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Abstract: 

One considers a class of neoclassical economic growth models where one 

commodity is a natural resource. Turnpike properties are proved for the f i n i t e  hor i -  

zon dynamic opt imizat ion problem and conditions are given for  the existence of optimal 

programmes in the i n f i n i t e  horizon case. Some simple examples i l l u s t r a t e  these f i n -  

dings. 
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I . -  Introduction° 

This paper is an attempt to deal r igorously with some fundamental mathematical 

problems ar is ing from the consideration of natural resources in the neoclassical f ra-  

mework of optimal economic growth. The theory of optimal economic growth i n i t i a t e d  by 

Ramsey 1928 and developed by many others ha~ benefited considerably from an optimal 

control formulat ion, see for  example Shell 1967. Inc identa l ly  i t  Dosed two interes- 

t ing problems which seem to be typical  of these economic models. 

The f i r s t  one concerns the precise formulation of the Turnpike Property, see 

Cass 1966, the second one is the de f in i t i on  and the character izat ion of the optimali- 

ty when the~Lme i ~ v ~  c o , i d l e d  Z~ i n f i ~ e  and the formulation of e~Lst~ce 

c o n ~ o ~  for  such an optimal so lut ion,  see Koopmans 1965. I t  appeared that the two 

problems are l inked together through the important role played in both problems by an 

op~m~steady s t~e  sui tably defined. 

In the case of optimal exp lo i ta t ion  of a natural resource, the T~npike Property 

is well i l l u s t r a ted  by the very simple model of optimal f ish harvest studied by C l i f f  

and Vincent 1973. Those authors showed that ,  for  the i r  par t i cu la r  model, any optimal 

t ra jec tory  on a su f f i c i en t l y  large interval  would contain a singular arc where the 

f ish population is maintained at i ts  lev~C of maxim~ yield, th is  s ingular arc being 

independent of the i n i t i a l  and terminal condit ions. When, in a given economy, more 

than one commodity,some of them being natural resources, enter into production, a 

s imi lar  property is expected to prevai l .  In section 2.2 i t  is shown that this is 

* This research was supported by Canada Council (Grant $74-I122) and by the Minist6re 

de l 'Education du Quebec DGES, FCAC. 
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true: the Turnpike Property exhibi ted is expressed as a bound for the measure of 

the time spent away from the Von Ne,~mann Set of the economy, a set which always con- 

ta in the optimal steady state (s). When the cost of extract ion does not depend on 

the importance of the stock of natural resource,an optimal steady state corresponds 

necessarily to the level of maximal y ie ld  for the natural resource. 

When an exhaustible natural resource is ~sent~iaZ in the production process, 

the concept of optimal steady states loses much of i ts  s igni f icance since i t  corres- 

ponds to the degenerate s i tuat ion with no production and no consumption. However 

another kind of property w i l l  be proved in section 2.3 which establishes a l ink  bet- 

ween optimal programmes when a resource is exhaustible and the optimal steady state 

of a s imi lar  economy but where the natural resource is unexhaustible. Of course~that 

kind of Turnpike property is now dependent on the i n i t i a l  stock of the exhaustible 

resource. 

In section 2.4 the existence of an optimal programme on the i n f i n i t e  horizon is 

proved. As noted by Solow 1975 one can have doubts that Time discount is defensible 

on the time scale appropriate for those models. The zero discount case is not a 

simple one since the use of the su f f i c ien t  conditions of Arrow and Kurz 1970 is in 

general not possible and the su f f i c ien t  conditions given by Rockafellar 1973 are not 

easi ly  implemented. However, i f  there exists a unique optimal steady state the exis- 

tence of an optimal programme is assured for the class of models under study. I t  is 

in terest ing to observe that the opt imal i ty  concept introduced is stronger than those 

considered by Brock 1968 for a discrete time model and more recently by Halkin 1974 

for an extension of the maximum pr inc ip le .  

F ina l ly  i t  should be noted that the method used to derive these results is 

quite general. Although the proofs make sometimes use of the pecu l ia r i t i es  of the 

model defined in section 2.1, the same approach could be repeated for another model 

with more commodities. In fact these results could be obtained for  a general class 

of convex control systems as shown by Rockafellar 1973, Haurie 1976, Haurie and 

Brock 1976. 
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2. Tuirnpike and Existence Theorems for  a Dynamic Economy with Natural Resource. 

