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Abstract 

In the paper a definition is given of a class of generalized Lagran- 

glans, and some simple properties of them are discussed, especially 

those related to the topology in the set of constraints. A general 

formulation of the method of multipliers is presented and a theorem 

characterising convergence of this method in case of linear-quadratic 

problems in Hilbert space. Numerical examples of computing the optl- 

mal control of time lag systems to terminal functions are presented. 

The results indicate that the effectiveness of the method of multi- 

pliers depends on the choice of the norm in the set of constraints. 
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0. INTRODUCTION 

The paper presents a definition and selected simple proper- 

ties of a class of generalized Lagrangians. Many authors have 

recently furnished definitions and discussed the properties of 

generalized Lagrange functionals- see e.g. LI] L6] ~7] [8] 

However, their research has been primaril~ limited to non- 

linear or convex programming in R n or to convex problems in 

more general spaces ~ . A more detailed study of so called 

shifted penalty func~ionals in Hilbert space has been presented 

[31] • theoretical investigations ere intimately re in 

fated to practical problems of computational techniques and be- 

come especiallny fruitful when applied to the mentioned shifted 

penalty method (often called the method of multipliers) ~0] [16]. 

A number of papers appeared discussing the convergence, the rate 

of convergence and the relation to the more abstract daality fra- 

mework [2] ~5] [2~ ~ [2~ and others. Except ~ i2~ [30] 

[31] all consideration have been carried out in R n as the space 

of constrainws values. 

The goal of this paper is to extend several notions to a ge- 

neral class of optimization problems including ~hose with infini- 

te dimensional or integer constraints. Only the main facts are gi- 

ven in Order to rather indicate the possibility of generalization 

than describe it in detail. The duality theor~ for these genera- 

lized Lagrangians, leads in a natural wa~ to ~-conjugates of 

resemble  enchel  onjugates with the functions, 

scalar product (or duality) substituted by an arbitrary function 

of two variables. The presentation below has much in common with 

the [261 . However, some simple properties are thesis of Seidler 
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shown connecCed with the topology in the set of constraints 

values: in finite dimensional case essentially one topology is 

used, while generally it pla~s non-negllgible role. In the last 

two paragraphs the application of the method of multipliers to 

a problem wi~h linear operator constrain;s is discussed and nu- 

merical examples are described which show that ;he proper cnolce 

of the penalizing norm, consis;en~ wi~h the topological features 

of ;he cons~ralnlng operator, influences strongly the computatlo- 

nal effectiveness of the algorithm. The examples presented are 

optimal control problems for time-lag systems. 

I. PRELIMINARIES 

Suppose that two sets are given, Y and P, a famil? 

{Yp} p~p of subsets of Y indexed by p~P and a functlo- 

nal Q : Y--~ R. Then a famil~ of optimization problems can be 

defined: 

(I~) minimize Q(~) over ~ YPo 

where Po can change over P. 

Such a problem statement allows the discussion of linear, non- 

linear as well as integer programming problems and ex~remal 

problems wi~h infinitely man? constraints, for inssance ~hose 

of optimal control ~heor~. Besides, the description is simple 

and clear. 

The fami 13, 

"inverse images" 

~Xpj P& P determines a family ~_Py~ y6 Y 

in P : 

(1.2) p e Py <~> y e Zp . 

Problem (1.1) can be equivalently stated as 

(Io3) minimize Q(y) over y: po~ Py. 

of 
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The family fYp~ 

partial orderima: 
paP 

inzroduces also in P a natural 

(1 .#) P ~ P~ <-~-~> Yp C Yp,. 

If we suppose for a while that ~his partial order is such that 

for every NeY with P / ~ there exists inf p6P then 
Y Y 

P ~ Py 

(~ .#) is equivalent to 

minimize Q(y) over y: inf p ..< D o . 
p~P 

Y 

This reformulated problem is in no way easier to treat ~hen 

(1.1). However, i~ suggests a relaxation of (~.I) into what is 

called a "surrogate problem" [5] [9~ . Given a functional 

f : P,-~-R, solve 

(I.5) minimize Q(y) over y: Inf f(p) .~ f (pc). 
peP 

Y 
Any solution to (I .I) clearly solves (I .5) and it is always 

possible to find a function f such that (I .5) is equlvalen~ 

to 0 .I). 

