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i. INTRODUCTION 

In early 1972, shortly after the results in Forrester~s book "World Dynamics" 

(Forrester (197i)) had arosed the interest of many people in the study of world models, 

a project group, named "Global Dynamics" was started in the Netherlands (cf.Rademaker 

(;972)) which set itself as one of its goals to study the effects of the incorporation 

of controls into the world models considered by the M.I.T. groups of Forrester and 

Meadows under sponsorship of the Club of Rome (cf. Meadows (1972)). 

One way to get a better understanding of a controlled system is to determine the 

optimal controls given suitably chosen optimization criteria and to study the 

sensitivity of these optimal controls to changes in model and criterion parameters. An 

essential tool in such a study is an efficient algorithm (or better: computer program) 

for the numerical solution of optimal control problems of the particular type at hand. 

In case of the HGlobal Dynamics" project, in which several Dutch universities and 

companies cooperated, several groups set out to test different classes of known 

numerical optimal control algorithms in order to select the one best suited to generate 

the many optimal solutions required for the project. Two of these groups already 

reported their results (cf. Olsder & Strijbos (1973), Dekker & Kerckhoffs (1974)). 

At Eindhoven University of Technology a special experimental program was set up 

to compare the performance of different known gradient type algorithms. These were 

applied to the common test problem of the project which consisted of a simplified 

version of the controlled world model of Forrester (with 4 instead of 5 state variables 

and with linear approximations of the sectionally linear table functions in Forrester's 

model). The results of this experimental program as well as the results of the 

application of the better algorithms to the complete controlled World 2 model are 

presented in this paper. 
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The outline of the paper is as follows: In Chapter 2 a precise statement is given 

of the complete controlled World 2 model and of the test problem, the simplified 

controlled World 2 model. In Chapter 3 an outline is given of the different gradient 

algorithms considered in the experimental program together with a discussion of the 

two different techniques tried out to take into account the bounds on the values of 

the control variables. Also in this chapter some remarks are made on the scaling of 

the variables. In Chapter 4 the numerical results for the different applications of 

the algorithms are presented and discussed. A short summary of the conclusions, an 

acknowledgement, a list of references, 5 tables and 4 figures conclude the paper. 

2. THE CONTROLLED WORLD 2 ~ODEL 

2.1 ~_~o_r_Td_~_~4~_o_f_~~ 

The World 2 model which Forrester developed for the Club of Rome and which formed 

the basis of the results in his book "World Dynamics" (Forrester (1971)) consists of a 

set of 5 interacting nonlinear difference equations which describe the evolution of 5 

"level" or state variables: 

P : Population 

CI : Capital Investment 

CIAF : Capital Investment in Agriculture Fraction 

POL : Pollution 

NR : Natural Resources 

Differential equations in a notation more common to control engineers and equivalent 

to the difference equations of Forrester were given in Cuypers (1973) 

= 0.04.P.F3(MSL).FI6(CR).FI7(FR).FI8(POLR) 

-O,028.P,FII(MSL).FI2(POLR),FI3(FR).FI4(CR) 

CI = -0,025.CI + 0.05.P.F26(MSL) (2.1) 

CIAF = - (CIAF - F36 (FR).F 43 IF 38 (MSL)/F40 (FR)]) / 15 

POL = - POL/F34(POLR ) + P.F32(CIR ) 

NR = - P.F42(MSL ) 

The functions Fk(.) in these equations are coupling functions given by Forrester as 

sectionally linear functions of their arguments. (The index k corresponds to the number 

of the section in Chapter 3 of Forrester (1971) in which the corresponding coupling 

function is presented). The arguments of these functions are, respectively, the 

normalized variables: 

CR = P/PS 

CIR = CI/P 

POLR = POL/POLS 

NRFR = NR/NRI 

(PS = Population Standard = 3.5775.109 ) 

(POLS = Pollution Standard = 3.6.109) 

(NRI = Natural Resources Initial = 9.10 ll) 
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and the auxiliary variables MSL (= Material Standard of Living) and FR (= Food Ratio) 

defined as 

and 

where 

MSL = (Ci/P)((I-CIAF)/(I-CIAFN)).F6(NRFR) (2.2) 

FR = F20(CR).F 21 (CIRA).F28(POLR) (2.3) 

CIRA = (CI/P)(CIAF/CIAFN) (CIAFN = CIAF Normal = 0.3) 

Initial conditions for the differential equations (2.1) were specified by Forrester 

for the year 1900. Integration of the differential equations up to the year 1970 yields 

the following initial conditions for the year 1970 (cf. Cuypers (1973)). 

