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0. Abstract0 

This paper describes a method for optimizing large partly nonlinear s y -  

s t e m s .  The method is based on the GRG-algorithm, that solves problems 

with nonlinear objective function and nonlinear equality constraints. 

The original GRG-algorithm is described and its relations with LP are 

stressed. Some storage problems in large problems are discussed, and a 

special inversion procedure for the GRG-algorithm is presented. Some 

special kinds of constraints, inequalities and linear constraints, are 

considered, and it is shown~ how their special features can be utilized. 

Finally some computational results with the method are given. 

I. Introduction~ 

The purpose of the research project, that is described in this paper, 

was to develop an optimization procedure, that could be used in connec- 

tion with large econometric models. 

Econometric models have some features, that are important for the way 

the optimization procedure is designed. First of all, most constraints 

in the model are equality constraints. Many equations are linear, but 

there are usually also some nonlinear equations. There can be lower and/ 

or upper bounds on many variables. And finally there are only a few active 

variables in each constraint. 

The GRG-algorithm by J. Abadie, [i], [2], and [3], is made for problems 

of this kind, and a first approach was therefore to usa the GRG69 compu- 

ter program, that ranges very high on the list of Colvilie, [5]. But we 

very soon ran into problems, because the program needed too much core 

storage for arrays. 
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This paper describes, how a GRG-type program can be designed, taking into 

account the sparseness of the Jacobian of the constraints. The program 

uses less core storage than the GRG69 program, and due to a fast inver- 

sion procedure, it is also faster. 

In section 2 the ideas in the GRG-algorithm are described, and some im- 

portant subproblems are described in section 3 and 4. Section 5 explains 

how the Jacobian can be stored, and section 8 contains an inversion pro- 

cedure specially designed for the GRG-algorlthm. Section 7 is on the 

special treatment of inequalities and linear equations, and section 8 

shows some computational results. The conclusion is in section 9. 

2. The Generalized Reduced Gradient Method. 

In this section the main ideas in the GRG-method will be explained for 

easy reference in the rest of the paper, 

Consider the problem: 

max z : f(x) (I) 

subject to ~(x) : ~ (2) 

and ~ < x < 8 (3) 

where x, ~, and ~ are m-vectors and ~ is an n-dimensional vectorfunction, 

(n < m). The functions f and ~ are assumed to be at least one time dif- 

ferentiable with known continuous partial derivatives. 

A set of n equalities like (2) can be used to eliminate n variables. Par- 

tition the x-vector into ~b and ~n' where ~b has n elements and ~n has 

m-n elements, and transform (2) into ~b : ~l(~n )' Maybe it is not possible 

to find an analytic expression for ~i' but from the theory of implicit 
O O O O functions we have the following theorem: If (Xb~n) satiesfies ~(Xb,~n ) 

: ~ and the Jacobian ~x~. has rank n, i.e. is nonsingular, then in a 

o o 
neighbourhood of (Xb,Xn) it is possible to transform ~(~b,~n ) = ~ into 

~b = ~l(Sn )' The function ~i is differentiable, and the Jacobian is found 

by implicit differentiation: 

8~ 8_x b 8~ 

~61 ~Xb ~S -i.~ 

~Xn = ~Xn : -(~x_--~l ,,~,,xn 
(4) 
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The equation ~b : ~l(~n ) is now introduced in the objective function: 

z : f(~b,~n ) = f(51(~n)~Xn ) : F(~n) 

where F(x ) is differentiable with derivative: 
-n 

~F = ~f ~b ~f : ~f 8f ~ -i ~ 

~n ~n - -n ~n ~b ~Sn + )'~x 

The problem (i)~ (2), and (3) can now be reformulated: 

max z = F(x ) 
-n 

subject to ~n ~ ~n ~ ~n 

and ~b ~ ~b ~ ~b 

where ~b : 51(~n ) 

(5) 

(6) 

(7) 

(8) 

(9) 

The transformations done until now are very similar to those done in an 

LP-problem. ~b is the set of basic variables. They are introduced to 

compensate for changes in the non-basic ~n-variables~ so that (2) will 
~F 

still hold. The derivatives ~-~- are similar to the reduced costs in an 

LP-problem. They measure the -n influence on the objective function of 

changes in the non-basic variables, taking into account the correspon- 
~F 

ding changes in the basic variables. ~ is called the reduced gradient. 
~ -n 

The matrix ~ plays the same role as the basic-matrix does in LP. 