In this section a model of an economy with a natural resource is introduced. 

We suppose that there exists a single consumption good which can reproduce i t s e l f  in 

conjunction with the use of a commodity extracted from the environment: the natural 

resource. By not considering Time discount, th is planning problem can be represented 

as being one of optimal control of an autonomous system. Our aim is to obtain a Turn- 

pike property for  optimal programmes and conditions for  existence of an optimal pro- 

gramme when the planning horizon becomes in f in i te ,under  a minimal set of assumptions. 

The approach used is an adaptation to that par t i cu la r  model of the more abstract de- 

velopments found in Haurie 1976 or Haurie and Brock 1976. 

2.1 The system under study. 

I t  is given by the fo l lowing equations: 

= U (C) (2.1) 

K = I - ~K, u > 0 given (2.2) 

= G (R) - E (2.3) 

I + C ~ F 1 (K 1, E) (2,4) 

E ~ F 2 (K 2, R) (2.5) 

K l + K 2 ~ K (2.6) 

0 ~ R, 0 ~ C, 0 ~ I ,  0 ~ E, 0 ~ K I ,  0 ~ K 2 (2.7) 

Where the s ta t e  va~iabl~ are: the accumulated u t i l i t y  for  the system W, the 

stock of the reproducible composite commodity K and the stock of the natural resource 

R. The control va~Labl~ are : the consumption flow C, the investment I ,  the flow 

E of natural resource in to production, the part K l of the stock K devoted to produc- 

t ion of the composite commodity and the part K 2 devoted to the ac t i v i t y  of extract ion 

of the natural resource. U(.) is a concave functional defining the instantaneous 

u t i l i t y  of consumption, F l ( . )  and F2(.) are concave and di~ferentiable functionals 

describing respect ively the production and extract ion opportuni t ies,  m is the depre- 

c ia t ion rate and G(.) is a concave, dZff~entiable functional describing the regene- 

rat ion process of the natural resource, as given for  example by the Verhulst-Pearl 

~quation. 

Various models recently proposed for the invest igat ion of the optimal use of 

natural resources can be cast in the form of the system (2.1) - (2.7). This is par- 

t i c u l a r l y  the case for  those developed by Dasgupta and Heal 1975, Hung 1975, Plourde 

1970, 

The fo l lowing terminology w i l l  be used: 



649 

( i)  

( i i )  

( i i i )  

(iv) 

b) 

( i)  

( i i )  

Def in i t ion  2.1: 

a) A programme ~T emanatina from (K°,R °) is a map ~T:[O' T] ~ R 8 ( [0 ,~)  ~ R 8 

when T = -)  such that :  

~T(t ) z~ (W(t), K ( t ) ,  R( t ) ,  C( t ) ,  l ( t ) ,  E ( t ) ,  K l ( t ) ,  K2(t))  T 

Almost everywhere on [0, T] Eqs. (2.1) - (2.3) are sa t i s f i ed .  

Everywhere on [0, T) the constraints ( 2 . 4 ) - ( 2 . 7 )  are v e r i f i e d .  

WT(O) = O, KT(O) = K o, RT(O) = R ° 

To a given programme ~T w i l l  be associated: 

The ~a]e~tory: YT : [0, T] -~ R 3, ~T(t)  = (W(t),  K ( t ) ,  R( t ) )  T 

The state path: XT : [0, T] ~ R 2, ~T(t) = (K ( t ) ,  R(t ) )  T 

c) A programme ~T emanating from (K°,R °) is optimal i f  fo r  any other programme 

~T emanating from (K°,R °) the fo l lowing holds: 

 TITI i f  T < ~, >_ 

i f  T = - ,  V ~ > O, 3 m, V t > T W ( t )  > , t )  - 6 m (2.8) 

This system sa t i s f i es  the c lass ica l  assumptions of optimal control theory as 

given by Lee and Markus 1967 and for  T < - f i xed ,  the existence of an optimal pro- 

gramme is assured. 