P(1970) = 3.67830938.109 POL(1970) = 2.88957159.109 

CI(1970) = 3.83097633.109 NR(1970) = 7.7680742.1011 (2.4) 

CIAF(1970) = 0.28031694 

2~2 The complete controlled World 2 model 

The most natural way to introduce regulating or control variables into this model 

(cf. Burns & Malone (1974)) is to assume that the magnitude of some of the coefficients 

in the differential equations (2.1) can be manipulated within certain bounds. The basis 

of the introduction of control variables into the World 2 model in case of the "Global 

Dynamics" project was the assumption that fractions Up, UCI, Upo L and UNR of the total 

amount of goods and services not designated for agriculture, which amount was defined 

as 

ISO = CI.(I-CIAF),F6(NRFR).U r 

= P.MSL. (I-CIAFN).U 
r 

(2.5) 

(where ISO stands for Industrial and Service Output and where U r is an efficiency 

factor (= the reciprocal of the capital coefficient with the standard value U r = I/3), 

can be allocated for respectively i) birthcontrol, ii) reinvestment, iii) pollution 

control and iv) protection of the natural resources. In addition, it was assumed that 

for the items i), iii) and iv) a law of diminishing returns would apply. Thus, the 

following control multipliers were postulated. 

GI(U P) = exp (-YI.Up.MSL) 

G3(Upo L) = exp (-73.UpoL.(MSL/F32(CIR))) 

G4(UNR) = exp (-Y4oUNR) 

(2,6) 

where YI' Y3 and Y4 are constants with the standard values 

YI = 25 Y3 = I0 Y4 = 3.5 (2.7) 
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The assumed possibility to control the fraction of the ISO for reinvestment was 

realized by replacing the second differential equation of (2.1) by 

CI = -0.025.CI + IS0.UcI 

= -0.025.CI + P.MSL.(I-CIAFN),Ur.UcI 
(2.8) 

Given the standard values CIAFN = 0.3 and U 
r 

controlled World 2 model become 

= I/3, the state equations of the 

= 0.04.P.F3(MSL).FI6(CR).FI7(FR).FIs(POLR).exp(-YIUp.MSL) 

- 0,028 P.FII(MSL).FI2(POLR).FI3(FR),FI4(CR) 

CI = -0.025.CI + (O.7/3).P.MSL.UcI 

CIAF = - (ClAF - F36 (FR). F 43 [F38 (MSL)/F40 (FR)] ) / 15 

POL = -POL/FB4(POLR) + P.F32(CIR).exp(-~3UpoL(MSL/F32(CIR))) 

NR = -P.F42(MSL).exp(-Y4UNR) 

(2.9) 

As part of the numerical investigations of the "Global Dynamics" project polynomial 

approximations were determined of the coupling functions Fk(.) which could replace the 

sectionally linear functions of Forrester in the ranges of interest for the optimizatio~ 

The coefficients of these polynomials are given in 2abl~ 2.2. 

Given the meaning of the control variables the following control constraints are 

self evident 

and 

Up z 0 UCI ~ 0 Upo L ~ 0 UNR ~ 0 (2.10) 

Up + UCI + Upo L + UNR ~ 1 (2.11) 

In addition, in order to prevent the optimization procedures to generate unrealistic 

values, the only control variable appearing linearly in the differential equation was 

given a simple upper and lower limit 

0.198 ~ UCI g 0.242 (2.12) 

To measure the quality of different controls a performance criterion should be 

defined. In case of the "Global Dynamics" project several criteria were considered of 

which the following, Bolza-type criterion became the standard one 

2100 
J[u] = f QL(r)P(T)dT + %p.P(2100) + XPoL.POL(2100 ) + XNR.NR(2100 ) (2.13) 

1970 

In this expression the symbol QL (= Quality of Life) stands for almost the same 

performance measure as introduced by Forrester 

QL = F38(CMSL).F39(CR).F40(FR).F4;(POLR) ' (2.14) 
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the difference being that the argument of the coupling function F38(') is not MSL but 

CMSL (= Consumption Material Standard of Living) which was defined by 

CMSL = MSLo(!-Up-UcI-UpoL-UNR)/0.7828 (2.15) 

The constants %p, %POL and %NR in (2.13) were given the standard values 

~p = 10 %POL = -0.5P(1970)/POLS %NR = 100P(1970)/NR(1970) (2.16) 

The optimal control problem thus derived, which will be called the complete control- 

led World 2 model to distinguish it from the simplified controlled World 2 model to be 

discussed in the next section, can now be summarized as follows: 

"Given the state equations (2.9) with the initial conditions (2.4)) find the control 

variables Up, UCI) Upo L and UNR as functions of the time which satisfy the control 

constraints (2.10), (2.11) and (2.12) and which maximize (or minimize the negative of) 

the performance criterion (2.13)". 