A major difference between this problem and an LP-problem is, that in 

the optimal solution this problem can have more than n variables between 

bounds. Thus~ it is not possible to use an optimization procedure like 

the simplex, that only works with basic solutions. 

The major steps in the GRG-algorithm are now as shown in fig. i. In 2) 

the basic variables are chosen strictly between the bounds, so that they 

can actually compensate for changes in ~n without exceeding a bound at 

once. The vector u in 4) is similar to the simplex multipliers in LP, 

and r~ is the reduced gradient found in (5). h is the reduced gradient 

projected on the simple inequality constraints, and if it is zero, the 

Kuhn-Tucker conditions are satiesfied. While choosing the optimal 8 in 

~z : ~T.r_~. Step 8b) will be 8) it can be valuable to notice, that ~18= 0 

described in next section. 

The algorithm in fig. l uses the steepest ascend method. If the nonbasic 

variables are the same from iteration to iteration, we are optimizing 

F(~n) with the same ~n-variables, and therefore it is possible to use 
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i) Find a first feasible solution, x °. 

aS 
2) Calculate ~x and choose n variables among the x-variables, Xb, 

x O 8 b with a strict inequality, and so that so that -=b < -b < 
aS 
ax b is nonsingular. Name the rest of the variables x n. 

a s aS -1 
3) Find the inverse of ~--~7' (~--~71 ' 

Com ute U T r~f ~T -ba~ ~-~ 
4 ) p : - W~-x~ "~a-~7J 

" -b -b 

8) Compute r g = ~ f  + .uT.aa~ 
- n  - n  

o 
O if rg i < 0 and Xni = ~ni 

6) Find h_ as: h i = O if rg i > 0 and x °.nl = 8ni 

rg i else 

7) If h = _0, then stop. 

8) Choose e to maximize F(x°+8.h) by solving a)-c) for different 
-n 

8-values. 

a) Xni : ~i if x i + 8"hi > ~ni 

Xni + e.h i else 

b) Find x b = gl(_Xn) 

c) z = f(xb,x n) 

9) Store the best solution until now in x ° and go to 2. 

Figur i. The GRG-algorithm. 

a conjugate gradient method. Fletcher-Reeves method [6] is probably the 

best method, because it requires a very limited amount of core storage. 

3. The implicit function x b = Sl(Xn ). 

A very important problem in optimization problems with equality constra- 

ints is to stay on the surface defined by ~(x) : -0, or in the words of 

the GRG-algorithm: Find ~b = ~l(~n )' 

The function ~i is not known explicitly, so ~b must be found as a solu- 

tion to the set of equations S(~b,~n ) = -0, where ~n is known, i.e. n 

nonlinear equations must be solved for n unknown. 
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The classical method is the Newton-Raphson method: 

g(Xb+A~b,~n ) = ~(~b,~n ) + 8x--~'A~b = 

A~b = . 18x~) '~<Sb'~n ) 

~b := ~b + ~b 

It is an iterative method, and with a good starting point it is very 

fast. As a stop criterion we can use 

n 

(gi (_Xb,Xn)) 2< One w 
i=l 

or any other convenient measure of precision. 

It can be very timeconsuming to calculate ~--$-- and invert it in each new 
~S ~Zb 

point. But ~ is continuous, so for small steplengths the matrix calcu- 

lated in step 2 of the GRG-algorithm and the inverse from step 3 can be 

used. When a constant Jacobian is used, the method is sometimes called 

the pseudo Newton-Raphson method. The use of the same Jacobi-matrix and 

its inverse both in step 4 of the GRG-algorithm and to compute the impli- 

cit function ~l is one of the main advantages of the GRG-algorithm. 

If the steplength ~ in step 8 is too large, ~(~b,~n ) can be far from ~, 

and the inverse Jacobian from step 2 may be far from the inverse Jacobian 

in the actual point, so the pseudo Newton-Raphson method does not conver- 

ge. The best treatment of this problem is probably to stop after a fixed 

number of iterations and then decrease the value of 8. 