2.2 Statement and Proof of the Turnpike Property. 

Consider the fo l lowing opt imizat ion problem: 

0 = Max U (C) 

under the constraints (2 .4) - (2 .7)  and 
(2.9) 

= I - ~K ~ 0 

= G (R) - E ~ 0 

This is a concave programming problem, thus i f  there ex is ts  a solut ion where none 

of the constra ints (2.7) are act ive then there ex is ts*a vector Of Lagrange m u l t i p l i e r s :  
- 

~ = ( ~ ,  ~, ~, ~, ~)~ o 

such that  fo r  a l l  vectors: 

Z ~ (K, R, C, I ,  E, K l ,  K2) ~ R 7, Z m 0 

* See Mangasarian 1969. 
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the fo l l ow ing  holds: 

0 ~ U (C) + p ( I  - ~K) + q (G(R) - E) + ~ (F l (ml ,E)  - I - C) 

+ ~ (F2(K2,R) - E) + e (K - K 1 - m 2) ~ L (Z, ~) (2.10) 

and fo r  at least  one Z s a t i s f y i n g  the cons t ra in ts :  

0 = U (C) (2.11) 

Let F denote the subset of  a l l  vectors Z ~ 0 fo r  which the equa l i t y  holds in 

( 2 .10 ) , t h i s  is the Von Nec~ann S ~  of the economy. For a given Z we are in teres ted 

in the distance:  

d (Z,F) ~ I n f  {llZ - Z'II: Z' ~ g}. 

Lemma 2.1 : 

Let X be a given compact subset of R 7 then the fo l l ow ing  holds: 

V s > 0 3 5 > 0 s . t .  Z E X and d (Z,F) > ~ : 0 - 5 > L (Z,~) 

(2.12) 

S imi la r  to the one given by Atsumi !965, McKenzie 1968 or Haurie Proof: 

1976 m 

Now the Turnpike Property can be estab l ished:  

Theorem 2.1: Let us assume tha t :  

a) There ex is ts  a compact subset × ¢ R 7 such tha t ,  fo r  any T > O~ any 
N 

programme ~T ~ (~ ' Z )T is such tha t :  

v t  ~ tO, T~ ZT(t) ~× 

b) There ex is ts  a programme ~= emanating from (K°,R °) such tha t :  

3 # > 0 ~ V t ~ ? U [C+(t ) ]= O (2.13) 

Then fo r  T > i ,  any optimal programme w i l l  necessar i l y  v e r i f y :  

1 [~ f ÷ ~ (KT(T) _ K o) ~ ~ (RT(T) _ RO)] (2.14) mT(~) < 

where mT(s) is the Lebesgue measure of  the subset of [O,T] defined by: 

~T(~) ~ { t  ~ [0, T]:  d (ZT ( t ) ,  F) > s } (2.15) 

Proof: Since ~ is opt imal ,  and since U (C+(t))~ = U fo r  t m f one has: 

W~(T) ~ W+(T)~ ~ U (T - T) (2.16) 

Now, fo r  an optimal programme the const ra in ts  (2 .4 ) - (2 .6 )  w i l l  always be ac t ive  

and thus,  using (2 .10) - (2 .12)  and i n teg ra t i nq  between 0 and T one obta ins:  

WT(T) < U T - p  (KT(T) - K °) - q (RT(T) - R °) - 5mT(~) (2.17) 

where mT(~) has been defined as the measure of the set (2.15) .  Now (2.16) and (2.17) 

lead to:  
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1 [~ ~ + 5 (KT(T) _ K o) + ~ (RT(T) _ RO)] mT(s) < 

that  is (2 .14) .u  

2.3 I n te rp re ta t i on  of the Turnpike Property. 

2.3.1 The ro le  of the compact set X is essent ia l  in the proof  of  Theorem 2.1. 

K ° and R > R ° such Such a set w i l l  be n a t u r a l l y  def ined i f  there ex is ts  Kma x > max 

that  under (2 .2 ) - (2 .7 )  one necessar i ly  has the fo l l ow ing  imp l i ca t i on  

K > Kma x and R > Rma x = K.< 0 and R < 0 

2.3.2 The upper bound given in (2.15) means tha t ,  f o r  large values of T, an op t i -  

mal programme ~ spends most of the per iod in the v i c i n i t y  of the set F. When F re- 

duces to a s ing le  element i ,  the f ree disposal assumptions (2.4) and (2.5) imply that  

corresponds to the optimal steady state of the economy. 