The presence in the state equations (2.9) of the coupling functions) the values of 

which are to be determined by interpolation or polynomial approximation,considerably 

increase the computer time required for integration. For that reason, it was decided in 

an early phase of the numerical optimization experiments to make use of a simpler model 

which should have roughly the same characteristics as the original model but would be 

much easier to integrate. This object was realized by first linearizing all coupling 

functions around the standard uncontrolled trajectory and thereafter simplifying the 

complex of linear coupling functions in such a way, that in the uncontrolled case the 

results of Forrester were reasonably reproduced. Following this approach it was found 

that the state variable CIAF, which stayed fairly constant under standard conditions, 

could be replaced by a constant. Thus, the number of state equations was reduced from 

5 to 4. Similarly, a number of coupling functions could be omitted as their values under 

standard conditions hardly differed from 1.0. This led to the following simple state 

equations 

where 

= 0.04.p. fI(POL).f2(CMSL).exp(-25Up.MSL)-0.028.P.f3(POL).f4(CMSL) 

CI = -0.025 CI + P.MSL.UcI 

POL = -POL/f7(POL) + P.f6(CI/P).exp(-10UpoL) 

NR = -P.MSL.exp(-3.5UNR) 

fI(POL) = i.0|5 - 0.015 POL 

f2(CMSL) = 1.15 - 0.|5 CMSL 

f3(POL) = 0.95 + 0.05 POL 

f4(CMSL) = 2.6 - 1.6 CMSL 

f6(Cl/P) = -I.0 + 2(CI/P) 

f7(POL) = 0.8333 + 0.1667.POL 

(2.17) 

(2.18) 

and 
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MSL = (CI/P)(NR/NR(1970)) (2.19) 

and 

CMSL = MSL.(0.7 - Up - UCI - Up0 L - UNR)/0.7 (2.20) 

The corresponding initial conditions became 

P(1970) = 1.0 CI(1970) = 1.0 POL(1970) =I,0 NR(1970) = 800/3.6 (2.21) 

and the control constraints 

Up ~ 0 Up0 L ~ 0 UNR ~ 0 (2.22) 

0.04027 ¢ UCI ~ 0.05527 (2.23) 

and 

Up + UCI + Upo L + UNR ~ 0.7 (2.24) 

As performance criterion was chosen 

2100 
J[u] = f QL(T)P(T)dT + 5.P(2100) - 0.05.POL(2100) + 0.4NR(2100) (2.25) 

1970 

where QL was defined as 

QL = (0.8+0.2CMSL)(L.5-0.5P)(I.02-0.02P) (2.26) 

Thus, in summary, the following optimal control problem, to be called the si~lified 

controlled World 2 model resulted 

"Given the state equations (2.17) and the initial conditions (2.21), find the control 

variables Up, UCI , Upo L and UNR as functions of time which satisfy the control con- 

straints (2.22) - (2.24) and which maximize (or minimize the negative of) the performance 

criterion (2.25)". 

It should be noted that although the standard (uncontrolled) behavior of this 

simplified model compared quite well with the results of Forrester, the optimal behavior 

turned out to be quite different from the optimal behavior of the complete controlled 

World 2 model. One of the main reasons for this was the coupling function f4(MSL), which 

for values of MSL larger than 1.625 have unrealistic negative values. This turned out to 

have a large influence on the optimal behavior. After the discovery of the imperfection 

the use of the model was continued for reason of its good properties as a test problem. 

3. OUTLINE OF THE ALGORITHMS TESTED 

3.1 ~d~_~£~_h~_~_~_~k~_o_ptimal control ~£b~m~ 

Both optimal control problems specified in the preceding sections were of the 

following basic form: 

"Given the state equations 

x = f(x,u) x:[tb,tf] ÷ R n, u:[tb,tf] + R m 
(3.1) 
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and the initial conditions 

x(t b) = x b (3.2) 

find the control vector u(t),tE[tb,tf] which satisfies the constraints 

Ui,mi n ~ ui(t) g Ui,ma x ts[tb,tf] , i=l,...,m (3.3) 

and which generates the least value of the performance criterion 

tf 
J[u] = k(x(tf)) + / ~(x(~),u(~))dT " (3.4) 

t b 

From a computational point of view this type of optimal control problem is rather simple: 

The initial and final times are fixed and there are no terminal constraints. Except for 

the presence of the constraints on the values of the control variables, a problem which 

will be dealt with below in a special section, this control problem formulation is well 

suited for the gradient type of algorithms, as will be seen. 

Gradient methods for solving optimal control problems are iterative methods in 

which the control vector function is modified in each iteration so as to improve the 

performance criterion. Most of the algorithms contain the following basic steps 

(o) assume u(°)(t),tS[tb,tf], given and set i: = 0; 

(i) evaluate the performance criterion J[u (i)] corresponding to 
u (i) 

(by integrating the state equations (3.1) forward) and the gradient 

VuJ(i)(t),tE[t b,tf] as to be discussed below (i.e. by integrating 

the costate equations (3.7) backward); 

(ii) test: if u (i) optimal, stop; otherwise: 

(iii) determine a new search direction d(i)(t),te[tb,tf] ; 

(iv) set u(t): = u(i)(t)+~d(i)(t) and determine the scalar value ~(i) of 

for which the performance criterion considered as a function of 

reaches its minimum value (or in some algorithms: reaches a lower 

value which satisfies certain specifications) 

(v) set u(i+|)(t): = u(i)(t)+~(i)d(i)(t), set i: = i+I and return to 

step (i)o 

The step in this algorithm by which the different algorithms are distinguished is step 

(iii). Over the years a great number of search directions have been proposed, most of 

which, however, have in common that they make use of the gradient (with respect to the 

control) of the performance criterion (considered as a functional of the control only). 

