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ABSTRACT 

Here presented is a model of many goal-oriented stochastic automata. 

The goal of each automaton is the extremum of the absolute mean value 

of a certain utility function. That function depends explicitly on the 

automaton strategy and the environment response. Without need of any 

a priori knowledge each automaton adapts its structure in the process 

of achieving its own goal. By suitably setting the environment charac- 

teristics the automata model can be useful for the analysis of some 

operations research problems. As example that model is used for the 

study of the price formation process in a free competitive market. The 

results demonstrated the convergence of the automata updating scheme 

as well as the influence of a number of interesting physical parameters 

(like the buyers tactics, the sellers psychology, etc...) on the equi- 

librium condition. 

]. INTRODUCTION 

Tsetlin [I] has proposed different norms of behavior of a finite 

automaton working in a random environment. In that work the environ- 

ment is assumed to either penalize or reward each action of the auto- 

maton according to certain unknown probabilities. The bahavior of an 

automaton is called expedient if the average penalty is less than the 

value corresponding to choosing all actions with equal probabilities. 

The behavior is called optimal or c- optimal according to whether the 

average penalty is equal or arbitrarily close, respectively, to the 

minimum value. Krylov and Tsetlin [23 introduced the concept of games 

between automata and studied in particular Two-Automaton Zero-Sum games. 

Stochastic automata with variable structure have been introduced 

by Varshavskii and Vorntsova [33 to represent learning automata attempt- 
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ting a certain norm of behavior in an unknown random environment. Since 

the date of that work a respectable number of works has appeared, stu- 

dying different aspects of learning automata and applying it in simula- 

ting very simple norms of behavior (like that introduced by Tsetlin) 

and also simple automata games (such as Two-Automaton Zero-Sum games). 

For a survey on the subject we refer to Narendra and Thathacher [4]. 

The contribution of this paper is to direct the attention of using 

learning automata to simulate an important class of problems of collec- 

tive behavior whose deterministic version has been the subject of re- 

cent investigation mainly by Malishevskii and Tenisberg, see [5] [7]. 

In that class of problems there exists a type of relation in the collec- 

tive where the behavior of the participants possesses a definite mutual 

opposition. Such situation can arise for example in economic systems : 

the case of price regulation in a competitive market [8]; or in manage- 

ment systems : the problems of resource allocation [9]. 

In the model introduced in this paper a collectice of interacting 

stochastic automata is considered. Each automaton has a behavioral 

tactic directed towards the realization of its own goal, taken to be 

the extremun of a certain utility function. That function depends ex- 

plicitly on the automaton strategy and the environment response. The 

automata interactions arise from the dependence of the environment 

response on the whole set of strategies used by the collective of automata. 

That dependence is generally stochastic and unknown to all the automata. 

Furthermore, any automaton does not know neither the utility functions, 

nor even the number of the other automata. The only available knowledge 

to each automaton is the realization of its utility function following 

the use of a certain strategy. 

The use of automata game to model the process of market price regu- 

lation (or optimization), described in Karlin [8], from the viewpoint 

of collective behaviour was demonstrated by Tenisberg [5]. In his work, 

Tenisberg [5] made two assumptions. The first assumption is connected 

with the substitution of the probability characteristics of the buyers' 

demand by deterministic characteristics (mean value). This is equiva- 

lent to the assumption that the transactions are sufficiently numerous. 

The second assumption is that already in a time small compared to the 

characteristic time of the system a fairly large number of interactions 

between the sellers and the buyers occur. These assumptions permit the 
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model to be described approximately by deterministic differential equa- 

tions. Later Malishevskii and Tenisberg [6] formulated theorems about 

the existence and uniqueness of the equilibrium situation in the game 

(in the sense of Nash) and the attainability of this situation in the 

process of the automata game. 

Krylatykh f10] modified the deterministic model of Tenisberg E5] 

by taking into consideration the psychological attitudes of sellers and 

buyers with respect to the market situation. This has the effect of 

including nonlinear utility function instead of a linear one in the 

Tenisberg model ES]. This corresponds to the cases when the automata are 

not able to perceive the created situations adequately; simulating the 

individual psychological peculiarities of the buyers and sellers, who 

in reality are not necessarily always objective (corresponding to a 

linear utility function). 