Suppose now that instead of one function f we have a fa- 

rally of such functions, namely, a function ~: P~'W'---~R where 

w is another set. Any WeW defines a function ~(',w): 1 ° = R 

which can be viewed as the "distrlbuwion of prices" on pertur- 

bations p e P. 

Then the value 

( 1 . 6 )  K(y,w) - i n f  ~ ( p , w )  - ~ ( p o , w )  
P ~ P y  

c a n  be  u s e d  to  m e a s u r e  t h e  d i s t a n c e  f rom a g i v e n  y to  t h e  

set of admissible solutions YPo in terms of prices correspon- 

ding to the "distribution of prices" w eW. Assume further that 

(1.7) supK(y,w) = i ÷ co ' Po~ Py 
weW 0 ' Pc & Py . 
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Then solving CI.~) is clearly equivalent to solving the follo- 

wing problem without constraints: 

(1.8) minimize sup L (y,w) over y 6 Y 
w~W 

where L(y,w) we define to be the aeneralized Imgr~ngian asso- 

ciated with (I .I): 

CI.9) L ( y , w )  ~ QCy) ÷ ~ (:y ,w) 

= Q ( y )  + i n f ~ 0 ( ~ , w )  - ~ ( p o , W )  . 
p e p  y 

For similar definitions see e.g. ~6 ~ ~22~ and especially ~26~. 

All have been given for nonlinear programs with constraints 

in R n. 

we give now the examples. 

Suppose P is a topological vector space 3 S : Y --~ P 

- an operator and D ~ P a (closed) convex cone with vertex 

a~ zero. Consider the following nonlinear program: 

(~.I0) minimize Q(y) subject to Pc" S(y)~ D. 

Then for p ~ P,  Yp = ~ y ~ Y: p- sCy)¢ D~ and the  p a r t i a l  

order ( ' t .~ )  coincides wi~h ~he partial ordering introduced by 

the cone D. 

(1) Let W = D ~, the dual cone, and ~(p,w) z < w, p)' . Then 

K(:~, w) = <w, s(y) - pc > 

and L is the classical Lagrange functional. (I .7) clearly holds. 

(ii) Suppose P is a lattice wivh respec~ ~o the order intro- 
+ 

duced by D, i.e. for each p e P max Co,p) = p exists Call 

function spaces are lattices with respect to the cone of nonne- 

gative functions}. Suppose ~ : P-~-R is a functional satis- 
! 

fying t~e following conditions (p ~< p/ means p - paD): 
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I 

( a )  o . < p  ~ 

(b)  o.< p < p 

=~ ~(p)  _<'t(p') 

==~ "f~(p) <"~(p')  where p~'p'Cz~ p.<p", p ~ p ' .  

(o) Y(p; =y(p÷ ÷ C-p) +) . 

Let W = R+ × P, so tha~ w~W is a pair w = (9 ,v), ~ ~ O, 

v& P. Define 

( ~ . ~  ~(p,w) = ~(p- v ) .  

According to the definition of Yp, 

Hence 

Inf~(p,w) =~ InfhU(p-v) ~ Inf~%'Cp ') ~((Sfy) - v) +) 
p ~ P~ p~ sCy) p '$ s(y) , v 

(I.~3) ~(~,.~ - ~((s(~) - v)*) - ~h~(po - v). 

It remains to verify (1.7). If PoPPy then 

(S(y) - po)+> 0 and by (b) 

~(y,( S ,Po)) = ~[~ ((s(y~ - po )+) - ~  (o)] ---~ + 

If Poe Py then S(y) ~ Po' (S(y) - v)+~(po - v) + and 

in virtue of (a) and (0) 

~(y,~> : ~[-~((s(y) - v) +) " ~ ( P o  " v)] W 

~['~((s(y) - v) +] -~((Po " v)+~ ~ o , 
while 

(Ill) Suppose P is a Hilbert space. Set W - R+~ P, as 

before and take ~ > 0. Define 

~(p,-~- ~lJp-vll ~ 

We have from (I.~2): 

inf~(p,w) = ~ ~nf ~l(p'#[ - I#(S(y) v) D ~ 
p 6 Py p'e y)-v +-D ~ " 

pD ~" . I- where denotes the projection of p onto D - see 3"I~. 
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The n 

K(y,w . ti(s(y -vl Dll - tlpo- • 

Property (i.7) is verified slmilarl~ as above. For ~ = 2jL(y,w) 

with ~his K is the augmented Lagrangian of W~erzblckl [303 [31]. 