This gradient is, as is well known (cf. Bryson & Ho (1969)), at each time instant equal 

to 

VuJ(i)(t) = Hu(i)T(t) = (~uT+fu Tx)(i)(t) (3.5) 
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where H is the partial derivative with respect to the control of the Hamiltonian,which u 
is defined as: 

H(x,u,h) = ~(x,u)+lTf(x,u) (3.6) 

and where X(t),tS[tb,tf] is the oostate or adjoint vector which is the solution of the 

costate or adjoint equation 

I = -f T~ _ ~ T (3.7) 
x x 

with the "initial" condition 

l(tf) = kxT(x(tf)) (3.8) 

The gradient VuJ(i)(t) corresponding to a particular u (i) can be computed by one 

backward integration of the costate equations (corresponding to that u(i)). 

3.2 Methods tested 

Most gradient methods in use for solving optimal control problems may be considered 

the infinite dimensional equivalents of the better known gradient methods for solving 

unconstrained finite dimensional minimization problems. The methods actually tested in 

the numerical experiments to be described were the infinite dimensional equivalents of 

the following finite dimensional methods (cf. Murray (1972), Jacoby, Kowalik & Pizzo 

(1972)): 

a) SD(= Steepest Descent) method 

b) PARTAN (= Parallel Tangents) method 

c) CGI (= Conjugate Gradient I) method (of Fletcher-Reeves) 

d-e) CGII (= Conjugate Gradient II) method (of Hestenes-Stiefel) 

f) DFP (=Davidon-Fletcher-Powell) method 

Given the definitions of the infinite dimensional inner product and the corresponding 
m 

norm (in ~2 [tb'tf]) 

tf . T . IIvll = <v,v> (3.9) 
<g(i),h(i) > = / (i) (T)N(1)(r)HT 

t b 

the search directions of the infinite dimensional counterparts of the methods a) - e) 

are, respectively, given by 

a') ~Zg~[{ (cf. Kelley (1962) Bryson & Denham (1962)): 

d(i)(t): = -V J(i)(t) (3.10) 
u 

b') ~--~-~h2{ (of. Wong, Dressier & Luenberger (]971)): 

(2i) (2i) 
d (t): = -Vu J (t) 

(u (2i+I) (t)-u 2(i-I ) (t)) 

d(2i+])(t) : = II VuJ(2i) I[ iiu(2i+])_u2(i_1)i[ 

• = 0 

i = 0,1,2,... 

i = 1,2,... 

i = 0 

(3,11) 

(3.12) 
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c') CGl-method (cf. Lasdon, Mitter & Waren (|967)): 

d(i)(t) = -V J(i)(t)+~(i)d(i-l)(t) 
u 

where 

< VuJ(i),VuJ(i)> 
B (i) = 

<VuJ(i-l),VuJ(i-l)> ' 

(3.13) 

(3.14) 

dT) ~!!~Z~ (cf• Pagurek & Woodside (1968)) 

d(i)(t): = -V J(i)(t)+~(i)d(i-l)(t) 
u 

with 

(3.15) 

B(i): = <Vu J(i)'v(i)> 

<d(i_1),V(i) > (3.16) 

where v(i)(t) (which is the infinite dimensional equivalent of the matrix-vector 

product G(i)d (i-!) where G (i) is the local Hessian), can be determined from 

v(i)(t): = f Tw(i)(t)+H z(i)(t)+H d(i-l)(t) (3.17) 
U BX ~U 

z(i)(tb ) = 0 (3.18) 

w(i)(tf) = kxxZ(i)(tf ) (3.]9) 

where z(i)(t) is the solution of 

= z (i) "-1~(t ) ~(i) fx (t)+fud(l ~: 

and w(i)(t) is the solution of 

~(i) = _f rw(i)_H z(i)_H d(i-l) 
X XX XU 

e') ~G~B_~__~d (cf. Sinnott & Luenberger (1967)): 

As CGII-A-method with the replacement of Hux,Huu in (3.17) and Hxx 

(3 19) by respectively ~ux' ~uu' ~ and 
• mE XU 

and H in 
xu 

f~) DFP-method (cf. Tripathi & Narendra (1968)): 

i-i <s (k) ,VuJ (i)> 
d(i) (t) = -VuJ(i) (t) - k=O~ <s(k),y :~'-F~E---~:> s(k) (t) + 

i-l <a(k),VuJ(i)> 
a(k)(t) 

k=O <a(k)'y(k)> (3.20) 

where 

a (k)(t): = y(k)(t) + 
k-I <s(J),y(k)> k-I <a(J),y(k)> 

s(j) a(J ) 
<s(J),y(j)> (t) - ~ "),y(i)> (t) 

j=0 j=0 <a (j (3.21) 

with 

s(J)(t): = u(J+|)(t)-u(J)(t) ~ y(J)(t): = VuJ(J+1)(t)-VuJ(J)(t) 
(3.22) 

In the process of executing this DFP-algorithm, it is required that in each itera- 

tion two new vector functions, s(i)(t) and a(i)(t), are stored. This implies that the 
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required computer memory increases with the number of iterations. To cure this, it is 

customary to restart the algorithm periodically after a fixed number of iterations. 