2.3.3 Let us wr i te  the Pontryagin necessary cond i t ions*  fo r  an optimal t r a j ec to r y  

y~ of the system (2 .1) - (2o7) .  Def ining the Lagrangian L (Z,~) as in (2.10) the f o l -  

lowing holds when none of the constra ints  (2.7) are ac t ive :  

aL _ U'(C) - ~ = 0 aL 
aC al - p - ~ = 0 

a L = ~FI ~FI aF2 
aE - q + >" a--C- ~ = 0 aL _ ~. _ e aL _ 

- aK 1 ~ =q~2=-,, a--~2 o = 0  

aL aL _ aF2 
a---K= e - # p = - 15 --~-- q e' (R) + ~ aR = - Q 

whi le  the const ra in ts  (2 .2 ) - (2 .6 )  are s a t i s f i e d .  Those condi t ions lend themselves to 

the standard i n t e r p r e t a t i o n  in terms of  marginal u t i l i t y  and marginal p roduc t i v i t y .  

I f  there ex is ts  a unique so lu t ion  to these equations when p = q = K = R = 0 ,F reduces 

to a s ing le  element Z toward which the economy is dr iven.  

2.3.4 The two l i m i t i n g  cases of an unexhaust ible resource (G(R)~ ~, aF2/aR ~ O) 

and of a non rep len ishable resource (G(R) ~ O) deserve a p a r t i c u l a r  a t t en t i on .  

In the f i r s t  case the s tate equation (2.3) is no longer a const ra in t  and 

(2.14) is replaced by: 

l ~* 
mT(~) < ~ [UT + p (K (T) - K°)] (2.18) 

Now consider the second case. I f  the resource does not replenish i t s e l f ,  a 

steady s tate requires E ~ 0 and i t  becomes c lear  that  F cannot reduce to a s ing le  e le-  

ment (any value fo r  R is compatible with E = 0);  furthermore the Turnpike property 

loses i t s  s ign i f i cance  since the optimal steady states correspond to a degenerate s i -  

tua t ion  where the natural  resource is not used in the economy. 

* fo r  s i m p l i c i t y  one w i l l  assume that  U ( . )  is d i f f e r e n t i a b l e .  
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However a d i f f e r e n t  kind of "Turnpike" could be exh ib i ted .  F i rs t ,we not ice 

that  the only d i f fe rence between unexhaust ib le and non rep len ishable resources is 

that  any pos i t i ve  rate of ex t rac t i on  can be maintained in the f i r s t  case whi le  no ~o- 

s i t i v e  rate of ex t rac t ion  can be maintained in the second case. Never the less~i f  the 

i n i t i a l  stock is large enough, and i f  aF2/aR _= O~it may be possib le to reach at t ime 

the steady s ta te  Z corresponding to the unexhaust ible case and then to maintain the 

ex t rac t i on  at leve l  E un t i l  exhaust ion of the resource at time T. For a l l  T > T an 

optimal programme ~ w i l l  c e r t a i n l y  v e r i f y .  

W (T) >_ (T - T) U (2.19) 

Assuming that  Z is unique and de f in ing  m~(d) as the measure of the set: 

T = { t  ~ [0, T]: d (ZT( t ) ,  Z) > s } 

a r e p e t i t i o n  of the arguments of Theorem 2.1 gives: 

1 [0 (T - T T) + p (K*(T) - K°)] (2.20) 

For T f i xed ,  when R ° increases T tends to be close to T and thus (2.20) does not d i f f e r  

s t rong ly  from (2.18).  The r e l a t i o n  (2.19) says that  when the i n i t i a l  stock of a non 

rep len ishable resource is large,an optimal programme w i l l  f i r s t  dr ive  the economy to-  

ward the steady s tate Z as i f  the resource was in i n f i n i t e  supply and only at the end 

of the per iod w i l l  the sca rc i t y  of  the resource be taken ser ious ly  in to  account. 

To i l l u s t r a t e  that  behaviour consider the fo l l ow ing  p a r t i c u l a r  system: 

E I ' ~  , A > 0 given , ~ E [0, I I  given I + C _ < A K  1 

E _< B ~22 , B > 0 given , 

K 1 + K 2 _< K 

0 < E, 0 <_ K, 0 _< R, 0 _< I ,  0 _< C, 0 _< K I ,  0 < K 2 

The grad ient  of the Langrang~an L(Z,G) is given by: 

aL 1 - ~_ aL aL (Kl~c~ 
a-C = ~ = p " :k aE - q - v + k A  (1 - c~) " T '  l 

K l ~-! eL ~B I (2 21) eL k a ~(-~-) - 9 - ~ 2 2  - £ " 
~ I  = aK2 

aL a L =  e - p~ = - ~ a-'#= 0 = - q 
eK 

I f  appears that  an optimal t r a j ec to r y  w i l l  be composed of regu lar  arcs where C ~ 0 or 

I -= 0 and of  a s ingu la r  arc character ized by the cond i t ion :  p ~ 1. 