(iv) We now specialize the two preceding examples to the case 

= ~ = .. = .. pl of P = R n, D p (pl .,pn): pi~ O, i ~, .,m, : O, 

Suppose ~ : R --~ R is a monotone" in R~ ~ nonnegative function 

wi~h ~ (0) : O. 

Define ~ under (li) by 

n 

Then the generalized Lagrangian (1.9) with K as in (I.~3) 

is practicall~ the generalized Lagrangian employed by Mangasarian 

Assume now for simplicity that m = n = I and Pc = 0 so 

that we have only one inequallt~ constraln$ and that ~(a) = a 2, 

a 6 R. Then the above K(~,w) becomes a special case of 

(1.1~) with P = R, D = D ~ = R+, ~ = 2: 

K(y,wl = ~((s(~) - v)+) e - ~v 2 . 

Substltu~e h = 2 ~ v and note that 

where 

-'7-b , a i-~- b ° 

One can therefore obtain also the augmented lagrangian of 

Rocka fellar [19]. 

For further use we shall need ~he following definition. The 
/k 

pl~a! functional Q : P--~ R is defined by 
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/% 

(1.15) Q(p) = Jnf Q(N). 
Y& Yp 

in virtue of (I .7) the optimal value for (I .~) is 

%(po ) = inf sup L (y,w). s~ 6 > 
N&Yw6W 

2. DUALITY 

The theory of Lagrange multipliers for convex problems is 

~tTonaly related to the theory of Fenchel conjugate functions in 

convex analysis 61] [I~ 68] . During last several years some 

attempts have been made to extend the tools of convex analysis 

to nonlinear problems (e.g. ~'|] ). In particular, the notion 

of ~ -conjugate functions has been introduced b~ Weiss [27~ and 

Vogel [28] and applied to the study of augmented Lagrangians sl- 

milar to (I .9) by Seldler [26]. Given the primal problem (I .16) 

its dual ma~ be formulated: 

(2.1) Find 

Always 

(2.2) 

Define 
A 

L (.) = 

sup(D) = sup inf L (y,w) 
we ~ weW y ~Y 

/k 

sup (D) (' Q (po). 

inf L (y,w) 
yeY 

and note that 

~ ( w ) -  t n f t n  f ~Q(y~ ÷ ~(p,w)- ~(po,W)~ = 
y~ p6P 

Y 

y cY- " 
P 

. ~ '^ ) =- ~ (Po,W)+ i~f ~(p,w) + Q(p i " 
p6P 

For a given function F : P ~-~ R Weiss {27] defines its 

- ~ - conjugate by 
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(2.3) F*(w> = sup - ~(p,w) - F(p)i = - Inf { ?(p,w) * F(p) 
p~P " pEP 

and the second -~-conjugate of F by 

(2.~) F~p) = Sup ~(p,w) F 9 (w) U~ . 
w&W ~ 

Therefore we max write: 

(2.6) sup (D) = %'~ (Po)" 

Therefore the problem when inequality (2.2) becomes an equality, 

so that we have the weak duality 

(2.7) Inf sup L (y,w) = sup inf L (y,w) j 
y w w y 

is equivalent t o  asMn~ when 

(2.8) Q(Po = ~ (Pc ~" 

The well known theorem of Moreau-Fe~cke£ ~I ~ states 

that (2.8) holds for a convex function Q defined on a topolo- 

gical vector space P at any Pc if and only if Q is l.s.c. 

Somehow similar requirements are needed in our general case. 

Theorem 2.1 

(compare (7]) 

(3.7) or, equivalently, (2.8) holds iff there is a sequence 

{ Wnl ~ C W satisfying 
n=l 

A A 

(2.9) Q(p) . Q(po ) ) ~ (Po,Wn) . ~(P,Wn ) _ !~n ~'P ~ P" 

P r o o f .  