It may be noticed that in both methods, the CGIIA method and the CGIIB method, one 

extra forward integration (of (3.18)) and one extra backward integration (of (3.19)) 

are required to evaluate ~(i) The CGIIB method has as advantage over the CGIIA method 

that no second order partial derivatives of the state equations are required which 

implies less programming effort and less computing time for integration. 

The first technique which was used for taking care of bounds on the values of the 

control components is known as the clipping-off-technique (cf. Quintana & Davison (1974)) 

and amounts to setting the control components back at their bounds as soon as these are 

violated in the search for a line minimum. This implies the following modification in 

step (iv) of the standard algorithm: Evaluate 

Uj,unclipped(t): = uj (i)(t)+=d(i)(t) (3.23) 

and set 

(t): = uo if j j,max Uj,uncl(t) z Uj,max 

: = u. ~ (t) if u. < u. (t) < Uo 
j,uncl ],min 3,uncl j,max 

" = Uj,mi n if U°,uncl(t ) j  uj ,min 

(3.24) 

In case of no bounds on the values of the control components, the gradient tends to 

zero when the minimum is approached. Most gradient algorithms make implicitly use of 

this fact. When the minimum is attained at the boundary of the feasible region, the 

corresponding gradient (component) does not become small. This may spoil the search 

direction calculations. For instance, without modification, the values of the inner 

products in B (i) in (3.14) would almost completely be determined by the large gradient 

components corresponding to the control components at their bounds, and B (i) erroneously 

would get the value of approximately 1.0 in all iterations. In order to cure that 

situation the algorithms a') - f') were modified with the aid of clipped functions 
which are defined as 

qj(i)(t): = 0 if u.(i)(t) and ~o(i-l)(t) at boundary 
J 

(i) (3.25) 
: = qj (t) otherwise 

With this definition the modified search directions may be written as: 

a') ~ ! - ~ - ~ _ ! ~  

no change 
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d(2i)(t): = -V j(2i)(t) 
u 

([(2i+[)(t)-[2(i-l)(t)) 

d(2i+l)(t): = !IVuJ(2i)(t)ll l'l(~('2i+])(t)_~2'(i_l)(t)i I 

= 0 

i = 0,1,2,o.. 

i = 1,2,... (3.26) 

i = 0 

d(i)(t): = -V J(i)(t) + ....... <Vu---~(i)'v~(i)> 
u <~--~(i-l)~-~(i-])> 

U U 

d(i-l) (t) (3.27) 

<~-~( i ) ,$(i)> 
_VuJ(i) u d(i)(t); = (t) + ~s'(i_l ) ~(i). 

~V 

where 

s(i-l)(t ) 

(~) ~(i) (~) ~(i)(t): = f Tw(1)(t) + H (t) + H s(i-l)(t) 
U ~X UU 

(3.28) 

(3.29) 

with ~(i)(t) satisfying 

~(i) = f ~(i)+f s(i-1) 
X u 

and ~(i)(t) satisfying 

• (~) (~) 
$(i) _f T~(i) H ~(i) = - - - H s (i-l) 

X XX XU 

~(i)(tb) z = 0 (3.30) 

~(i)(tf) = kxx~(i)(tf) 

(3.31) 

i-! <s(k),v--~(i)> i-] ~(k)~---~(i) 
d(i)(t): = -VuJ(i)(t) - ~ <'s ~(k) u s(k)(t) + ~ u ~(k),~(k) a(k)(t) 

k=0 ,~(k)> k= 0 (3.32) 

with 

a(k)(t): = y(k)(t ) + 
k-I <s(J),y(k)> 

<s(j),~(j)> s(J)(t) - 
j=0 

k-! <a(J) ,y(k)> 
<a(j) ,y(j)> a(J) (t) 

j=0 (3.33) 

It may be remarked that, in line with the replacement of d(i-l)(t) by s(i-l)(t) in 

the formulae (3.28)-(3.31) of the CGll-methods, the replacement of d(i-l)(t) by 

(~(i-1))-Is(i-l)(t) in the CGI-method would have been logical (and conform the essence 

of one of the suggestions of Quintana and Davison (1974)). However, numerical experi- 

ments with this alternative showed that the convergence behavior was worse with re- 

placement of d(i-l)(t) than without. The numerical evidence of this will be presented 

in the next chapter. 
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b) Tra_nsfo_r~_aiio n_techn_ique 

The second well-known technique (ef, Jacoby, Kowalik & Pizzo (1972)) for taking 

care of bounded controls in gradient algorithm is the transformation technique. This 

technique consists of replacing the original control variables by new variables by 

means of a transformation which guarantees that the bounds on the original variables 

are automatically satisfied while the new variables are unconstrained. In particular, 

in case of a lower bound only, e.g. uj(t) >. 0, a common transformation is 

u.(t) = k.v.2(t) (3.34) 
J J ] 

and similarly, in case of a lower and an upper bound, e.g. a ~< uj(t) .< b, a common 

transformation is 

uj(t) = ~(a+b)-~(b-a)cos(~kjvj(t)) (3.35) 

in which expressions the k.'s are arbitrary scale factors. The transformations in these 
l 

cases have the property that whenever a control component approaches its bound in the 

original system, the corresponding gradient component with respect to the new variables 

tends to zero. 