Applying the present stochastic automata model the assumptions of 

Tenisberg E5] are not needed; in particular the stochastic nature of 

the buyers demand will be respected. In addition the stochastic model 

reveals the effect of a number of interesting factors - like the sellers 

psychology - on the modes of collective behaviour which has no analog 

in deterministic modelling as shown in section 5. 

2. AUTOMATA MODEL 

As model of collective behavior we consider the following game of 

N stochastic automata A],A 2,...,A N . The automata operate on a discrete 

time scale t = 0,],2,... The input si(t) to each i-th automaton can 

acquire one of the values sl,s2,..,s m. The output fi(t) of the automa- 

ton A i will be assumed to take one of the k I. values fl i,...,fki.i which 

will be called its strategies° We will say that the automaton A I uses 

the j-th strategy if fi(t) = f.i. 
J 

A play f(t) carried out at time t will be the name given to a set 

f(t) = (f1(t),...,fN(t)) of the strategies used by the automata A ],..., 

A N at time t. The outcome s(t) of a play f(t) is a set s(t) = (s I (t)~ 
N ...,s (t)) of the refree or environment responses at time t. The model 

is depicted schematically in Fig.1. The environment is completely cha- 

racterized by the probability P(f(t),s(t)) of the outcome s(t) for 

every play f(t). As only stationary environments will be considered, 

the aforementioned probability can simply be written as P(f,s). The 
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game of N automata A i is considered to be a game with independent out- 

comes, i.e. 

N 
P(f,s) = ~ Pi(f,si) (2.1) 

i=1 

Let us introduce the indicator functions ¢i(f) defined by 

¢i(f) = Msi { F i [@i(fi,si)] } 

(2.2) 
= ~ Fi[ei(fi,sl)]Pi(f,sl) (i=1,...,N) 

S 

F i where M si denotes the mean value with respect to s i, is an utility 

function of the incentive (or utility) @i The incentive e i depends ex- 

plicitely on the automaton strategy fl and the environment response s i. 

The objective of each i-th automaton is to choose its strategy fi 

in order to minimize the absolute value of its own indicator function 

(2.2), i.e. to minimize 

Qi(f )  = i ~ i ( f )  l (2o3) 

In classical N-person games, each player possesses an adequate a 

priori knowledge of the game, i.e. the criteria and the sets of pure 

strategies for all the players. It is defined that the i-th player uses 

the mixed strategy pi = (Pl i'''''pkii) ~f the. uses his pure strategy 

fj~i with probability pj1(j=],...,ki), j=IZ I pit=l).. Nash's basic theorem 

states that any finite N-person game has at least one equilibrium situ- 

ation in mixed strategies (pl,...,pN), that is 

-i -i Q (p]*, ..,pi, N, (pl, i ,pN,) 
• , . . . , p  ) _< Q , . . . , p  , . . .  ( 2 . 4 )  

i for all p , i=1,...,N, where 

- i  1 Q (p , . . . , P N ) =  z 
J l J2"  "JN 

I 2 N Qi 1,fj2, pj .. f N) 
1 PJ2" 'PJN ( f J l  2 ' 3N 

(2 .s)  
-i 

also denoted by Q (p), is the mathematical expectation of the gain of 

the i-th player when the set of mixed strategies p=(pl,..,pN) is used. 



574 

Unlike N-person~ players automata in automata games do not possess 

any a priori information about the game° They know neither about the 

criteria (2.3) nor even the number of game partners. They must choose 

their strategies (or which is the same their probability vectors pl) 

in the course of the game by using the only available information : the 

realizations of their incentive functions @i(fi,si). In studying auto- 

mata games we thus come to know the behavior of the players in the game 

process. 

The indicator functions ~i(f),i=1,...,N given by (2.2) are assumed 

to satisfy the conditions of individual and group contramonotonicity 

E6], i.e. for any subset I of the set of indexes {i}={1,..,N} the func- 

tion. 

