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O. Summary 

In this paper we study the problem of the optimal stopping of a Markov chain with a 

countable state space. In each state i the controller receives a reward r(i) if he 

stops the process or he must pay the cost e(i) otherwise. We show that~ under the 

condition that there exists an optimal stopping rule~ the policy iteration method, 

introduced by Howard s produces a sequence of stopping rules for which the expected 

return converges to the value function. For random walks on the integers with a 

special reward and cost structure~ we show that the policy iteration method gives 

the solution of a discrete two point boundary value problem with a free boundary. We 

give a simple algorithm for the computation of the optimal stopping rule. 

I. Introduction 

Consider a Markov chain {X I n = 0, I,2,...} defined on the probability space 
n 

(S,F,P). The state space S is countable. We suppose that ~[X 0 = i] > 0 for all i e S. 

Hence ~i[A], the conditional probability of A e F given X 0 = i, is defined for all 

i ~ S. 

On S real functions r and c are defined, where r(i) is the reward if the process is 

stopped in state i and c(i) is the cost if the process goes on. We consider stopping 

times T (for a definition see [7]). For a nonnegative function g on S we define 

~i[g(XT)] := I g(Xr)dPi " 
{T<~} 

Condition A. Suppose that the reward function r satisfies 

+ 
~i[r (XT)] + Ei[r-(XT)] < 

for all i ~ S and all stopping times T. 

(Note that: r+(i) := max{0,r(i)}, r-(i) := -min{O,r(i)}). 
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Let P be the transition matrix of the Markov chain~ with components P(i,j) for 

i,j ~ S. If the function c on S is integrable for all Pi[.], we define the function 

Pc by 

Pc(i) := ~ e(i,j)c(j) , 
j~s 

and with induction, if Pn-]c is integrable for all Pi[.] 

pnc := p(pn-lc) . 

We call a function c on S a a~ge (see [3]) if 

ee 

Z Pnlcl 
n=O 

(Note that for function v and w on S: v ~ w if v(i) S w(i) for all i ~ S and v < w if 

v(i) < w(i)for all i e S. Further Ivl is defined by [v](i) := Iv(i)]. 

Condition B. Either the cost function c is a charge or r and c are nonnegative, both. 

Throughout this paper we shall suppose that conditions A and B hold. 

We call a function w on S c-exessive with respect to the cost function c if 

|) w ~ -c + Pw 

2) w ~ - [ pnc . 

n=0 

For a stopping time T the expected return vT(i) , given the starting state i, is de- 

fined by 

T-I 

vT(i) :=~i[r(XT)- ~ C(Xn)] • 
n=0 

The existence of the expected return vT(i) is guaranteed for all T since 

]~i[r(XT)]I < = for all i and c is either a charge or a nonnegative function. Note 

that vT(i) = -~ is permitted. 

The value function v(i) is the supremum over all the stopping times T 

v(i) := sup vT(i) . 
T 

Sometimes we need the following assumption. 

Assumption C. There exists an optimal stopping time T*, i.e. VT,(i) = v(i) for all 

i ~ S. 
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In the rest of this section we summarize some properties of stopping problems. 

l.]. The value function v satisfies the functional equation 

v(i) = max{r(i)) -c(i) + [ P(i,j).v(j)} 
j~s 

(see [2]) [3] or [7]). 

|.2. The value function v is the smallest c-excessive function dominating the reward 

function r (see [2] and [3]). 

1.3. If an optimal stopping time exists the entrance time Tp in the set 

P := {i I r(i) = v(i)} is optimal (see [2] and [6]). 

!.4. If sup Ir(i) l < ~ and inf c(i) > 0 then there exists an optimal stopping time 
i£S ieS 

(see [2] and [73). 

2. Some preparations 

A stopping rule f is a mapping from S to {0, i} where f(i) = 0 means that the process 

is stopped in i and f(i) = I means that the process goes on in state i. The stopping 

rule f is equivalent with the entrance time Tf in the set Pf := {i I f(i) = 0}. The 

expected return under a stopping rule f is indicated by vf(i). 

For a stopping rule f we define 

2.]. Df := {i e S I f(i) = I}, the go-ahead set. 

rf : = S\Df, the stopping set. 

2.2. Pf is the matrix with components 

2.3. df 

P(i,j) if i ~ Df 

Pf(i,j) := 
0 otherwise . 

is a function on S with 

r(i) if i e rf 

df(i) := 
-c(i) otherwise . 