Against the advantage of having unconstrained instead of constrained variables,the 

transformation technique was found to have three smaller disadvantages for application 

in connection with control problems: 

i) whenever a control component is at its boundary on a particular time interval 

at some instant during the iteration process, then there is no way when using 

gradient methods to leave that boundary. This property eliminates in particu- 

lar a number of otherwise useful startsolutions 

ii) the transformation "distorts" the object function (3.4) very severely in the 

neighborhood of the bounds which impairs the rate of convergence whenever the 

optimum happens to be near or partly on the boundary. 

iiO the transformation implies an extra programming effort, which, especially in 

case of the CGII methods, is considerable. 

One aspect of the minimization procedure which became clear when using the transforma- 

tion technique was the importance of good scaling for the convergence behavior. This 

will be discussed in more detail in the next section. 

The convergence behavior of gradient algorithms depends, as is well known, very 

much on the scaling of the variables relative to the function to be minimized. This 

phenomenon may be explained with the observation that in gradient algorithms steps are 

taken which are more or less proportional to the gradient. Whenever a certain gradient 
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vector component is large relative to the other components, which means that the object 

function is very sensitive to changes in the corresponding variable, then a step 

proportional to the gradient implies a large change in that particular variable, while 

the opposite would be desirable. The idea behind scaling is therefore to try to make all 

gradient components of the same order of magnitude, or equivalently, to make the object 

function equally sensitive to changes in all the variables. 

In the simplified controlled World 2 model the original control variables turned 

out to be reasonably well scaled and no effort was put in to obtain a better scaling. As 

soon as the transformed variables v(t) (3. 34)-(3.33 were introduced instead of the 

original control variables u(t), the need for scaling became more apparent: The gradient 

components relative to the new variables become 

(VvJ(t)) j = (VuJ(t))..2k.v.j J J j = 1,3,4 (3.36) 

and 

(VvJ(t)) 2 = (VuJ(t))2.~(b-a)~k2sin (~k2v2(c)) j = 2 (3.37) 

Given the situation that the original gradient vector components (VuJ(t)) j are of 

roughly the same size, the new gradient vector will also be of the same size if 

2v. 
k2/k j ..... J- (3.38) 

½ (b-a)H 

for the simplified controlled World 2 model, where vj 0,I and (b-a) 0,015 a reason- 

able scaling was obtained with the scale factor values 

k I = k 3 = k 4 = I k 2 = 10 (3.39) 

In the complete controlled World 2 model the gradient components were no longer of 

the same order of magnitude. In particular, the gradient component corresponding to the 

population control variable Up turned out to become much larger than the other component. 

A closer look at the control multipliers (2.6) explained this: With MSL = 12 and 

F32(CI/P) =8 in the neighborhood of the optimal solution, these control multipliers 

became 

GI(U P) 

G2(UcI) 

G3(Upo L) 

G4(UNR) 

= exp(-YiUpMSL ) = exp(-300 Up) 

= UCI 

= exp(-~3UpoL(MSL/F32)) = exp(-;5 Upo L) 

= exp(-Y4UNR) = exp(-3.5 UNR) 

(3.4o) 

An obvious way to scale the control variables in this particular case was to reformulate 

the optimal control problem with as new control variables 
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u~ = 25 UpMSL u 3 = 10 UpoLMSL/F32(CI/P ) 
% % 
u 2 = -I~UcI) u 4 = 3.5 UNR 

(3.4d) 

This approach, which will be called the reformulation technique, used in conjunction 

with the clipping-off technique to take into account the translated bounds on the ~- 

variables~ turned out to improve the convergence of the application of the gradient al- 

gorithms considerably. Numerical evidence of this will be discussed in the next chapter. 

4. NUMERICAL RESULTS 

The optimal control histories and the corresponding optimal state space trajectori~ 

are given in Fig.4.1 for the simplified model and in Fig.4.2 for the complete model.The 

optimal state space trajectories can be compared with the trajectories in case of no 

control (i.e. Forrester's standard results) which are presented by dotted curves in the 

same figures. A discussion of these results falls outside the scope of this paper: for 

this the reader is referred to Rademaker (1972). One remark should be made, however, and 

that is, that a comparison of the optimal control and state space trajectories for the 

two different models shows that at most only the tendencies in the behaviors roughly 

compare. The actual results are quite different. In fact, the optimal criterion values 

of the simplified model satisfies 

J[u ~] > 178.911 (4.J) 

whereas for the complete model 

J[U ~] > 500,042 (4.2) 

For the larger part this difference between the results for the two models can be attri- 

buted to the difference in coupling functions. In the case of the complete model much 

larger values of the CMSL (2.17), and through the CMSL much larger values of the 

QL(2.16), are generated than in the case of the simplified model. This underlines the 

fact that the models are indeed quite different. 