Q(po ) = Q~"~ (po) = sup inf{~(p,w)-~(Po,W) + Q(P)I 
w p 

each integer n ~ 0 an Wn~ W exists such that 

~(po ) .< In~ [ ~ (p,.~ - ~(po,W) . ~(p)~ + p n 

or, which is the same 

iff for 
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A ^ I ¥~ 
Q(po ) ~ ~(p,w) -~(Po,W) ÷ Q(p) ÷ n 6 P  

a s  s t a r e d  i n  ( 2 . 9 ) .  

I n  t h e  t h e o r e m  o f  M o r e a u - F ~ c ~ C ~  t h e  two p r o p e r t i e s  a r e  

d i s t l n ~ u i s h e d :  c o n v e x i t y  and  l o w e r  s e m i c o n t i n u t t y .  L y i n g  a s i d e  

t h e  q u e s t i o n  o f  wha t  may be  h e r e  c a l l e d  " ~ - c o n v e x i t y "  ( some  d e -  

f i n i t i o n s  e x i s t  [28~ b u t  t h e y  a r e  n o t  v e r y  c o n s t r u c t i v e )  we o b -  

s e r v e  some simple facts concerning the lower semlcontinulty of Q 

and its conjugates. 

In the sequel let lw (resp. ~p ) denote any topology in 

W (resp. P) such that ell functions ~(p, "), p6 P (resp. 

q (., w), w 6 W) are u.s.c, in U w (~ p). Observe that functions 

(o,w), wE W generate at least one such topology in P, for 

instance the weakest possessing this property. It is interesting 

to no~e that the convergence in P in this weakest topology is 

characterized as follows: 

Pn~ ~ Pc ~-> hm~(Pn'W) ~ (Pc 'w) w~W . 
n n ' 

s o  t h a t  ~pn~  c o n v e r ~ e s  r o  Pc t f f  i t  c o n v e r g e s  i n  t e r m s  o f  a l l  

"distributions of prices" ~(',w), wOW. In the examples descri- 

bed in the preceding section this topology is equivalent to weak 

topology in P (example (i)) and I;o norm topology (example (Ill)). 

Proposition 2.1 

For every function F: P--~ R , l ~* is l.s.c, in T and ~ 
w 

in Ip. 

Proof. 

It is sufficient to show [11~ that for an] ~ ~R the level set 

: FX'(W)~o(~ is closed. It is, as a product of closed w~W 

sets: 
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{. : F~(.)<~ ={[.,-~(p,.)- F(p)d~ Yp~P] -- 

-. ~ .[.,: ~ ( p , . ~ )  - F ( p ~  - ,~ ~ . 
p e p  

The proof for F ~ is analogous. 

Proposition 2.2 

If Q(po) = ~ (pc) Shen Q is 1.s.c~ in Ip at Pc" 
Proof. 
For any integer n ~ I take W2n as in (2.9). Since ~(-, W2n) 

is u.s.c, in ~p, for some neighborhooed U of Pc 

Vp eu (P'W2n) ~ ~ (Po'W2n) + 2--~ 

Combining this with (2.9) we have 

Q (Po)  " n 

Lower s e m i c o n t i n u i t y  o f  t h e  p r i m a l  f u n c t i o n a l  Q(p)  o v e r  Y 

is characterized i n  the following way (compare Do!eckl [3~ for 

the case of linear operator equality constraints). 

Theorem 2°2 

For ~ ~R denote A~ ~p: 'Q(p) 
A 

Then Q 

(2.1o) 

Proof. 

, PB~ = [p: pePN,Q(y)(d~ • 

is l.s.c, on P (in any topology I; ) iff 

4, /"hz l~d-,.~ 
~-),o 

.A 

Sufficiency of (2.10) is clear, since all level sets of Q are 

closed. 

Necessity. Observe that for ~ ~ R 

~o tha t 

(2.11) A~ ={ ] 
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and 

6~0 

To prove the converse inclusion, take pe/~P-Bc~+~. 
~->0 

is l.s.c., for ann ~c > 0 there is a neighborhood U 

such t h a t  

a d. Now let £2 O; there is p Um P B o~+~ ' i.e. 

Q(y) ~ ~+ £ for some y e ypl. 

Together with (2.12) this yields 

+ +: . 

Since ~, £ ~ 0 were arbitrary, Q(p) ~<+ d and 

Therefore (2.10) holds. 

peA~. 