If assumption C holds, property ].3 guarantees that the entrance time TF 

P is also optimal. In that case 

in the set 

Tp-] 
2.4. v(i) =Ei[r(X T ) - ~ C(Xn)] • 

n=O 

According to the stopping time T F we define the stopping rule f, by 

2.5. f,(i) = 0 if and only if i e F . 

Further let 

D I= S\r, d := df, and P := Pf, . 
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Lemma |. For each stopping rule f with vf 

I) Ivf(i) l < ~ 

n 

2) vf = ~ Pfdf 
n=0 

3) lim P~Idfl = 0 (pointwise convergence) 
n+~ 

4) vf  = df + Pfvf 

n 
5) lim eflvfl = 0 (pointwise convergence) . 

n->~ 

>- r we have 

Proof. If r and c are nonnegative we have 

Since 

0 -< r(i) -< vf(i) -< ~i[r(XTf)] < 

Tf-I 

vf(i) =~.i[r(XTf)] -~.[i n=O~ C(Xn)] 

for all i ( S , 

we may conclude 

Tf-I 

• .[ I lC(Xn) l] 
i n= 0 

for all i ~ S . 

Note that if c is a charge this also true. Define: 

Tf-I 

2.6. wf(i) :=~i[lr(XTf) l] +~i [ n=0~ ]C(Xn) ]] . 

So we have for both cases of B 

]vf(i) I ~ wf(i) < ~ (statement !) 

We have the following representation 

wf = P Idfl 
n=0 

0 ° • 
(note that Pf(l,j) = ! if and only if i = j) and in the same way, by absolute conver- 

gence, 

vf = ~ Pfdfn . (statement 2) 
n=O 
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Because wf < ~ we may conclude Pfldf! -~ 0 for n + = (statement 3) 

oo 0o 

Vf [ Pfdf = df + [ n = Pfdf ° 
n =0 n= 1 

Since 

oo 

l Pfldfl 
n=l 

is finite we may change the summation order~ hence 

oo 

vf = df + Pf ~ Pfdfn = df + Pfvf . (statement 4) 
n=0 

In the same way 

wf = df + Pfwf , 

By i t e r a t i n g  t h i s  e q u a t i o n  we ge t  

N 
n ~0 n N+ I wf = P fd f  + Pf wf 

n 
which it follows that Pfwf tends to 0 if n tends to ~. Because Ivfl -< wf we have from 

also 

n 
lim Pflvfl = 0 ° (statement 5) D 
n->~ 

Corollary i, If C hold we have from 2.4 and lemma I that 

Iv(i)I < ~ for all i ~ S and lim pnld I = 0 o 
q 

r~+=o 

Define; 

w := I pnldl 
n=0 

By lemma I we have 

2,7. lim pnw = 0 
n ~  

study expressions like P~vfj where f and g are stepping rules. In the section n e x t  w e  

We shall give sufficient conditions in lerana 2 for the finiteness of these expres- 

sions. 

Lermna 2. Let f and g are stopping rules. Suppose vf e r. Then P~Ivfl is finite for 

k = 1 , 2 , 3 ,  . . . .  
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Proof. Let T := Tf + k. Using the same arguments as in lemma l, We derive for e a 

charge: 

T-! 
Ei[Ir(XT) [ + ~ IC(Xn)[] < = 

n=0 

Note that 

T - I  k - 1  

I~i[Ir(XT)l + I IC<Xn>I] = I pnlel(i)+ pkwf(i) 
n=0 n=0 

(wf is defined in 2.6). 

Hence 

Now let r and c be nonnegative. 

pkvf is defined because vf e r e 0. Hence pkvf e pkr e 0 

Tf-I 

0 ~ pkvf(i) = ~ pk(i,j)Ej[r(XTf) - ~ C(Xn)] 
jES n=0 

~ pk(i,j)~j[r(XTf)] = Ei[r(XT)] < = 
jeS 

Define vectors cf and rf by 

of(i) := c(i) if i ~ Df, rf(i) := r(i) if i e rf 

:= 0 otherwise := 0 otherwise . 

