in the input flow; T k is the coolant temperature. We also 

used the following notation: 

F, input and output flow rate, assumed constant 

V, reactor volume 

K = K O exp(- R~ ) , specific reaction velocity constant at temperatureT 

U, product of area of the coolant surface in the coil and its heat tran 

sfer coefficient 

(-AH)> 0 , enthalpy variation in the reaction, assumed exothermic 

p,Cp , density and specific heat of the input flow. 

We now define the constants: 

E F = U__U__ (-AH_____~) ; K4 =~ (2.48) Ks =~ ; Ks VpCp ; K3 = P Cp 

and the state and input variables; 

(2.49) 

u = l 
Ul 

u2 

u3 

I c° = T O 

T k _ 

(2.50) 

Then eq. 

where: 

(2.47) take the form: 

x = F(x)x + Bu (2.51) 

- K---i-4 )I ~(KI + K o e x2 ) 0 

F (x) = _ K4 

K3 K o e x~ - (Ks + K2 

(2.52) 
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B = 

-KI 0 0 

,_0 KI K2 i 

(2.53) 

The function F is locally Lipschitzian with uniformly bounded range 

in the open set ~ = {x@R2 : x2 > 0} . To prove that (2.54) is actually a 

bounded rate system, we now show that, defined: 

S = {x~R2; xl >_ 0, x2> 0 } (2.55) 

U = {u : ul (t) > 0, u2 (t)>0, u3 (t)> 0} (2.56) 

for any choice of X(to) in S and of u in U (which are the only physi- 

cally meaningful choices), any possible solution of (2.51) stays in S 

itself. Indeed, the first equation in (2.51) may be integrated out: 
K4 

_ " I t x2 (<) 

xl (t) xl (t o ) e )to(KI+Ko e )d~ = + 

~t 

+I e 
t 
o 

t K4 

-~ (KI + K e x2 (z))d~ 
J e o 

K1u~ (e)d0 (2.57) 

and therefore xt (t o ) ~0 and ul (8) ~0 imply xl (t) ~0. 

As far as x2 is concerned, if we assume that there exists a time 

> t such that: 
- o 

x2 ({) = 0 , x2 (~) < 0 (2.58) 

from the second equation in (2.51) we get: 

K1u2 (~) +K2U3 (t) < 0 (2.59) 

which is in contrast with the assumed positiveness of u2 (t) , u3 (t) . 

2.6. Nuclear reactor Kinetics 

Other important examples of quadratic systems which are also boun 

ded rate systems are the usually adopted models for the nuclear reactor 

kinetics. 

As is extensively reported [16,17] a model for the free response 

of a point reactor with one group of delayed neutrons and one feedback 

region with Newton cooling is: 
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(T-T o) + 
~, + Ic 

= 1 

c = 9 - Ic (2.60) 

= K(v - Vo ) -?(T - T O ) 

where ~ is the neutron density, c is the precursor density, T is 

average reactor temperature, with equilibrium values respectively 

Vo' Co - I-X Vo' To" Furthermore: 

= temperature coefficient of reactivity 

8 = delayed neutron fraction 

I = precursor decay constant 

1 = neutron generation time 

I/K = reactor heat capacity 

I/7 = mean time for heat transfer to the coolant 

Defining: 

an 

X = [xl I I X2 = C O 

x3 _ T o 

(2.61) 

equations (2.60) take the form: 

x = F(x) x (2.62) 

where: 

F(x) = 

~B C~ 

- y ~ - y(Vo+Xl) 

y -~ 0 

K 0 -y 

(2.63) 

The system (2.62) is clearly a quadratic one so that all we have 

to prove is the uniform boundedness of its possible trajectories. For 

that purpose let us define the set S: 

S = {xER3: xl >- Vo, x2 >-C o } (2.64) 
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and the scalar function V on S: 

[ F< ] I X[ Xl X2 X2 ~ 2 
V(X) = v O !_-~O -in(l+ ~o ) +Co -In(1+-~o ) +~-ix3 

(2.65) 

V is a Lyapunov function on S since V is positive definite on S and 

is negative semidefinite along the trajectories of (2.62) which belong 

to S (~) . Let us now define the subset SLCS: 

S L = {xER3 : V(x) ~ L } (2.66) 

Recalling (2.65) we see that each of the three terms at the RHS is no~ 

negative in S, and therefore each of them is bounded above by L in S L. 

This means that in S L each of the three components of x belongs to a 

closed bounded interval. 

Thus for any L, S L is closed and bounded. Moreover, for any initial 

state x(t o) E SL, all the possible trajectories stay in S L. Indeed,would 

this not be the case, there should exist a t such that x(t) E S, t ~ t, 

and x(t) ES- S L. But this is impossible since x(t) E S for t~{ implies 

that V(x({)) cannot be increased with respect to the initial value; so 

that V(x(~)) ~L and therefore x({) ~ S L- 

As a conclusion, the model (2.62) is bounded rate in S L , for any 

L < ~. 