4. Lower and upper bounds ' on the basic variables. 

Until now only the bounds on the nonbasic variables have been treated. 

When the set of nonlinear equations ~(~b,~n ) = ~ is solved with respect 

to ~b' the guess for ~b is changed in each pseudo Newton-Raphson itera- 

tion. What can be done, if one or more basic variables exceed a bound? 

The problem is basically the same that occure in LP, when a basic vari- 

able becomes too small or too large. 

The situation is: ~b lies within the bounds and ~b+A~b lies outside. 

Choose the largest ~ so that ~b+~b lies inside or on the bounds, and 
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replace ~b by Xb+a. AXb . This operation should decrease the error in 

~(~b,~n ) = 2, but not as much as for m = i. Now one of the basic vari- 

ables is at a bound, and it cannot compensate for changes in x , There- 
-n 

fore perform a change of basis: Choose an x -variable, that lies strict- 
-n 

ly between the bounds and introduce it as a basic variable, while the 

one at bound is transfered to ~n' The only thing we need in order to 

proceed with the pseudo Newton-Raphson method is the inverse Jacobian 

(~)-i~ with the new basic variables 
~b' 

~b- 

0nly one column in ~ is exchanged with another. This is exactly what 

happens in a change of basis in the simplex procedure, and the procedure 
a s -I 

for updating (~-~--) is the same. The actual calculations depend on the 
~S -1 

way (a-'~-.) is represented and will be described after the section on 

inversion procedures, 

S~ Storing the Jac0bian. 

Large problems means in this paper problems with more than 250 constra- 

ints and more than 300 variables. Therefore the Jacobian will be a matrix 

with more than 75,000 elements, and even for a large modern computer, 

this is a large matrix. 

However in most reallife problems only a few variables are active in each 

equation. This means, that may be only 1000 - 2000 out of the possible 

75,000 elements in the Jacobian are nonzero. So if only the nonzero ele- 

ments are stored with a reference to the place in the matrix, a lot of 

core storage can be saved. 

In the different steps of the GRG-algorithm we always use one column of 

the Jacobian at a time, So it is very efficient to store the elements 

column by column in a long vector with another integer-valued vector 

telling the row-number of each element, and a shorter vector telling 

where in the long vectors the different columns start. 

Example : 

{i. 0, 0. 0. 9.] 

~o o. ~ _~. ~. o.~ 
: O. 4 6 .  0.-i0.| 

I 
2. 0. 0, -8. ll.J 
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Storage pattern: 

Start column vector: 

Element value vector: 

Row number vector: 

-- 3. ~ 4  .-~_ 5 . ~  9., _i 0 iI,-~ 1., 2., ., ..~-- ,, ,, .,-- .~ ., 

i , 4 ~ 2 , 3 , 2 , 3 , 2 , 4 , I , 3 ~ 4 

5. Inversion procedures. 

Step 3 of the GRG-algorithm in fig. 1 read:"find the inverse of ~Xb, 
,~ -i 

We do not need the inverses which can easily be a 62,500 element matrix, 

in explicit form. Some representation of the inverses that makes it pos- 

sible to multiply a vector from the right or from the left with the in- 

verse, is sufficient. 

Fortunately these problems have been worked on for a long time in con- 

nection with linear programming, where the two matrix multiplications 

are used to find the simplix multipliers and to find a transformed column. 

Some of the techniques have been described in [4], [8], [9], [18]~ and 

[ll]. 

Section 6.1 will describe the idea of representing the inverse as a 

string of eta-vectors~ and section 6.2 describes an inversion procedure, 

that performs the inversion and the selection of the basic variables 

simultaneously. 