2% 

Since Q 

o f  p 

Example 

Suppose Y is a topological, P a topological Hausdorff vector 

space and we consider the nonlinear program (1.10) described pre- 

viously 

minimize Q(y) subject to p-S(y) &D 

where S : Y ~ P  is continuous and D~P is a closed set. 

If the level sets B~ , @e R of Q are compact then the sets 

P B~ = ~p ,p: S(y) + d,  d & D ,  y&B~ = S ( B ~ )  * D 

are closed for ann ~ , being a sum of a closed set and a compact. 

In virtue of (2.1I) this means that (2.10) holds and ~ is l,s,c. 

In the context of generalized Lagrange functlonals (1.9) also 

other questions can be discussed, for instance the problem of 

strong duality instead of weak duality (2.7): 

( 2 . 1 3 )  inf sup L (y,w) -- max inf L (y,w). 
y w w y 
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/% 

Supposing a maximizing w~W exists (and is known!), it would 
/% 

be possible to compute the optimal value Q(po) in one unconstrai- 

ned minimization of L (., w), which is a very desirable property. 
i% 

It turns out that (2.13) is equivalent to supporting Q at Pc 
/% 

by ~ (Po' 4) - ~(', w) for some (maximizing) w g- W: 

(P)" Q (Po) ~" ~(Po' ~) " T(P, w) V p £- P. 

(Compare ). 

One ma~ further proceed with deriving different problems 

from (1.1) with help of functions ~(', w) (constrained Lagran- 

gian minimization, surrogate problems etc+) and discussing their 

propertie+. See [+] 56] ~7] t+8] Lg]. 

5. EVERETT THEOREM AND THE METHOD OF MULTIPLIERS 

Theorem 

Suppose ~ satisfies 

(3.1) L C~, w) .< L (y, w) + ~ Vy~Y 

and p 6 P~ is such ~hat 

Then ~ is an ~ -solu$ion to the problem (I .I) with Pc chan- 

ged to p, i+e~ 

Q (~) <~ Q (~) + ~ , ~ e Y ~ .  

Proof. is c l a s s i c a l  [+] 

From the algorithmic point of view it would be most desi- 

rable to establish the existence of a w & W such tha1~ ~ de- 

termined by (5.~) would satisfy the constraints, i.e. Pc e p~. 

Then the whole constrained problem (I .I) would reduce to the 

single minimization of L (', w) without constraints. Since such 
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A 

a w = w would be generally unknown, one should appl~ an itera- 

tire scheme to find it. 

Assume from now on that for en~ w e W and y & Y wi~h 

PN / ~ the set P(y, w) is nonempty, where 

P(y, w) = { p ~ Py : K(y, w) = ~ (p, w) - ~(Po' w)~ . 

Given £ $ 0 and w e W denote by Y ( E , w) the set of all 

~ satisfying (5.I), i.e. being % -minimal points for L (., w) 

over Y. Finally, denote 

P6 (w) = ~ P(~, w) . 

Then one can find an £ -solution to (1.1) minimizing ~-appro- 

L(., w) over Y Iff a weW exists solving the in- ximately 

cluslon 

(3.3) Poe Pc (') " 

Suppose now that: 

(i) P is a Banach space, W =V c_ p and for w = veV 

~ ( p ,  v) = ~ ( p -  v) 

where  ~ 0 i s  t r e a t e d  a s  a p a r a m e t e r .  

(ii) For some ~ = ~ > 0 and each v e V an element Yv 

exists minimizing L (', v) over Y. 

(iii) (for simplicity) For this ~ = ~ o and all v e V 

the set Po(V) contains precisely one element, say Pv. 

Under these assumptions (3.3) becomes: 

Po = Pv 

or 

(3.4) v = v ~ Po - Pv = T(v). 

This is a fixed point problem and one mmy trN to solve it ite- 

ratively using the method of successive approximations: given 
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initial v I e V, one takes 

(3.5) v n ~ T (Vn.1~ , n = 2,3, . . . .  

The algorithm therefore works as follows: 

I. Select ~ =~ o and initial v I" Set n: = I. 

2. I~Inimlze L (. , v n) over Y obtaining Yn = Yvn and 

Pn = Pv ° 

3. Update v n by setting 

(3.6) Vn+ | : = v n + ~(Po " Pn ) ' ~>0 fixed. 