~I = Z @i(f) 
i~I 

decreases in the set of own variables fl, i~I and does not decrease 

in the set of foreign variables fJ,jsI(7 is the complement of I). 

If each automaton A i knows its own indicator function }i and its 
i i 

strategy fi can take any value in the continuous interval [fl 'fki ] 

then the optimal tactic can be given by the simple differential rela- 

tion [5] - [7] 

o - 

f z ( t )  = ~ i ( f ( t ) )  (2.6) 

fi=f I fi f i i where O if i,@i < O or = ki ,4 > O 

$i(f) = ( 2 . 7 )  

~i(f) in all other cases. 

This means that the trajectories of the system (2.6) converge to the 

Nash point f* if exists. 

Let us emphasize that in the present model of collective behavior 

the goal of each automaton is not fully determinate, i.e. known only 

up to certain parameters for which there is no a priori information. 

Specifically automaton A i does not know its own indicator function 

~i(f); all what is known to it is the incentive function @i(fi,si), 

see eqn. (2.2). 

Let us arrange the set of strategies of the i-th automaton such 
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that f.i > " . > i fk I for all j k. For any strategy f. (1 < j < ki) we 
]i i 3 

call fj+] the next supremal strategy and fj_] the next infimal strategy. 
I 

The strategies fl i and fki are the infimal and supremal absorbing 

strategies, respectively of the i-th automaton. 

Inspired by the behavioral conception represented by eqn.(2.6) we 

propose the following model of learning automata. 

Let us introduce the functions, 

+1 if @i > 0 

i @i 
u = 0 if = 0 (2.8) 

-1 if @i < 0 

and 
0 if fi=fli,@i < O, or fi=fk , @i i > 0 

~i(fi,si ) i 
= (B.9) 

@l(fl,sl) in all other cases 

The idea underlying the functioning of a learning automaton in 

the present model can be loosly stated as follows. At any time step 

provided that an automaton is not at either of the absorbing states and 

the automaton action has elicited an environment response for which 

the incentive function @i is greater than zero than at the next time 

step the probability of the next supremal action is increased; on the 

other hand if the incentive function is less than zero then the pro- 

bability of the next infimal action is increased. Otherwise, that is 

if the automaton is at either of the absorbing states or the incentive 

function is zero, the automaton remains in the status quo. That idea 

can be analytically represented by the following updating scheme for 

the automata strategis. Provided that fi(t) = f.i then 

i .(t+1)=P~+ui(t)+y(t+1)uiFi(~i(fi(t),si(t)) ) Pj+u 1 

pmi (t+1)=p~ (t) _ y(t+1)uiF1(~i(fi(t), s "  " i(t))), (2.10) 
N+I 

m=1,..,ki,m ~ j + u i 

where y(t) satisfies the classical conditions of stochastic approximation 

schemes 
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co ¢o 

2 
y ( t )  > o , ~ y ( t )  = ~ , z y ( t )  < - ( z . q l )  

t=l t=l 

A function block diagram for each i-th automaton may be represented 

as shown in Fig. 2. 

3. ENVIRONMENT MODEL 

As said before the environment is completely characterized by the 

probability P(f,s) of the outcome s(t) for every play f(t). That proba- 

bility also fully specifies the interaction between the automata. 

In the following we present two different models of the environment, 

named the "pairwise comparison" and the "proportional utility". 

3.1. Pairwise comparison. 

Let the environment be constituted of u elements j=],..,u. The 

j-th element finds out the strategies fi and fk of two randomly chosen 

(with equal probabilities) automaton, the i-th and the k-th(i,k=],..,N). 

The j-th element then responds in a probabilistic manner to only one 

of the chosen pair of automata; say with probability pj(fi,fk) to the 

i-th and with probability pj(fk,fi)=l-pj(fi,fk) to the k-th. 

We shall assume pj(fi fk)=¢(~j(fi fk)) = ]/2 + ~(~j(fi,fk)) where 

~j(fi,fk) is a certain utility index for the j-th element, and ~(x) 

is a monotonically increasing odd function ~(+~)=~(--) = 1/2. 