6.1 The inverse on prgduct form. 

According to the definition of an inverse matrix, the product ~ : 6-I.~ 

is the solution to the set of equations 6.~ = ~. A set of linear equations 

is usually solved by performing a set of row operations on 6 and Z. krnen 

has been transformed into the unit matrix ~, then ~ has been transfor- 

med into A'!. X = x, 

Consider the following row operations: multiply row i by i/aii , multiply 

row i by -aji/aii and add it to row j, j = l~...,n, j $ i. The rowopera- 

tions are equivalent to a multiplication from the left with the matrix 

~i: 
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Ii i aiiiiill . e . l + o l l e l e . i . . . . l l l l , +  

E o  = o o o  . + .  = l  

o o . . i . J o . o o l . , e . I . t . . . o .  

0 0 ... -ani/aii ... 0 

Now the inverse can be represented as a sequence of E-matrices, each 

specifying some of the row operations. The T-matrices are usually called 

eta-vectors - vectors, because they only differ from the unit matrix in 

one vector. 

The matrix ~i can be stored very compact. First of all only the column 

a i should be stored, and in this column it is enough to store the non- 

zero elements. As shown in section 6.2 it is possible to keep the number 

of nonzero elements low by choosing the pivot elements aii carefully. 

And with fewer eta-elements less core storage should be used, and fewer 

row operations must be performed during the use of the inverse. 

6.2 The GRG-inversign procedure. 

There is a main difference between the linear programming inversion pro- 

cedure and the procedure, that is used in the GRG-problem. In the later 

there is an extra degree of freedom, because there are usually more vari- 

ables, that can be choosen as basic variables, than needed. 

The procedure described here is heavily based on the procedure for LP- 

problems described by Hellerman and Rarick, [8] and [9]. 

First a basic observation must be made. The first eta-vector is created 

very easily - it is created directly from the column in which we pivot 

first. The second eta-vector must be chosen from the matrix after the 

row operations symbolized by E1 have been performed. But if the column 

to be used for pivot next is chosen, so it has no element in the first 

pivotrow, the row operations does not effect this column. 

It is seen, that if the matrix can be transformed into lower-triangular 

form by rearranging rows and columns, and if the pivote!ements are chosen 

along the diagonal from the upper left corner, no columns will have to 

be transformed before the eta-vectors are created. 

Usually it is not possible to transform the matrix into lower-triangular 
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form. The Hellerman-Rarick procedure tries systematically to create a 

lower-triangular matrix, and if it is not possible~ the procedure selects 

the columns to be transformed (the so-called spikes) in such a way, that 

the rest of the matrix becomes almost triangular. 

The procedure in its form for the GRG-problem will be described with a 

small illustrative example. In the following, only the columns strictly 

between bounds are used. Fig. 2 shows the zero-nonzero pattern of the 

matrix. 

1 
2 

3 
4 
5 

6 

7 

8 
9 

l0 

ll 
12 
13 
14 

15 

CC 

1 ii 1 1 1 1 1 1 1 2 2 2 2 
! 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 12 3 

5 ~ 2 ~ ~ 4 5 3 5  ~ 4 ~  ~ 3 ~ 5 Z ~ 3 ~ ~ 2 I 
4 5 3  ~ 3 0  ~ 0 2  0 4 Z 0  

2 3 0 

RC 
6 
I~ 7 
9 
2 
S ~ 0 
4 

9 
5 

5 
~18 
~ Z 0  
3 

0 
Z 0 
~ ~ 7 

Figur 2: The zero-nonzero pattern of the matrix. 

The first steps identifies the part of the matrix, that directly is 

lower-triangular: 

i, Find the rowcounts (RC) and columncounts(CC), i.e. the number of non- 

zero elements in each row and column. 

2. Is there an RC. : l? If not, go to 3. 
l 

Find the corresponding column, choose the element as pivot-element, 

delete the column and revise RC and CC~ and go to 2. 

3. If all rows have a pivotelement~ then go to 17, 

4. Is there an CC. = l? If not~ go to 5. 

] . : l, choose one with the smal- a, If there are more columns with CC] 

lest number of nonzero elements. 
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b. Find the corresponding row, choose the element as pivotelement, 

delete the row and revise RC and CC and go to 4. 