Note that Idfl = rf + of. It is easy to verify that 

pk(i,j)~j[r(XTf) n ] = pk ~ Pfrf(1) 
jeS n=0 

and 

Tf-! 
pk(i,j)~j [ I C(Xn)] = ek ~ e~cf(i) . 

j~S n=0 n=0 

Hence pkwf pk [ n ~I = Pf{rf + cf} < ~. Reasoning like before, we see that P vf] < =.D 
n=O 

3. Policy iteration method 

Let f be a stopping rule, such that 

improved stopping rule g by j~S 

3.1. g(i) := 0 if r(i) e -c(i) + 

:= ] otherwise. 

P(i,j)vf(j) is defined. For f we define the 

P(i,j)vf(j) 
j~S 
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Lemma 3. Let g be the improved stopping rule of f and let vf 

|) D c D 
g 

2) vf -< dg + PgVf . 

r. Then 

Proof. We first prove I). 

If g(i) = I then 

r(i) < -c(i) + 

hence 

P(i,j)vf(j) ~ -c(i) + ~ P(i,j)v(j) ~ v(i) 
jeS jeS 

D = {i I g(i) = [} c {i i v(i) > r(i)} = D . 
g 

We proceed with 2). 

Note that PgVf is finite (by lermna 2). Let i ~ Dg then g(i) = I, dg(i) = -c(i), 

Pg(i,.) = P(i,.) and so 

r(i) < -c(i) + [ P(i,j)vf(j) = d (i) + [ Pg(i,j)vf(j) . 
j~S g j~S 

Since either 

vf(i) = -c(i) + ~ P(i,j)vf(j) 
j~S 

or vf(i) = r(i) the statement is true for i c Dg. 

If i e F then g(i) = 0, dg(i) = r(i) and P (i,.) = 0 and since 
g g 

r(i) e -c(i) + ~ P(i,j)vf(j) 
j~S 

it is true for i £ F . g 

Len~a 4. Assume C. If g is the improved stopping rule of f and if vf e r then Vg evf. 

Proof. From lemma 2 it follows that pk]vfl exists and is finite for all k. By len~na 

_ + PgVf. Hence 3 is vf < dg 

N N N+! 

I P f - gg 
k=O k=O k= I 

and therefore 

N 

vf - PN+|vf < k~O P kd g = g g 

We shall prove that PgVf ÷ 0 for N ÷ ~. Consider first the ease that r -> 0 and c >- O. 

Since 0 < r < vf -< v and Dg c D 
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0< ¢< 

by corollary ; pNv + for N ÷ =. 

Suppose now that c is a charge: 

+ V + vf- < <w 

(w is defined in corollary ]) hence 

N+ egVf -< pNw-< pNw . 
g 

By 2.7 

Therefore 

pNw ÷ 0 for N ÷ 

vf -< ! pkd = v . 
k0 gg g 

We define a sequence of stopping rules {f0,fl,f2,...} by 

3.2. f0(i) is a stopping rule with vf0 e r (for example f0(i) = 0 for all i ¢ S) 

fn is the improved stopping rule of fn-]' n e ! (see 3.1). 

The method of approximating the optimal stopping rule and its expected return by the 

sequence 3.2 is called the policy iteration method. This method was introduced by 

Howard [4] for decision processes with a finite state space and discounted rewards. 

In theorem ] some properties of the sequence {fo,fl,f2,...} are derived. In theorem 

2 we study the convergence of vf to v. 
n 

Most of Howards results carry over to our situation. Call 

l) l) v n := vf , 2) d n := df , 
n n 

3) Dn := Df , 4) rn := Ff 
n n 

Theorem 1. Assume C. The following assertions hold 

|) fn(i) and Vn(i) are nondecreasing in n 

2) if fn(i0) < fn+](i0) then Vn(i0) < Vn+1(i0). 

Prqqf. It follows from lemma 4 that Vn+ I 

then 

-> v n for n > O, since v 0 -> r. If fn(i) = ! 
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r(i) < -c(i) + [ P(i)j)Vn_1(j) ~ -c(i) + [ P(i)j)Vn(J) ) for n e I 
jeS j~S 

hence fn+1(i) = i) which proves assertion I. SuppOse fn(i0) = 0 and fn+1(i0) = |, 

then 

Vn<i 0) = r(io) < -c(i0) + 
j~S 

-c(i 0) + Z 
jeS 

P(i,j)Vn(J) 

P(i0,J)Vn+](j) = Vn+i(i 0) . 

Theorem 2. Assume C. 