~. Set n: = n+1 and go to 2. 

It should be noted that the formula (5.6) is independent of the 

function ~ and ~o chosen, although Yn and Pn clearly de- 

pend on them° 

This is the algorithm (shifted penalty method, method of 

mult ipl iers)  of Hestenes [I0~ and l%well ~6 3 for equality cons- 

t r a in t s  in R n, generalized to inequality constraints in R n and 

in  llbert space by  iorzbickl rate of convergence 

of this algorithm for P = R n has been investigated in 1971 b~ 

Wierzbickl [29~ and later by several authors, most completely b~ 

Bertsekas [23. All of them used quadratic functionals. For the 

theoretical discussion of this algorithm see also {10 3 6193 
for P = R n [30~ [31] for P= a Hllbert space, E23] i_2q [25~ 

for variational and optimal control problems and others. 

It is clear that one may attempt to solve (3.@) by other 

methods than successive approximations, e.g. Newton or variable 

metric method, provided She operation v ~ v- T(v) possesses 

desirable properties. 
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4. THE SHIFTED PENALTY METHOD FOR LINEAR OPERATOR CONSTRAINTS 

In this section we shall investigate briefly the application 

of the shifted penalty method to an important special case of the 

optimization problem (1.1) and present a theorem precislng the 

conditions under which this method is convergent. The next section 

contains numerical examples. 

Suppose Y, P are Hilbert spaces and S 6 ~(Y, P). The 

problem is 
2 

(@.I) minimize I17~ subject to Sy = Po " 

This is a special case of (1.10) with the cone D reduced 

to (OB . For everT Po ~ ires (~.1) has a unique solution ~(p~. 
2 

We set W = V = ireS and ~(p,v) = ~ il P - v U , as in the pre- 

ceding section, treating here ~ as a parameter. The shifted pe- 

naltN method has been formulated above and the Lagrangian is here 

2 l j2 2 
( 4 . 2 )  L ( T ,  v )  = ii T li + sl i  sT  - v - ~ I / P c  " v II 

Theorem ~.1 

The s h i f t e d  p e n a l t T  me thod  w i t h  t = 1 c o n v e r g e s  f o r  each 

Po ~ imS, initial v 1 eimS and ~} 0 if, and onlT if imS is 

a closed subspace of P. In this case the rate of convergence is 

estimated by: 

il %,1, - Vn P 1 (~ .3 )  where ~0. 
ii v n - Vn_ 1 il 1 +~'~ 

Proof. 

Sufficiency. The mapping T defined by (3.@) can be here 

explicitT expressed. For ant v 6 P, unique Tv exists minimi- 

zing L(" , v) over P. B7 (4.2), this yv satisfies 

s" Ll(Yv , v) = Tv , ~  (S ~ v "  v) = O. 
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The corresponding Pv is equal to Pv = S Yv and hence from 

the above equation 

Yv = - ~ s * ( p v  " v ) ,  

Pv = s Yv = - ~ SS~(Pv " v) 

and 

Since ImS is closed, by Banach closed range theorem ~52~ imS ~ 

also iso Operator S is an injection from imS onto ImS ; 

both these subspaces being complete, S poesesses a continuous 

inverse S~ -4 : imS ~.--- ImS in virtue of the open mapping 

theorem [32]. Denote 9~% = il S ~'i iF 2 (norm computed with respect 

to ImS ~) and A = I + ~ SS ~. Clearly, A ~= A and A : ImS---~ i m S ,  

Moreover, for each p elmS 

2 ~lls~pll2 <p, A p> = <p,(I +~SS*)p>= JlP iI ÷ 
2 

>~ ii pil 2 ÷ ~ II p II 2 = (i + ~,~ II p ii 

virtue of Lax-Mi1~ram theorem [32] , A ~#Z In (imS, ireS) admits 

the continuous inverse on ImS and 

(4.5) Ii ~-'~ il < ~ • 
+~'~ 

Now, for v ~ imS, Pv ma~ be cslculated from (a.a): 

Pv = A'I ~ A-~ A'I SS v = ( A v  - v )  = v - v .  