Along such an arc the necessary condi t ions imply: 

K1 = (~A) I- I~ , E = ~B KI ~' 
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Since q and KI/E are constants v is also a constant and thus E is a constant too. I t  

appears that the Singular arc is uniquely defined as a steady state and i t  would be 

easy to check that i t  corresponds to the oDtimal steady state when the resource is 

unexhaustible. 

2.4 Existence of an optimal programme on the i n f i n i t e  horizon. 

Theorem 2.2 : Under the assumptions of Theorem 2.1 and i f  F reduces to the sin- 

~le element Z then there exists an optimal programme ~ emanating from (K °, R°). 

Proof: Define: L' (x,~) ~ Sup {L (Z,~): (C, I ,  E, K i ,  K 2) ~ O,wi th  (2.4)-  

(2.6~. k o (x) ~ L' (x,~) - U ~ 0 (2.22) 

L ° (x) is non posi t ive by (2.10). Since there exists a programme ~+ ~ for  which 

U [C + ( t ) ]  ~ U Vt m 

One has cer ta in ly :  

e* = SUp { ~L  ° (~ ( t ) )  dt: K (O) = K °, R (0) = R °}  > - 

where the sup is over a l l  state paths ~ with given i n i t i a l  values K °, R °. 
~ n  Now there exists a sequence {x ~ N  of state paths such that:  

l im { 'L  ° (Rn(t)), dt = 8" 
n ~ 

By (2.21) and using the dominated convergence theorem one has also:  

#" lim L o (~n(t)), dt = 8" (2.23) 
n ~ 

Varaiya 1967 has shown that for  a system having the compactness and convexity proper- 

t ies assumed here the set of state paths ~ emanating from (K °, R °) is compact in the 

topology of uniform convergence on f i n i t e  in terva ls .  Thus the sequence {X~}n(N has 

at least one cluster Point R* for which, by (2.23) and by the cont inui ty of L' (. ~)~ 

one has: 

e* = ~'L ° (R~(t)) dt (2.24) 

To the state path ~ corresponds a programme ~ .  We have to ver i f y  that ~* is optimal. 

Consider any other programme and form: 

E (T) ~ fm[u (C*(t)) - U (C (t)]  dt (2.25) 

By (2.10) and (2.22) the foilowing holds: 

E (T) ~ #T[L o (~ ( t ) )  - L o (~ ( t )) ]  dt 

EE1(T)- E(T)  
- q [RI(T) - R (T)] (2.26) 
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Assume that  one d o ~  no t  have: 

l im K(t) = K and l im R(T) = 
t - ~ =  t - ~  

Thus one necessar i ly  has m (s) = - and from (2.12):  

I ~ L ° (~ ( t ) )  dt  = -  ~ (2"27) 

NOW i t  is c lea r ,  by (2.23) and (2.27) that  the fo l l ow ing  convergence property holds 

fo r  the s tate path ~* 

l im m ( t )  = K and l im R (m) = 
t + ~  t - * =  

converges toward (K, R), then fo r  any ~ > 0, i f  T is chosen large enough one I f  

has: 

> rm[L o ( ~ ( t ) )  - m o (~ ( t ) ) ]  dt  -e (T) 5 

and there fore  
~ 

/ [u ( c ( t ) )  - u ( c ( t ) ) ]  dt ~ o 
o 

( 2 . 2 8 )  

I f  ~ is not converging toward (K , R), the terms ~ K (T) and q R (T) stay bounded 

wh i le ,  by (2.27):  

l im /T [L ° (~ ( t ) )  - L ° (R ( t ) ) ]  dt = 

Therefore (2.28) holds in th is  case too and ~* is an optimal programme. B 

2.5 I n t e r p r e t a t i o n  of the existence theorem. 

2.5.1 The u n i c i t y  of  the optimal steady s ta te  Z is essent ia l  fo r  the proof of  

Theorem 2.2. Thus the existence Theorem does not aoply to the case of a non rep le-  

n ishable resource. Dasgupta and Heal 1975 usinq the approach suggested by Arrow and 

Kurz 1970 showed the existence of optimal Drogrammes fo r  a p a r t i c u l a r  system with non 

rep len ishab le  resource and i t  does not seem to be possib le to get more general resu l t s .  