4.2 ~£~i~_~£_~_a_~i~2i~_~£_4i££~__m~_~_~h~_~im~i£i~d_~£~ 

In order to compare their relative efficiency all methods to be applied on the 

simplified model were programmed as special subroutines within one general computer 

program for solving optimal control problems. Two versions of this general program were 

used, one of which made use of the clipping-off technique for taking into account the 

bounds on the values of the control variables, the other one making use of the trans- 

formation technique. The aim of this approach was to obtain a comparison of the methods 

which should be independent of the particular way of programming of the algorithm. The 

drawback of such an approach was of course the fact that none of the methods was pro- 
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grammed in an optimally efficient way. 

In the general program the integration of the differential equations was carried 

out by a standard fourth order Runge-Kutta routine. After some experimentation a step- 

size of 2 years was found to be the best compromise between accuracy and required com- 

puter time. For the line search use was made of a quadratic search routine in which 

first three points on the line are determined which include the line minimum. For the 

initial stepsize in this search routine, which influences of course the number of 

function calls, two strategies were tried out, the first one consisting of using in 

every new line search the same small initial stepsize (astar t = 0.00! in the clipping- 

off-version and ~ = 0.01 in the transformation-version of the general program)~the 
start 

second one consisting of using an initial stepsize which was equal to half the optimal 

stepsize a(i-1) in the preceding iteration. The result of this experiment is given in 

Table 4.6 which will be discussed in more detail below. As convergence criterion for 

terminating the iterative process use was made of the criterion that in two successive 

steps the performance criterion should not change in absolute value more than 

= 0.0001. ~nenever this criterion is satisfied one extra line minimization is per- 
conY 

formed with as search direction the negative of the local gradient. Only in the case 

that the convergence criterion is satisfied again the iterative process is terminated, 

otherwise the process is continued. 

The results of the application of the different methods to the si~lified controlled 

World 2 model are given in the Tables 4.3 to 4.6, in which the number of iterations, the 

number of function (= performance criterion) evaluations, the value of the performance 

criterion, the total computer time (on a Burroughs B 6700 multiprocessing system), the 

average number of calls per interation and the average amount of computer time per call 

are listed. The computer times given should not be taken as hard figures but only as an 

indication for the relative performance. The computer used being a multiprocessing 

machine, the actual process time may differ from case to case up to 30% depending on 

what other programs are processed simultaneously. 

The numbers in the individual tables apply to iteration processes with the following 

initial controls: 

In case of Table 4.3 and 4.5 

Ul(°)(t) ~ 0 u2(°)(t) ~ 0.04777 

and in case of Table 4.4 and 4.6 

Vl(°)(t) ~ 0.I v2(°)(t) ~ 0.05 

which, with the actual transformations used 

ul(t) = Vl2(t ) 

u3(t) = VB2(t) 

u3(t) ~ 0.05 u4(t) ~ 0 (4.3) 

(o) 
v 3 (t) ~ 0.] v4(°)(t ) E 0.1 

(4.4) 

u2(t ) = 0.04777-0.0075 cos(~.|O.v2(t) ) 

u4(t) = v42(t ) 
(4.5) 



485 

are equivalent to initial controls in terms of u equal to 

u1(°)(t) z 0.01 u2(°)(t) z 0.047]] u3(t ) E 0.01 u4(t) ~ 0.0! (4.6) 

Table 4.3 shows the results of the tests with the different methods in combination 

with the use of the clipping-off technique~ As known in the literature (of. Pierson & 

Rajtora (1970)) it is advantageous to periodically restart the iteration process. To 

determine the best number after which to restart as well as to get more data on the same 

method all methods were tried with periodic restarts after respectively 6, 12 and 18 

iterations (In the PARTAN method application periodic restarts were made after respecti- 

vely 6, ]2 and 18 PARTAN directions of search, i.e. after respectively 13, 25 and 37 

line searches following (3.2~)). From the results listed in the table it is immediately 

clear that the most efficient method in terms of number of iterations, number of function 

evaluations as well as computer time is the CGI method. The second best method in terms 

of number of iterations is the CGIIA method. Unfortunately, however, this method also 

requires the most computer time per iteration, which makes it into the most time consu- 

ming method. The third best method in number of iterations and at the same time the 

second best in terms of computer time is the DFP method, Which makes this method a good 

second choice. Of interest in Table 4.3 is furthermore the relative poor performance of 

the CGIIB method in comparison with the CGIIA method mentioned above and the similarly 

poor performance of the PARTAN method in comparison even with the SD method. It should 

be remarked in this context that the number of iterations of the PARTAN method in the 

present case is defined as the number of search directions, a definition which is diffe- 

rent from the one used by Wong, Dressler and Luenberger (1971). In addition to the re- 

sults for the different methods of Section 3.2, Table 4.3 also lists the results for 

an experimental method, in which the search direction is calculated in the same way as 

in the CGI method (following (3.]3)) but with a fixed value of 6 (i) = 1.0. The results 

show clearly that such a simple-minded method is much inferior to the hardly more com- 

plicated CGI method and also inferior to the other methods of Section 3.2. 