The total probability of a response from the j-th element of the 

environment to the i-th automaton can be written thus 

N 
p j n i  (f)  _ 2 z ? (~ j  ( f i , f Z ) )  (3 .1)  

N(N-1) k=l 
za i  

Notice that 

N 
0 -< pj'i _< ] , Z pj,i = ] (S.2) 

i=l 

The response of the j-th element of the environment to the i-th 

automaton is considered to be in the form 

s j , i  = ~ j  ( f i )  ( 3 . s )  
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where ~J (.) is a piecewise continuous function. 

Indeed eqs.(3.2) and (3.3) permit to write the conditional probabi- 

lity of the environment response s i for a play f of the automata as fol- 

lows, 
Z £ 

pi(si -< E sJ'i/f) = Z pj,i(f) , (~=1,..,u) (3.4) 
j =1 j=1 

3.2. Proportional utility. 

In this model each element of the environment responds to the auto- 

mata with probabilities proportionable to the utilities of their stra- 

tegies. The probability of a response from an element increases as the 

utility of an automaton strategy increases and becomes maximum for maxi- 

mum utility. Hence the probability that the j-th element responds to the 

i-th automaton can be expressed thus, 

N 
pj,i(f) = }(~j(fi))/ z ,(6J(fi)),j=1,..,u; i=],..,N (3.5) 

j:1 

where %(.) is some positive non-decreasing function, and ~j(fi) is the 

utility of the i-th automaton strategy fi for the j-th element. 

Eqs. (3.3) and (3.4) again complete the environment model description 

after replacing the probabilities pj,i(f) in eqn.(3.4) by the expression 

of eqn. (3.5) . 

4. APPLICATION - Price Formation in a Competitive Market. 

Consider N sellers in a market trading in one specific commodity. 

Each i-th seller (i=1,..,N) is assumed to be supplied by a constant 
i 

q units of that commodity per time increment (the interval between 

any two successive time steps). The strategy of any i-th seller f i re- 

presents the price he specifies for his commodity. Let the i-th seller 
i 

receives a demand ~ in monetary units for buying his conunoditu at the 

specified price fi. The financial incentive for the i-th seller is simply 

the difference between the demand and supply in monetary units, i.e. 

@i i ifi =~ - q , (i=1,..,N) (4.7) 

The utility of that incentive may be interpreted differently by the sel- 
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lers; each according to his psychological type. That interpretation is 

embodied in the utility function Fi(°) of an i-th seller which may be 

considered in the following form, 

Fi(e i) = ai(exp(bi0i)-1) + die i , (i=1,..,N) (4.8) 

The constants ai,b i, and d i simulate the psychological type of the i-th 

seller as follows, 

Cautious type : ai,b i < 0 , d i = 0 

Objective type : ai,b i = 0 , d i > 0 

Hazardous type : ai,b i > 0 , d i = 0 

( 4 . 9 )  

The nonlinearity of the utility function F i for a cautious or hazardous 

seller indicates the lack of objectivity of such psychological types. 

Thus a hazardous type overestimates the importance of a good deal (~J > O) 

and underestimates the importance of the deal in the opposite situation 

(6J < 0). A cautious type overestimates the importance of bad deals and 

underestimates the good ones. 

The objective of each seller is to find a price strategy maximizes 

its utility function, or what amounts to the same ensures the least harm- 

ful situation (according to a certain psychology) created by the mis- 

match between commodity supply and demand in monetary units. Hence, each 

seller attempts to minimize the function (2.3) where the indicator func- 
i . 

tion ~ is given by eqs. (2.2),(4.7), and (4.8). 

The automata scheme (2.10) is used to simulate the behavior of the 

sellers. 