2.7. Other examples 

Other important examples of bounded rate systems may be found in 

virtually all the applicative fields when a multiplicative control is 

indeed a bounded function of the state itself. This for instance may 

happen in macro-economics. In [18,19] a model is proposed for the growth 

of a national economy, which in [10] is interpreted as a bilinear sys- 

tem: the state is the vector of total national output and the multipl~ 

cative control is the matrix of coefficients of material inputs. As a 

matter of fact, this control may be taken as a bounded function of the 

state, thus generating a bounded rate system. 

Another interesting case in ecology is the insect-pest controlm~ 

del [20] where the state vector is the insect population at different 

ages. The multiplicative control is build up by two terms. The first 

(e) Despite of the semidefiniteness of V, it has been shown [17] that 

the origin, which is the only equilibrium point of (2.62) in S, is 

actually globally asymptotically stable. 
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one is an intrinsic control which describes the effects of overcrowding 

and is a bounded function of the state; the second one is the external 

control implemented bY releasing a sterilized male population. 

A final example in engineering is the heat exchanger: the coolant 

flow rate which acts as a multiplicative control on the heat exchange 

process [2] may well be thought as a bounded function of the tempera- 

ture (state) by means of an external feedback loop. 
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3. EXISTENCE AND UNIQUENESS OF SOLUTIONS 

A first important theoretical result that may be established for 

a bounded rate system defined by (1.6) : 

o 

x = F(x) x + f(x) + Nxu + Bu (1.6) 

is related to the problem of existence and uniqueness of its solution. 

We have the following: 

THEOREM 3.1o Let us consider a bounded rate system (1.6) with the 

assumption: there exists a subset S c ~ and class U of continuous input 

functions such that for any initial condition x 0 = x(t O) ES and any u~U 

any possible solution of (1.6) takes value x(t) c S, ~t h t O . 

c S, u@ U eq. (1 6) admite a unique solution for Then for any X ° , . 

all t > t . 
-- 0 

PROOF. First of all, note that, being F, f locally Lipschitzian 

and uniformly bounded in ~ D S, and being u continuous for any 

(to,Xo) E RIxS~ there exists a R O = { (t,x):It-tol £a,l[x-XoH ! ~} such 

that: 

a) R C 
o 

b) the RHS of (1.6) ~ in Ro, is uniformly bounded, continuous in 

t for each fixed x and uniformly Lipschitzian in x. 

Therefore (1.6) admits a local unique solution through (to,Xo). 

Furthermore the RHS of (1.6) in Rx~ is continuous and recalling 

(1.2) is such that: 

l[F(x(t))x(t) + f(x(t)) +Nx(t)u(t) + Bu(t) [[ <_CI llx(t) [[ + C2 + 

+ {INiJ flu(t)[I [Ix(t)[] + IJB[[ [[u(t)[I = 

: KI (t) llx (t) I[ +K2 (t) (3.1) 

where KI (t) ~ K2 (t) are suitable scalar positive continuous functions 

of t. 

The scalar equation: 

Z = KI (t) Z + K2 (t) (3.2) 
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admits a unique solution for any initial value z(t o) E R and for all 

t ~ t o . Consequently, due to Thm. 5.6.1 in [7] any local solution of 

(1.6) may be uniquely extended for all t > t . 
-- o 

RE~£ARK I. All the previously mentioned examples of bounded rate 

systems satisfy the assumptions of Thm. 3.1. and therefore admit a uni 

que solution in large. 

REMARK 2. A similar theorem, for systems evolving on group, is 

proved in [21 ] . The set of assumptions seems to be similar to that one 

of Thm. 3.1. and somehow more restrictive than the latter, in those ca 

ses in which both are applicable. 
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4. CONCLUSIONS 

In the previous section we enlightened the relevance of the class 

of bounded rate systems. We showed how a number of important physical 

processes may be included in that class. 

From the theoretical point of view a first general result for hou~ 

ded rate systems was given in Sect. 3. We must however point out that 

the theory for such a class of systems is still to be developed and in 

our mind this should be an important task to be pursued. 

In particular results on stability, controllability and optimalcon 

troi would be useful. As far as stability is concerned, a first contr~ 

bution was given in [9] where asymptotic stability for the immune res- 

ponse model was proved exploiting the general structure of a bounded 

rate system as a bilinear system in a uniformly bounded feedback loop. 

This is a good example of how to achieve theoretical results for 

bounded rate systems by suitably exploiting already available results 

for bilinear systems. 