5. If all rows have a pivotelement, then go to 17. 

21 1 1 1 1 1 1 1 1 2 2 2 1  
0 3 1 2 3 4 5 6 7 8 9 0 1 2 4 5 6 8 9 1 2 3 7  

14 X,X ~ 

l l  7 
1 X X < X  y ix, 
2 M ~ f ,  X!;<, % X 
3 XY. ;< X X ~  X X  
4 X 
6 ~ X ~ X 1 

7 X X  X X Y" /'[ t ;< X[ 

9 /- ,K % 
i0 X X  X[ 'Z "x >i~K 
12 X X 

is x, xx,  ..... × ×Ix x x, 
13 ~[ X x )< j  
s × ~x t , x × 

X, 

× 

X 

X 
x Xl×!  

x l  tx 

Pivot 
column 

14 

3 
8 
2 

I0 

12 
19 
18 

5 
6 

CC 

Pivot- 
row 

5 4 2 5 3 4 5 3 5 2 4 3 3 3 5 2 3 4  
6 3 ;~15 4 7 8 1 10 9 

2 12 

Figur 3: The matrix after step i to 5. 

After rearranging the matrix, it is now divided into three parts: two 

lower-triangular parts and a part with either no elements or at least 

two elements pr row and pr column. See fig. 3. From now on only the part 

in the middle is considered. 

6. Perform a temporary pivotassignment: 

a. Consider all columns starting with the columns with the smallest 

CCj. Use the first nonzero element found in a row, that has no 

pivotelement yet~ as pivot element. If a column cannot be assigned 

a pivot element after this procedure, the next column is considered. 

b. If all rows have a pivot element~ then go to 7. 

c. Use the Ford and Fulkerson labelling method to reassign pivot 

elements, until we have a maximum matrix transversal, see [7]. 

7, Now consider the matrix of those columns, that were assigned pivot 

elements in step 6. Decompose this matrix into minimal nondecomposa- 

ble submatrices, f.ex. with the predecessor-successor method in 

Hellerman and Rarick [9], or with the method of Steward [12]. 
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Step 8 and 7 used on the example results in the situation in fig. 4. 

After the assignment in step 8a, row 12 is still without a pivot element, 

which is found by the labeling procedure. 

i iiii i ii I i 
4 1 3 8 2 0 2 9 8 5 6  4 1 8 2 2 9 5 6 8 3 0  

i i 

2 2 
3 4 

4 6 

6 8 
7 9 

8 12 
9 15 

I0 i0 
12 3 
15 7 

X 
X~ 

X 
× 

i 
I 

Xl 

x~ 

Figur 4: The matrix after step 6 and 7. 

8. Decompose the middle part of the matrix in the subblocks corresponding 

to the decomposition in submatrices in 7, se fig. 4 and 5. 

i Ii 11211 i 
4 1 8 2 2 9 5 6 4 7 9 1 6 1 8 5 3 0  

I 
2 

4 

6 

8 

9 

12 
15 
i0 

3 

7 

× K X X ~ X 
x 

~×I×I 

Figur 5: The subbloaks formed in step 8. 

The following steps 9 to 16 are now done for each subblock, starting 

with the upper left corner. The temporary pivotassignments are not used 

any more. 

9. Find RC and CC for this subbiock. 

i0. Perform the operations in step 4 on the subblock. 
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The result is now a matrix with at least two elements per row and per 

column, so it is not possible to get a lower triangular matrix directly. 

The procedure is now to select the columns, that should be transformed 

or that should be left out completely. These columns are called spikes. 

For the selection of spikes, Hellerman and Rarick defined a tallyfunc- 

tion in the following way: 

tk(j) = number of nonzero elements in column j, appearing 

in rows with RC < k. 

The selection of a spike is now done with the following procedure, where 

k starts as the smallest RC: 

a. S = The set of columns for which tk(j) is maximum. 

b. If S has only one element, then return, 

c. If tma x > i, then go to g. 

d. k:: the smallest RC > k. 

e. S:= the subset of S for which tk(j) is maximum. 

f. Go to b 

g. S:= the subset of S for which CC is maximum. 

h. If S has only one element, then return. 

i. S:: the subset of S for which the total column count is maximum. 

j. Return with any element from S as the spike, 

The ideas behind the selection procedure are: 

a. Make the smallest rowoount smaller, so we can get a row with RC. : I. 
l 

b. If there are more possibilities, choose the one that will bring most 

small rowoounts down. 

c. If there are still more possibilities, choose the column with the 

largest number of elements. 