The mapping T: ImS--d~ P is defined by (5.@): 

T(v) = Po - Pv + v = Po + A-~v 

Hence for every Po' v eimS, T(v) d-imS end for v , v elms 

tl T (v '~  - T(v~')~l _< i lA-~ l t  tJ v ' -  v " n - ~  ~ fi v ' -  v"ii . 
I +~,?c 

Since ~ 0, T is a contraction mapping in a complete metric 

space imS. Hence the algorithm converges to a point v -- T(v) 
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with the rate of convergence (@.3). 

Necessity. If the algorithm is convergent, then the equation 

v = T(v) 

admits a solution for each Pc ~- imS. According to the defini- 

tion of T (see the preceding section), for each Po ~- ImS an 

element v e P exists such that the unique optimal solution 
/% ^ 
y(po ) to (@.I) minimizes L(-, v) over Y. By (@.2), y(po ) 

must satisfy 

n (y(po) , v) = y(po ) + ~ S (S y (pc) - v) = 0 

so that 

(4.5) y(po) e Ires . ~Po ~ Ires • 

Suppose IreS is not closed, so that by closed range theorem 

~32~ (kerS)L\ ireS W co~teins an element Yo" Select Pc = SYo 

For any y such that Sy = Pc obviously <Yo' y - Yo > = O, 

so tha~ 

2 2 2 

iiyil - ilYoli ~<Y ÷ Yo, Y- yo>--d~- Yo, Y" Yo>=lJY-~oli 

) Hence Yo = Y(Po' the unique solution to (~.I) Then (@.5) 

Fields a contradiction, since Yo ~ imS~'" Therefore imS must 

be closed. 

The "if" part of theorem @,q can be also obtained from a 

general theorem [3q]. The condition that imS be closed in more 

P is intimately related to the existence of Lagrange multipliers 

for the problem (@.I.)with any pc £ ires [~3][21]. In the con- 

vex case the existence of Lagrange multipliers is sufficient for 

the convergence of the method of multipliers, as has been showh 

by Rockafellar for P = R n [20]. 

In the course of sufficiency proof the constant in (@.3) 
~2 

was taken to be ii ~-1 ii . Thus, the smaller is the norm of 
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il S~'-?II , the quicker the convergence. Therefore the rate of 

convergence depends on the norm chosen; this is confirmed also 

by the numerical results. 

It is also possible to apply the shifted penalty method 

with ~Z ~ I $ but then ~ and ~ must satisfy 

o<z<  1 + ~___t_ ,  2 +~c~ 

the rate of convergence is expressed b~ 

li Vn- v~-11i " t l  ÷ I + ~  

and is the best at ~ = I @ 

5. NUMERICAL EXAMPLES 

Two optimal control problems for linear time-la@ systems 

with fixed final function were solved numerically. 

Example 1 

(5.~) 

2 
minimize Q(y) = 5 ~2(t)dt 

0 

for the control y¢-L2(0,t) 

subject to constraints 

i x ( t )  = - x ( t - 1 )  + y ( t )  
x ( t )  = o 

a.e. in [0,21 

V t e  [ - 1 , 0 ]  

(5.2) x ( t )  - I )2 - - . ~  (t-1 

This problem was taken from [12]. This is the special case 

of (4.1). The operator S is defined as follows: given control 

" F1 ,2]" The element Po i s  y (), ~oive (5.~) ~na put s~= x i 

def ined  by (5 .2 ) .  For each Y6 L2(0,2) ,  Sy ~ 1  (1 ,2 ) ,  the So- 

bolev space of absolutel~ continuous functions with square in- 
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tegrable desirative. Since ~I (1,2) C L2(1,2), one may use 

here at least two spaces of constraints: 21 = L 2 (1,2) and 

P2 " ~ ( t , 2 ) .  i~s is  closed in P2 ~nd ~ot close~ in  PI. 
Consequently, two Lagrangians can be used (we neglect the term 

ilpo vli ~ - since it does not influence the computations): 

2 2 
L I (y ' v ' I  = ~0 y 2 ( t ) d t  + ~s l  ( x ( t )  - v ( t ) )  2 dt 

2 
+ ~ (x(2)  - v (2 ) )  2 + ~  ( ~ ( t ) . ~ Z t ) ) 2 d t  ~ ( ~ , v )  = Jo ~2(t)dt 

• A~e method used was (after the problem was discretized) the ori- 

ginal algorithm of Powell ~6] ,which increases ~ if the impro- 

vement in the constraints violation was too small. Computations 

have been carried out for several values of initial ~ o ' Both 

algorithms were the same and the computational effort per one 

evaluation of I~ or L 2 was practically the same. The results 

are: 

Number of evaluation Final constraint 
of L violation 

PI =L2(1 ,2) P2=W~I (I ,2) PI =L211,2) 
~o 

L . 