In the case of pairwise comparison tactic of the buyers [5] the 

environment is simulated as in sec. 3.1. In this case the utility of 

the j-th buyer making his purshase from the i-th seller is given by 

~j(fi,fk) = fk_fi (4.10) 

The ~ function in eqn. (3.1) may be taken thus~ 

! x > 4 
~ ( x )  = ( x  + 4 ) / 2  , - 4  < x < /, , 

0 x < - 4  

( 4 . 1 1 )  
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Here (-A,A) represents the "active zone of the function". The function 

~J in eqn. (3.3) may be considered as 

Bj 6j ~ fi 
~j(fi) = 

O , 6j < fi (4.12) 

This means that the purshasing transaction between the j-th buyer and 

the i-th seller will be completed only when the buyer's available amount 

of money B j equals or exceeds the price fi of a unit of the commodity. 

In the case of reference prices tactic of the buyers [5] the envi- 

ronment is simulated as in section 3.2. In this case the utility of the 

j-th buyer making his purchase from the i-th seller is given by 

~ j ( f i )  = h J _ f i  ( 4 . 1 3 )  

where h j is the reference price of the j-th buyer. The function 4(.) is 

taken to be the same as ~(.) defined by (4.11). 

5. SIMULATION RESULTS. 

In all the simulation experiments the following market parameters 

are considered, 

Number of sellers N=3 , Sellers' psychology : 

Number of buyers u=12 Cautious ai=-1, bi=-O.005 

Objective di=O.O2 

Hazardous ai=1, bi=O.OO5 

Commodity supply qi=2, q2=2, q3=3 

Available money to each buyer 6J=150 

Buyers' utility ~=O.O5, see eqs. (4.10),(4.13) 

The sequence y(t), see eqn. (2.10), were taken as 

YO 
y ( t )  - t , Yo=COns t . ,  t = 1 , 2 , . .  ( 5 . 1 )  

The sellers sets of prices are first taken as : 

i i 
Ck k 1 2 3 

1 100 100 140 
2 140 130 170 
3 170 200 
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The initial price probabilities for the different sellers are assu- 

i 
p ~ [ o 3  k 1 2 3 

1 0 . 5  0 , 2  0 . 5  
2 O.5 O.5 O.3 
3 - 0.3 0.2 

5.1. "Pairwise price comparison" tactic. 

Let the number of buyers u=12, and consider different psychological 

classes of sellers. 

8.1.1. ? M ~ s ~ ! ~ _ ~ ! ~ r ~ .  

The width of the active zone, see eqn. (4.11) was taken first as 

A=2OO. The effect of the constant ~O' see eqn. (5.1), on the convergence 

of the sellers price probabilities was examined. It is concluded that 

a very small value of ~@ (i.e. O < YO << I) leads to a very sluggish 

convergence. On the other hand a value of YO as big as I leads to a ra- 

ther vigorous and oscillatory convergence. An optimum value for YO seems 

to exist somehow in between, see Fig. 3. 

Taking ~O = O.1, a satisfactory convergence has been attained at 

n = 1OO. At that time step, the average of price probabilities <corres- 

ponding to 10 trials) are 

Table I 

i 
E { p ~ [ 1 O O ] }  k 1 2 3 

1 0 , 0 5 2 8  O.OO10  0 . 6 7 0 8  
2 0 , 9 4 7 2  0 . 4 9 7 2  0 . 3 2 9 2  
S - 0 . 5 0 1 8  0 

which, presumably, is close to the equilibrium point. 

The influence of the width A of the active zone was also tested 

with objective types of sellers and ¥O = O.!. With A = 2 (which means 

that ~ was equal to O or I when the prices were different) we obtained 

the following mean probability matrix (the mean of 10 trials) : 
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E{p~[lO0]} 
Table 2 

i 
k 1 2 3 

I 0.0355 0 0.5961 
2 0.9645 0.3397 0.4039 
3 0.6603 0 

and with A = 2000 we obtained : 

E{p~[100]} k 

I 

2 

Table 3 

I 2 3 

0.1154 O.OO10 0.6827 
0.8846 0.5133 0.3173 

- 0.4857 0 

The last two tables demonstrate the tendency to increase the prices 

as A gets smaller, which can be demonstrated as follows 

According to eqn. (4.11) of the function ~ , it is clear that if 

as a result of pairwise comparison 

max{i~J(fi,f k) , i~J(f k,fi) i} _> A (5.2) 

then the j-th buyer making that comparison will be definitely captured 

by one of them; specifically by the i-th if ~J(ci,c k ) -  ~ A and by the 

k-th if ~J(ck,c i) ~ A. An uncertain decision by the j-th buyer only hap- 

pen when the prices are fairly close so that max{i~J(ci,ck) i,l~J(ck,ci)i}'" 

< A. In this case we shall say that "active competition" exists between 

the i-th and k-th sellers; we shall call the interval (-A,A) the "active 

zone" of the function ~(x). 