- ~ Pkc or Vn0 e 0 for some no, then lim v = v. 1) If, either Vn0 n 
k=0 n -~° 

2) If, in addition to I, fn = fn+1' for some n ~ n o then v n is optimal. 

..... Proof. Since D n = D for all n (lem~a 3) and since fn(i) is nondecreasing in n (theo- 

rem I) there exists a set E c S such that 

lim D = E c D o 
n 

And) in the same way) since Vn(i) ~ v(i) for all n and since Vn(i) is nondecreasing 

in n) there exists a function z such that 

z(i) = lim v (i) . 
n 

Fix some i e E. For all n sufficiently large is i ~ D n and so: 

r(i) ! Vn(i) = -c(i) + [ P(i,j)Vn(J) s -c(i) + 
jeS jeS 

P(i,j)v(j) = v(i) . 

Since v (i) + z(i) we have by monotone convergence 
n 

hence 

-c(i) + ~ P(i,j){Vn(J) -r(j)} + -c(i) + 
jeS 

z(i) =-c(i) + [ P(i,j)z(j) <-v(i) . 
j~S 

Fix some i ~ S\E. For all n it holds that i £ F n hence 

Vn(i ) = r(i) >--e(i) + ~ P(i,j)Vn(J) 
j~s 

and therefore (again by monotone convergence) 

P(i,j){z(j) - r(j)} , 
j~s 

z(i) = r(i) ~ -c(i) + ~ P(i,j)z(j) • 
j~S 

So z satisfies ~he functional equation: 
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z(i) = max{r(i),-c(i) - [ P(i,j)z(j)} . 
j~S 

Now, suppose v e - [ pnc. Then z e - pnc and since z satisfies the functional 
no n=0 n=0 

equation, z is a c-excessive function dominating r. Because v is the smallest func- 

tion with this property it must hold that v = z. If v e 0 it must hold that z ~ 0 
n o 

and v ~ O. We now prove that v=z on r. Let i c r: 

0 ~ v(i) - z(i) ~ r(i) - r(i) = 0 . 

Let, now i e D: 

0 ~ v(i) - z(i) ~ [ e(i,j){v(j) - z(j)} . 
j~s 

Hence 0 ~ v - z ~ P(v - z). 

Iterating this inequality gives 

0 S v - z ~ pn(v - z) ~ pnv ÷ 0 for n + 

which proves v = z. The first assertion is proved. 

Suppose fn = fn+l for some n e n o . Then v n = Vn+ ! and therefore fn+2 

duction it follows that z = v n which proves the theorem. 

= fn+l" By in- 

Lersna 5. Let c he a charge. Let f be the stopping rule defined by f(i) = ! for all 

i e S and let g be the improved stopping rule, then 

Vg e vf and Vg ~ r . 

If Vg = vf then f is optimal. 

Proof. Since vf = - ~ Pnc it holds that Pvf and P~vf are finite. Following exactly 
n=0 

the proof~ of lermma 3 we have vf ~ dg + PgVf and from the proof of lemma 4 it follows, 

since P~vf is finite, that 

n 

_ pn+l < kl 0 vf g vf - P dg 
= 

Note that 

P~Ivfl ~ pnlvf[ = P~Ivfl . 

Since c is a charge: 

co 

Wf := [ Pnlc I < ~o 
n=0 

n 
Hence wf = Icl + Pwf and therefore Pfwf 

wf a [vf] we may conclude 

tends to 0 if n tends to ~. Because 
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lim <!vfI  ° 0 
n-~O 

Hence 

vf ~ [ pkd = v 
k=0 g g g 

If g(i) = 0 then v (i) = r(i) and if g(i) = i then 
g 

r(i) < -c(i) + ~ P(i,j)vf(j) = vf(i) ~ Vg(i) . 
j~S 

Hence v e r. 
g 

Now, suppose vg = v f ,  then 

r ! vf = -c + Pfvf = -c + Pvf 

hence vf is c-excessive and dominates r. Because vf ~ v and the fact that v is the 

least function with this property, we have v = vf. 

Corollary 2. 

I) If r is nonnegative, we have for f0 ~ 0 vf0 ~ r ~ 0, hence the sequence v n con- 

verges to v. 

2) If c is a charge we may start with f_l(i) := 1 for all i ~ S and try to improve 

this stopping rule by fo' If no improvement is possible (i.e. Vfo = vf_l) we have 

already the optimal stopping rule. Otherwise f0 satisfies 

a) v 0 = vf0 ~ r 

b) v 0 e - ~ pnc 
~=0 

hence v converges to v, 
n 

Counterexamples. 