0.01 742 

1 .0 816 

IO 1153 

152 

157 

161 

0.921 "I0 -3 

0.983.10 -3 

0.@52 .iO -3 

P2 = ~ ( 1 , 2 )  

0.@4.10"3 

0.92 .I 0 -3 

0.64-I O -3 

Computations have been performed on an IBM-360 in Fortran. 

The constraint violation was in both cases measured as 

~ax ~ix(t) ÷ I )2 t~[1,2] -~- (t-1 i. 
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3 
~ I m l z e  Q(~) = ~ (~(t) ~ ~(t)) 2 at 

0 
over ~ ~ L 2 (0,}) 

~ (t, =u~t) 

(5.3) ~x 2 (t) - x~ ( t -~ )  

t x~  ( t )  = x 2 ( t )  = o 

I) 

subject to the constraints: 

a.e. i n  FO,}~ 

V te [-~ ,o -] 

X 2 ( t )  = + ( t  - 2) 2 

where ( 0 , t e  [0, 3 /2 ]  
z(t) = 

• ~ , t~(sX2, 3 ] .  

For given control y ~L 2 (0,3) the operator Sy is defined 

by s y = (x~ ~2)I[2,3] "here (x~' ~2 ) solve (5.3)- The ele- 

ment Po is determined by (5.4). Since x2(" ) is absolutely 

continuous, one can put either PI = ~(2,3 ~ R 2) or P2 = 

= ~ (2,31~w~ (2,~)° i~ i~ ~ot clo~d in P~ ~nd olo~e~ 

in P2 ~13~. The corresponding Lsgrsngisns ere (slso without 

2 
the term $iip ° - vll ): 

v(})i 2 q(y,~> =~ (~(t~ - z(t))2dt + ~ix(3) - ÷ 

2 

0 

3 2 2 

2 

The computational effort per one evaluation of ~ or L 2 

was more less the same. The results are: 

I) This is not exactly the problem of (~.I) type but can be 
transformed to (4-.I) by a simple shift of zero in Y. 
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Discreti- 
zation 

of [0,53 

12 

9O 

1 

I 0 

100 

10 

I O0 

Number of evalu- 
ation of L 

200 88 

184 60 

1~L6 50 

? 
1o90 i" 

~0 
, , ,  u ,  

5o 

Final constraint 
violation 

0.6#9.10 "3 

0 . 6 2 z l  - . 1  0 - 5  

0.682 -10 -3 

> 0.012 

r 

0. 960 -I 0 -3 

0.912 .I 0 -3 

0.4456.10 "3 

0.2'r~6 -1 0 -2 

0.177,,10 -2  

o .177.10 -2 

The constraint violation was here measured by 

o = ½1, t ÷ 21)  

Summarlsing, in these two cases the computational effort for 

solving the problem with similar accurac~ was 2-3 times smaller 

for the Lagrangian I~, employing the proper norm. For more de- 

tailed description and discussion of these results see D3] [17]. 

6. CONCLUSIONS 

A class of generalized Lafiranglans has been defined asso- 

ciated with a famil~ of extremal problems with general constrai- 

ning set. The relation of these Lagranglans to others found in 

literature was indicated; it occurs that man~ facts proved for 

generalized Lagrangians of nonlinear programs with R n constra- 

ints remain true in much more general setting. Some simple pro- 
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perties of these Lagrangians have been shown, especially those 

related to the topology in the set of constraints values; also 

the Everett theorem and an abstract formulation of the method of 

multipliers ~shifted penalt~ technique) were given. A theorem has 

been provided characterizing the convergence of this method in 

the case of linear-quadratlc problems in Hilbert space. The last 

section contains numerical examples of the application of the 

algorithm to time-delay optimal control problems. 

The results show that the behavior of the finltedlmensional 

algorithm applied to the discretlzed version of inifinite-dimen- 

slonal problem may depend on topological properties of the origi- 

nal problem. 
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