As far as controllability is concerned, a number of important re- 

sults are already available for the class of linear in control systems 

[3,4,5,6,21,24] which hopefully will be a useful starting point to build 

a controllability theory for bounded rate systems. 

We also mention some papers [25,26] in which it is shown how rode 

rive controllability properties by looking only at the u-dependentpart 

of the state equation. Under this aspect bounded rate systems behave as 

bilinear systems, for which some results on controllability theory are 

already available [I]. 
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In order to prove eq. 
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(I .3) we may state the following 

(x) = F(x)x + f(x) , VxC 

PROOF. Sufficiency. If (A.2) holds, then for xl , x2 

bounded subset MC~ we have: 

THEOREM. Given an open subset ~ of R n a necessary and sufficient 

condition for a function ~ : ~ + R n to be locally Lipschitzian with the 

growth property: 

II~ ( x )  II ~C, IlxlI +C2 , ¥ x ~  ~ (A.I) 

where CI ,C2 are nonnegative constants, is that there exist two functions 

F : ~÷ R n×n, f : ~ + R n which are locally Lipschitzian and with uniformly 

bounded range such that: 

(A.2) 

in any closed 

11% (xl) - ~ (x2) II = IIF(xJxl + f(xl ) - F(x2)x2 - f(x2) II 

< liE(x1 )[I Ilxl-x2 tI+IIF(x:)-F(x2)U tlx2 II+[tf(xl ) - f (x2) I1  

< maxIIF(xl)II IIx~-x2 II+ maxllx2 II LF II xl-x2 If+ Lf~xl-x211 
x~ ~M x2 EM 

<_ L%11x: - x~ II (A.3) 

where LF, Lf are the Lipschitz constants of F, f in M. Consequently 

is locally Lipschitzian in ~. As far as (A.I) is concerned, we have: 

ll%(x) [] = llF(x) x+ f(x) []<llF(x) I[ llxH+llf(x) H <CI IIxH+C 

Wx~ (A. 4 

i]f (x) U in ~ . where C] , C2 are the finite upper bounds for ilF(x) l[, 

Necessity. Denoting by %i the i-th component of %, it obviously is 

locally Lipschitzian and inequality (A.I) implies: 

I~i(x) I ~CI Hxfl +C2 , i = 1,2 ..... n , VxE~ (A.5) 
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so that necessity of (Ao2) is proved as soon as we prove for each i the 

existence of two functions F i : ~+ R n, fi : ~ ÷ RI ' locally Lipschitzian 

and with uniformly bounded range, such that 

%i(x) = FT(x)x + fi(x) 
i 

Vx~ ~ (A.6) 

Eq. (A.6) will now be proved by means of a constructive procedure. 

For a fixed p > 0 we construct the function f. : d+ R ~ in the follo- 
i 

wing way: 

! %i (X) 

! 

f i ( x )  = j C lp  + C2 

I 
1 
<-CI P - C~ 

3_ -- -- 

xC~?={xC ~: %i(x) > Clp +C2 } (A.7) 
1 

xE~"'={xEC: ~i(x) < -C1p-C2} 
1 

By construction f has a uniformly bounded range. Moreover, it is 
1 

also locally Lipschitzian in ~2 since for any choice of xl ,x~ E ~: 

fi(xl) - fi(x2) i < I~i(xl ) - %i(x2) i (Ao8) 

We now observe that the distance of ~'.'<J ~"' 
l 1 

be less than ~. In fact, recalling (A.5), (A.7) , 

from the origin cannot 

if xC 9':fUji" " than 

Ci Itxll +C2 L l~i(x) I > Cap +C= ÷ llxll > o (A. 9) 

Therefore the function F.:~÷ R n : 
l 

F (x) 
1 

0 ~ x~ i 

#i(x) - fi(x) 

T 
X X 

x , x E ~ ? U ~ ':' 
1 1 

(A. I0) 

is well defined. 

The functions fi' Fi defined in (A.7), (A.10) already satisfy (A.6) 

in all ~. Due to the growth property (A.5) F i turns out to have a uni- 

' we have F (x) = 0 and in 97 U~" we formly bounded range; indeed in ~i i l i 

have: 
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l~i(x ) - fi(x) l I~i(x) ]+Ifi(x) ] 
l]Fi(x ) II = [I X II 2 [[xl} < < 

- II x II - 

< CI }Ixii +C2+C1p +C~ < 2CI + 2C__~2 (A.11) 
-- II x II -- P 

Finally because of the definition (A.10), F i is a continuous fun- 

ction in ~ which in particular is a constant on ~i' while in ~?iu~"'1' is 

the product of locally Lipschitzian functions (~i(x)-fi(x) and x) by a 

[+). is easily seen continuous uniformly bounded function Therefore F i 

to be locally Lipschitzian on ~. x x 
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