Now the pivot selection procedure can be continued: 

Ii. k:= the smallest RC in rows without a pivot element. 

12. If k = 0, go to 16, if k = i, go to 14, else go to 13. 

13. Select a spike~ save its number, delete the column, revise RC and 

CC, and go to ii. 

14, If there are more RC i = I, then go to 15, else select row no i and 

the corresponding column for final pivot, delete the column, revise 

RC and CC, and go to iI. 

15. Select the pivot column. The procedure for selecting spikes is used 

with point i exchanged by 

il. S:= the subset of S for which the total columncount is minimum. 

Choose the pivot row as one with RC i = i, delete the column, revise 
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RC and CC, and go to ii. 

16, The last column in The list of spikes is transformed with the eta- 

vectors~ and the resulting column is transformed into an eta-vector 

with pivot in a mow with RC i : 0 and without a pivot element. If all 

rows in the block have a pivot element now, this block has been fi- 

nished, else go to Ii. 

Fig. 6 shows how the procedure works on the largest subblock. Fig. 7 shows 

the matrix after all rearrangements have been done, and fig. 8 shows the 

corresponding eta-vectors. Some columns has been divided into two eta- 

vectors, so that the transformation of the spike will only create new 

elements in the upper part of the spike. This idea is described by Beale 

in [4]. 

TCC 

Spike no 

Pivot no 

Pivot row 

I i i 1 12 1 
4 1 8 2 2 9 5 6 4 7 9 1 6 1 9  

1 

2 

4 

6 

8 

9 

12 

15 

CC 3 ~ 33232 ~ ~ W W ~ 3 Z 
2 2 3 3 3 0  0 

3 5 3 5 4 3 4 4 6 5 5 4 5 5  

5 1 2  6 3 4 

6 4 5 1  2 3 7 

2 8 12 4 6 1 9 

RC 

Z Z 0 

~ Z 2 I O  
~ W Z Z I O  

~ l I O  

I 0 

Figur 6: The final pivot selection in a subblock. RC and CC are row- 

and columncounts~ TCC is columncounts in the original matrix, 

Spike no and Pivot no indicates, when a column has been chosen 

for either spike or pivot, Pivot row tells, in which row the 

pivo~ of the column can be found. 

Sometimes a pivotelement will be found to be too small. In this case it 

is relatively easy to delete the corresponding column, because it is 

linearly dependent on earlier columns~ and use the last spike-column 

instead. 
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21 i i i I i 121 1212 
03676251918303782494152 

14 

ii 
4 
6 

1 
8 

12 

2 
9 

15 
i0 
3 
7 

13 
5 × X X X X × 

X • 

Figur 7: The matrix after the final rearrangements. 

21 Ii 1 I! II 121 
0 3 6 7 6 2 5 1 9 1 5 2 6 7 6 1 8 3 0 3 7  

14 

ii 
4 

6 

1 
8 

12 
2 
9 

15 

10 
3 

7 
13 
5 

× 

x '×× ×[~I 
i X . . . .  X I ~ 

X 

X 

x × ~ <  xl× 
× x,I 

• ~ X  ~ ~ JX 

Figur 8: The resulting eta-vectors. 

6.3 UpdatinK the inv#rse A~,~gr chaD~esof bag,il s. 

In section 4 we saw, that a change of basis can occure in a Newton-Raph- 

son iteration~ and that the operations needed to update the inverse are 

exactly the same as those of the simplex method, i.e, transform the in- 

comm[ng column and use this column as an extra eta-vector with pivot in 
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the same row as the column, that is leaving. 

This method has a great advantage. In the GRG-algorithm it is often 

nessecary to try with different steplengths, 8, before the optimal step- 

length in the direction of the reduced gradient is found. Each time a 
~S -1 

new e-value is tried, we need the (~x~J_ matrix, where ~b is the vector 

of original basic variables. If the last e-value caused any changes of 

basis, it is now nessecary to restore the old inverse basis matrix. This 

is easily done with the inverse on product form: just delete the extra 

eta-vectors, that were added during the changes of basis. 