As A ÷ O, the competition by the prices tends to be uneffective; as 

the demand will be basically determined by the money flux into the market, 

and the commodity supply available to each seller. In such condition, it 

seems natural that each seller attempts to specify the highest possible 

price for his commodity. If the commodity supplies to the different sel- 

lers vary only slightly, the limit prices tend to be almost the same. 

This is verified by the simulation results. 

Also, as in the deterministic case (cf. Tenisberg [5]), the effect 

of a small A, is more or less an equalization of prices in the market. 

This can be demonstrated by changing the set of prices of the second sel- 

ler to include the price 140 instead of 130, as well as changing the hum- 
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ber of buyers to have no abundant demands. Thus, take u = 7 and 

i 
i 

c k k 1 2 3 

t ! 0 0  100 140 
2 140 140  170 
3 - 170 200 

With objective sellers and A = 2 we obtained : 

i i [  
E{Pk 1OO3} k 1 2 3 

! O . 1 6 7 4  0 . 0 6 0 7  0 . 8 6 7 0  
2 0.8326 0.7464 0.1330 
3 0.1929 0 

This demonstrates that the sellers have all increased the probability 

of the price 140 which indicates the tendency of equalization of prices, 

compare with Table 5. 

5 . 1 . 2 .  H a z a r d o u s  s e l l e r s .  

We p u t  YO = O.1 a n d  A = 2 0 0 .  T he  m e a n  p r o b a b i l i t y  m a t r i x  a t  n = 1OO 

b e c a m e  

i 
E { p { [  1OO }3k  1 2 3 

1 0 . 0 4 5 7  O 0 . 3 2 6 5  
2 0 . 9 5 4 3  0 . 1 6 3 9  0 . 6 7 3 5  
3 - O . 8 3 6 1  O 

which, presumeably, is fairly close to the equilibrium point. 

8.].3. Cautious sellers. 

We put ~0 = 0.1 and a = 200. The mean probability matrix at n = 100 

became : 

i 
E{p~E1OO]}  k 1 2 3 

1 O . 3 7 t 5  0 . 0 0 0 9  0 . 9 3 3 2  
2 0.6285 0.7919 0.0668 
3 - 0.2072 0 

which, according to the simulation trials, should be close to the equili- 

brium point. 
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Compared to the objective case, the last two tables demonstrate that 

the hazardous sellers tend to increase the probability of higher prices, 

while the cautious sellers tempt to increase the probability of lower 

prices. This result has no analog in deterministic modelling; where the 

sellers psychology does not affect the equilibrium prices, cf. Krylatykh 

[103. In stochastic modelling, however, the expectation of the utility 

being zero does not imply that the expectation of the utility is zero due 

to the nonlinear from of the utility function in the case of hazardous 

or cautious types. In any case; the previous result agrees more with in- 

tuition and favors stochastic modelling for more realistic simulation. 

Let us now reduce the number of buyers. Take u = 7. This means less mo- 

ney flow into the market. All the other market parameters remain the same 

as before. 