2.5.2 The method used to e tab l i sh  the existence theorem is reminiscent of the ap- 

proach of  P i tch ford  1974 to study optimal populat ion growth. Mimickinq his approach 

we would consider the problem: 

Max fT [u  (C( t ) )  - U] dt wi th K(T) = K, R(T) = 
o 

and under the const ra in ts  (2 .2 ) - (2 .7 )  with T f ree.  I t  is c l ea r  tha t  a so lu t ion  of  

th is  problem would def ine an optimal programme on the i n f i n i t e  hor izon. From a t h e o r i -  

t i ca l  po in t  of  view, the main weakness of th i s  approach is that  fo r  most cases a 

so lu t ion  does not ex i s t  wi th  ~ f i n i t e  value of  T. Thus c o n t r a r i l y  to what is claimed 

by Pi tchford~the existence theorem of Lee and Markus does not hold in that  case since 

i t  requires an upper bound fo r  the admissible values fo r  T. 

2.5.3 As an i l l u s t r a t i o n  consider the fo l l ow ing  p a r t i c u l a r  system: 
= c , ~ = I - ~K 
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= GR (Rma x - R) - E , G > 0 , Rma x > 0 given 

I + C _< AK~ E I -~  , A > 0 given , ~ ( [0, I ]  given 

E _< B ~ , B > 0 given , K l ÷ K 2 _< K 

0_< K , 0_< R , 0_< I , 0_< C , 0_< E , 0_< K 1 , 0_< K 2 

The grad ient  of  the Lagrang~an as computed in (2.21) s t i l l  holds excepted fo r  the 

l a s t  component aL/aR which becomes: 

aL G ( - 2R) q = - Q aR - Rmax 

A s i ngu la r  arc is  s t i l l  charac ter ized by p _= 1 and thus one has: 

1 
K1 f )  TL-E~ vB 

e = ~ , T =  ( , E - 2 ~  

q + ~ = A (I - ~) ( ~ ) ~  

I f  R = ½ Rma x one has Q = 0 and the s ingu la r  arc corresponds to the opt imal  s tea-  

dy s ta te .  
K 1 

1 then remains a constant and: I f  R :# ~- Rma x 

I Rmax > O i f R < ~  

2! Rmax GB - 2R) 0 i f  R = -  

Rmax 
< O i f R > ~  

I t  appears tha t  the s i ngu la r  arc leads asymp to t i ca l l y  to the opt imal  steady s ta te .  

3 . -  Conclusion. 

The resu l t s  of  sect ion 2 are obtained under the general assumptions of  opt imal 

cont ro l  theory and concave programming. Therefore they hold even when the funct ions 

U ( . )  and F 1 ( . )  are not d i f f e r e n t i a b l e .  Moreover no assumption of  homogeneity is 

requ i red  fo r  the product ion func t ion  and even the Inada cond i t ions  are replaced by 

the weaker assumption of  the existence of the compact set X. 

From the economic v iewpo in t ,  the Turnpike Property is of  g reat  help in guid ing 

the planner f o r  the set-up of opt imal economic p o l i c i e s .  The p lanner 's  task is sim- 

p l i f i e d  once he has charac ter ized the opt imal steady s ta te  in the neighbourhood of 

which an opt imal  programme should stay fo r  the most par t  of the p lanning per iod .  

Plourde 1970 obtained a q u a l i t a t i v e  r e s u l t  of the same kind f o r  a one commodity mo- 

de l ,  the commodity being a rep len ishab le  resource. 

When cap i ta l  is in t roduced in to  the model, the cha rac te r i za t i on  of opt imal  
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pol ic ies is possible by using the pol icy switching technique of Pitchford 1972. 

Such an analysis is done by Hung 1975. However the existence of optimal programmes 

on an i n f i n i t e  planning horizon was not correct ly  asserted in these ea r l i e r  works. 

In this paper this gap is hopeful ly f i l l e d .  
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