I) There exists a stopping problem satisfying assumptions A, B and C where the policy 

iteration method does not converge to the optimal stopping rule. Let S = {],2}; 

r(|) = r(2) = -l, c(1) = c(2) = 0 and P(I,I) = ~ = 1 - P(],2), P(2,2) = B = 1 - 

- P(2,1). The optimal stopping rule is f(1) = f(2) = | and v(1) = v(2) = O. The 

cost function is a charge and~i[Ir(XT) I] ! I. Note that r(1) = ~r(1) + (1 -e)r(2) 

and r(2) = 8r(2) + (I - B)r(;) so that r e c + Pr hence fn = f0 ~ O. 

2) There exists a stopping problem satisfying assumptions A and B where the improved 

policy of f0 is not at least as good as fl" Let 

S = {0,I,2,3,...} u {x}, I > s > 0 . 

For i = 0,1,2,3,...: 
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P(i,i+l) = 1 - E, P(i,x) = e, r(i) = 

Further: 

I 
• , c ( i )  = 0 I 

( !  - e)  z 

P ( x , x )  = I ,  r ( x )  = 1 ,  c ( x )  = 1 . 

Note that r and c are nonnegative both (condition A). We shall examine the stopp- 

ing time T n ~ n: 

v T ( i )  = (1  - ~ ) n  I 
n ( I  - e) i+n + { I  - (1 - g)n} . 

Hence 

I 
w(i) := sup v T (i) . . . . .  + ] . 

n n (I - ~)i 

This function w satisfies the functional equation 

w(i) = max{r(i),-c(i) + ~ P(i,j)w(j)} 
j~S 

and w e - ~ pnc, hence w = v so that v(i) < ~ from which it follows that 
n=0 

• i[Ir(xT) I] < ~ for all i and all T (condition B). 

For i = 0,1,2,3,...: 

r(i) = I ~ < (l - ~) 1 + ~ = -c(i) + ~ e(i,j)r(j) 
(I - ~)i (I - ¢)i+l jeS 

and r(x) = I > -c(x) + r(x). 

Hence fl(i) = 1 for i ~ {0,1,2,3,...} and fl(x) = 0 so that v1(i) = I for all i, 
I 

but v0(i) = . > I for i = 1,2,3, 
(l - ~)i . . . .  

4. An a~plication 

We shall study in this section the optimal stopping of a random walk on the integers 

with a special cost and reward structure, to illustrate the computational aspects of 

the policy iteration method. For simplicity we shall not formulate the results as 

general as possible. 

Definition of the decision process 

Consider a random walk on the set of integers (Z). Let the transition matrix P be de- 

fined by 

4.1. P(i,i+l) := Pi' P(i,i) := si, P(i,i-l) = qi 

with pi,q i > O, s i e 0 and Pi + qi + si = I. The reward function 

4.2. 0 < r(i) < M, i e Z . 
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The cost function 

4.3. c(i) ~ 6 > 0, i c Z . 

Further we assume the existence of integers d, e, d ~ e, such that: 

4.4. r(i) < ~c(i) + Pir(i + I) + qir(i - !) + sir(i) 

if and only if d ~ i ~ e. Call H := {i e Z ] d ~ i ~ e}. 

Assumption 4.4 says that for i c Z\H immediately stopping is more profitable than 

making one more transition. In statistical sequential analysis there are examples of 

random walks where this assumption is fulfilled in a natural way (compare [5]). In 

lemma 6 we collect some properties of this process. 

Lemma 6. For the sequence of stopping rules f0,fl,f2,~., defined in 3.2 with f0(i) =0 

for all i c Z it holds that 

I) there exist numbers kn,Z n ~ Z such that 

D n = {i ~ Z ! k n ~ i ~ Zn }, n = 0,1,2, .... 

2) k n e kn+ 1 ~ k n - i and Zn ~ £n+l ~ Zn + I. 

3) for some n f is optimal. 
n 

Proof. Since 0 ~ r(i) ~ M and c z 0 A and B are satisfied. By 1.4 we know that the 

entrance time in F is optimal, hence the assumption C is fulfilled. By theorem ! we 

have D n c Dn+ ! for n = 0,l,2,3,... and by theorem 2 we have n-~olim Vn(i) = v(i). We 

shall prove ] and 2 with induction. 