7. Inequa!i~ies and linear equations, 

The GRG-method is basically designed for nonlinear equality constraints. 

This section shows, what happens with inequalities and with linear equa- 

tions. 

7.1 IneqNalitie s. 

It is always possible to change an inequality into an equality constra- 

int by adding a slack variable: 

gi(~) ~ o 

gi(x) - s i = 0, 0 _< s i < 

There are now two cases to consider; 

The constraint is not active, i.e. s i > 0. Now the combined inversion 

and basis-selection procedure will select s i as a basic variable during 

step 4, and the eta-vector will only have one nonzero element~ the pivot 

element -i, It is easy to show, that the ~-vector in the GRG-algorithm 

will have a zero in position i, which means, that row no i has no influ- 

ence on the reduced gradient. And in ~he Newton-Raphson iterations, equa- 

tion no i will converge very fast, because s i will just be assigned the 

value gi(x). 

The constraint is active, i.e. s i = 0. Now s i cannot be used as a basic 

variable, and almost all calculations will be as if the equation had 

been gi(x) = 0. 

It can be seen~ that the practical calculations are very similar to those 
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of a relaxation procedure, where only the active constraints are used 

when deciding where to go in next iteration. 

7.2 Linear equations. 

Although a model is nonlinear, it will usually have many equality con- 

straints, such as continuity constraints, equations found by linear re- 

gression etc. Linear equations are mathematically much simpler than non- 

linear ones, and it is indeed possible to take advantage of this simpli- 

city. 

Linear equations will have zero error after the first Newton-Raphson ite- 

ration, because the linear approximation used in the Newton-Raphson pro- 

cedure is identical to the linear equation itself. Therefore it is not 

nessecary to compute the value of the s-vector for the linear equations 

after the first Newton-Raphson iteration. This again will make the cal- 
~g -i 

culation of [~-~ .g faster, since it is not nessecary to perform the 
-D- 

multiplications~ where one of the factors is zero, 

8~ Computational experience. 

8.1 User routines. 

The computer program, that has been developed, uses four problem defining 

subroutines. 

The first subroutine calculates the value of the objective function, and 

the second finds the gradient of the objective function. It is only nes- 

secary to recompute the variable terms in the gradient, because the vec- 

tor is not destroyed by the optimization routine. 

The third subroutine calculates ~, the value of the constraints, and the 

fourth calculates the Jacobian. Again it is only nessecary to recompute 

the variable elements in the Jacobian. 

8 . 2  C o m p u t e r , , e x p e r , ! m e n t s  . 

The program, that is written in FORTRAN IV, has been tested at different 

problems, and fig. 9 shows some results. The inversion procedure used 

is an earlier version, that creates slightly more eta-elements than the 

one described in section 6.2. The idea in section 7.2 has not yet been 
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Problem 1 Problem 2 

Number of variables 65 136 

Number of constraints~ linear 44 75 

nonlinear 10 41 

total 54 i16 

Number of Jacobi elements~ constant 132 263 

variable 23 93 

total 155 356 

Avarage number of elements in the inverse 

on product form 222 615 

Core storage in K ' bytes: 

User supplied subroutines 4 6 

Arrays 13 27 

Optimization routine and buffers 69 69 

Total 86 102 

Execution time in sec cpu: 

Until first feasible solution 0.41 1.70 

Pr. iteration after first feasible solution 0.14 0.55 

Total time incl input/output, ca. 6 20 

Figur 9: Caracteristics of some test problems run on an IBM 370/165 

with a FORTRAN H compiler, 

implemented. 

9. Conclusion. 

This paper shows, how it is possible to use the ideas of the GRG-algorithm 

on large nonlinear models~ if special care is taken to reduce the requi- 

rement for core storage. 

Many methods and ideas from large scale linear programming can be used, 

directly or in a slightly changed form on the GRG-algorithm, because of 

the relations between the GRG-algorithm and linear programming. 

Although the largest testproblem solved until now has had only i16 con- 

straints, it is reasonable to expect, that problems with 500 constraints 

and 800 variables can be solved within a region of 250 K bytes. 
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