Considering objective sellers, the following mean price probabili- 

ties have been reached at n = 100, for different widths of the active 

zone : 

A = 200 : 
i 

i [ l O 0 ] }  k E{P k 

Table 4 

1 2 3 

t O . 3 9 2 1  0 . 0 2 8 7  0 . 8 8 7 7  
2 0 . 6 0 7 9  0 . 7 5 3 9  O . 1 1 2 3  
3 - O . 2 1 7 4  O 

T a b l e  5 
fl = 2 : 

i 
i[lO0]} k 1 2 3 E{P k 

I 0 .2177 0 0 .8586 
2 0.7823 0.5279 0.1414 
3 - 0.4721 0 

Table 6 
= 2000 : 

i 4 

E { p ~ [ 1 0 0 ] }  k 1 2 3 

1 0 . 4 8 7 4  0 . 0 3 2 9  0 . 8 8 0 3  
2 O . 5 1 2 6  0 . 7 4 5 3  O . 1 1 9 7  
3 - O . 2 2 1 8  O 

Comparing in respective order tables 4,5,6 with Tables 1,2,3 (where 

o = 12) it is clear that the probability of lower prices in the case of 

= 7 have been significantly increased for all values of A. This agrees 

with the intuition that as the money flow into the market decreases, the 
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probability of lower prices increases, This conclusion holds for all 

sellers psychological types. 

5.2. "Reference-Price" tactics. 

Let the reference price for all buyers be the same : 

h j = ! 3 0  , j = 1 , . . , 1 2  

and consider the other market parameters unchanged. For A = 200, and 

YO = 0.1 the following simulation results have been obtained. 

5 . 2 . 1 .  9 ~ i ~ z ~ _ ~ ! ! ~ r ~ .  

With objective type of sellers we obtained : 

i iE E{Pk 100 ] }  k 1 2 3 

I 0.0689 0.0010 0.6722 
2 O.9311 0.5097 0.3278 
3 0.4893 O 

For this case we have also computed the absolute mean values of the 

utility function versus time in order to demonstrate the learning capa- 

bility of the sellers automata. A plot of the optimality criterion for 

the second seller ~2 is shown in Fig. 4 (esch point is the mean of 1OO 

trials). 

5.2.2. Hazardous seller's. 

With hazardous type of sellers we obtained : 

i 
i [ 1 0 0 ] }  k 1 2 3 E{P k 

I 0.0760 O 0.3292 
2 0.9240 O.1903 0.6708 
3 - 0.8097 O 

5.2.3. Cautious sellers. 

With cautious type of sellers we obtained : 

i 
E { p ~ [ l O 0 ] }  k 1 2 3 

I 0.3828 0.0006 0.9338 
2 O.6172 0.7947 0.0662 
3 - 0.2047 0 
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Comparing these results with the results of sec. 5.1 we see that 

they differ slightly. 

Changing the reference prices h j did not bring significant changes 

to the equilibrium probabilities. 

5. CONCLUSIONS. 

A model of many goal-oriented stochastic automata is introduced for 

the study of a certain class of problems of operations research. That 

class is characterized by the existence of a definite mutual opposition 

in the behavior of the participants in the collective. In the model the 

goals of the participants are assumed to be known only up to certain in- 

determinate parameters for which there is no a priori information avai- 

lable. Such class of problems cannot be solved by the theory of N-person 

games. By means of that automata model a numerical solution to the beha- 

vioral dynamics and the equilibrium conditions of the participants in the 

collective can be obtained. 

Besides the automata model can demonstrate the effect of certain 

interesting factors like participants psychology, stimulation laws, be- 

havioral tactics, etc.., on the mode of collective behavior. As example, 

the model is used for the simulation of the price formation process in 

a free market. The result obtained demonstrate the applicability of the 

present automata model. 
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A p l a y  : f ( t )  = ( f l { t }  . . . .  f N ( t ) )  

An o u t c o m e  : s( t )  = ( s l ( t )  . . . .  sN( t ) )  

T i m e  s t e p  : t 

Fig. t .  N-automaton game. 

. . . .  

P e r f o r m a n c e  F 

U . . . .  t,.o, , !  ~ t o c h a s t  i c  

u t o r n a t o n  

A d a p t i v e  

D e v i c e  

t 
L e a r n i n g  Au toma ton  

Fig. 2. Learning automaton. 
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Fig. 3. Third seller first price probability versus 
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Fig. 4. Average magnitude of mismatch between 
supply and demand of the second seller 
commodity. 
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