D O is empty. It is easy to verify that fl(i) = ] if and only if i e H, hence k[ = d 

- + l it holds that and ~1 = e. Suppose I hold for n = m. For i < k m 1 and i > Zm 

fm+l(i) = 0 because Vm(i) = r(i) and i ~ Z\H. Therefore it can happen only in the 

- = + ~ that f +](i) > fm(i) Since D c ! and 2 are points i = k m I and i ~m m ' m Dm+! 

proved. Now the last assertion. 

Note that 0 ~ r(i) ~ M and c(i) ~ ~ > 0 for all i e Z. Choose ! > e > 0 and a natural 

M number k such that (I - ~)k > ~ . Let f be the optimal stopping rule. We shall prove 

Pi[Tf S k! e e. Suppose the contrary, i.e. let ~i[Tf ~ k! < s. Then 

vf(i) -< M - ~i[Tf] -< M - ~(! - e)k < 0 

which is a contradiction. 

Hence for all i ~ Z F must be reachable in at most k steps, so that 

D c {i I d - k ~ i E e + k}. Since Dn_ ! c D n c D and because Dn_ l is a proper subset 

of D n if fn_l(i) # fn(i) for at least one i we may conclude that fn-! = fn for some n. 
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Computational aspects 

In our case v is the smallest solution of 

v(i) = max{r(i),-c(i) + Piv(i + I) + siv(i) + qiv(i - 1)} . 

Because we know the structure of D we may say v is the smallest function x which has 

the following properties. 

For some k ~ d and some ~ e e, i,k,% ~ Z: 

I) x(i) = -c(i) + Pix(i + I) + six(i) + qix(i - I), 

2) 

3) 

k< i_< £ 

x(i) = r(i), i > 4, i < k 

r(k - I) > -c(k - ]) + pk_iX(k) + Sk_ir(k - I) + qk_ir(k - 2) 

r(£ + I) > -c(Z + ]) + p£+]r(£ + 2) + sz+|r(£ + I) + qZ+]x(£) . 

4.5. Ax(i) := x(i + I) - x(i) ° 

Consider the difference equation, derivated from I, 

4.6. PiAx(i) - qiAx(i - I) = c(i) . 

Call: 

qi c(i) 
z i := Ax(i), a i := Pi and bl := Pi 

Hence 4.6 becomes 

z i - aizi_ 1 = b i • 

With induction on m it is easy to verify that for k ~ m ~ 

m m m 

= ~ a. + ~ {b i ~ a.} 4.7. Zm Zk-I i k I 
i=k j=i+l J 

(an empty product has the value I, an empty sum the value 0). 

Because x(~ + I) = r(% + |) and x(k - I) = r(k - I) it holds that 

r(% + I) - r(k - I) = I z 
m 

m=k-I 

hence 

This is a two point boundary value problem with a free boundary. We shall show that 

for fixed k and ~ the function x is completely determined by ; and 2. 

Define, for function on Z, the difference operator A as usual by 
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4.8. 

m m 

m=k_ l i= k I ~=i+l 
Z k - ~  = ° ~ ,% m . . . . . . . . . . . .  

P. a °  

m=k-! i=k l 

a) 
J 

From 4.7 and 4.8 one can compute Zk,Zk+1,...,z and even so x(k),x(k+ l),...,x(Z), 

which shows that the function x is completely determined. 

The boundary conditions 3 can be formulated as follows 

Zk_ l - ak_iAr(k - 2) < bk_ l 

4.9. 

Ar(Z + I) - a~+IZ Z -< b%+ I , 

which shows that we only have to compute the differences z k to check 3 and not the 

function x itself. 

It is easy to verify that the sums and products in 4.7 and 4.8 can be computed recur- 

sively. We shall formulate an algorithm to compute the optimal stopping rule and the 

value function v. 

Algorithm 

I. k := d, ~ 2 = e, 

2. compute Zk_ l (by 4.8) and zz (by 4.7), set i := 0, 

3. if Zk_ l - ak_ I o Er(k - 2) > bk_ 1 then k := k - 1 and i := I, 

4. if Ar(~ + I) - a£+iz £ > b£+! then ~ := £ + I and i := I, 

5. if i = 0 then goto 6, else goto 2~ 

6, D is the set {i e Z [ k s i s %} and v can be compute by 4.7. 
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