Table 4.4 shows results similar to Table 4.3 for the case that the transformation 

technique is used instead of the clipping-off technique. Again the CGI method is the 

most efficient method in terms of the amount of computer time. On the average the CGIIA 

method requires less iterations, however, with the highest amount of computer time per 

call, the method is at the same time one of the most time consuming methods.The second 

best method in terms of computer time is in this case the PARTAN method with the DFP- 

method being third. Again, the poorer performance of the CGIIB method relative to the 

CGIIA method in terms of number of iterations and number of function evaluations is 

evident. 

In order to make a comparison possible of the application of the transformation 

technique versus the application of the clipping-off technique,Table 4.4 also lists the 

results for the CGI method with the clipping-off technique applied to a case with initii 
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controls (4.6) equivalent to the initial controls (4.5) used to generate the other re- 

sults in the table. Comparison shows that the clipping-off technique requires less 

iterations, less function evaluations and less computer time. Also the clipping-off 

technique leads in general to higher values of the performance criterion than the trans- 

formation technique. From detailed results on the convergence behavior not given here,it 

appeared that the initial convergence using the transformation technique was faster than 

using the clipping-off technique, whilst the final convergence on the other hand was 

much slower. Reasons for this phenomenon may be on one hand the simplification of the 

optimization problem in case of the clipping-off technique caused by the elimination of 

all control variable components on their bounds and on the other hand the distortion of 

the equi-cost surfaces by the transformation from the u-variables to the v-variables. 

Table 4.5 shows the results of some more experiments to determine the best reset or 

restart value for the two most efficient methods, the CGI method and the DFP method,both 

with the clipping-off technique. In addition results are presented for a modification of 

the CGI method (cf..Section 3.3), in which the previous search direction d(i-l)(t) in 

(3.27) is replaced by s(i-l)(t)/a (i-I). It follows that the best reset value for both 

versions of the CGI method is 18, whereas for the DFP method a reset value of 30 or 

higher is best. Both these reset values are higher than commonly suggested in the lite- 

rature (cf. Pierson & Rajtora (1970, Keller & Sengupta (1973)). It also follows that the 

CGi method with d(i-l)(t)" is superior to the same method with si-|)(t)/~ i-l)" replacing 

d(i-l)(t). This result is of interest since it contradicts the suggestion of Quintana 

and Davison (1974). It may be remarked in this context that in the CGIIA method as well 

as in the CGIIB method the use of s(i-l)(t) instead of dii-l)(t)" as prescribed by the 

algorithm (3.28)-(3.31) turned out to be almost imperative: In a number of, though not 

all, tests with the CGIIA and CGIIB methods with d~i-l)(t)'" instead of s(i-l)(t), the 

iterative process did not converge at all. 

Table 4.6 lists the results of some extra experiments with a different stepsize 

strategy in the line search procedure. In particular, for three cases listed in Table 4.4 

and repeated here, i.e. the CGI method and the DFP method with the transformation 

technique and the CGI method with the clipping-off technique the results are presented 

which were generated wlnile using as initial stepsize in the line search procedure 

~start" = 0"5a(i-|)instead of a constant fixed value. The table shows that while on the 

average the number of iterations does not differ too much, the total number of function 

evaluations as well as the average number of function evaluations per iteration are 

considerably less. The result clearly indicates the superiority of the strategy to let 

the initial stepsize astar t depend on the preceding optimal stepsize a(i-l).unfortunately, 

however there is one important proviso and that is that in no iteration such large steps 

are generated that computer overflow results. In fact, in a great number of trials this 

happened, for which reason the strategy was not used for the comparison runs presented in 

the preceding tables. 



487 

4.3 ~m~_~_um~_~veriments with the complete controlled World 2 model 

After the numerical experiments described in the preceding section had indicated 

the superiority of the CGI algorithm for solving optimal control problems of the type of 

the controlled World 2 model, only a limited number of comparison runs (with the same 

initial controls and the same overall conditions) were tried out with the complete World 

2 model. (The computer time for one function (= performance criterion) evaluation was 

roughly 2.5 times as long as in case of the simplified model). One set of comparison 

runs which was tried was concerned with four runs with respectively the SD method, the 

PARTAN method, the CGI method and the DFP method, all four in combination with the 

transformation technique, restarting the process after every 6 iterations. The conver- 

gence histories of these runs are presented (up to the 40th iteration) in Figure 4.7. 

From this figure it follows that the CGI method is again the fastest converging method 

followed by the PARTAN method, the SD method and the DFP method, which order is 

reasonably well in agreement with the results presented in Table 4.4. The dotted line 

segments in the figure show the convergence behavior of the PARTAN method for the case 

that the iteration definition of Wong, Dressier and Luenberger (1971) is followed. (One 

iteration is then defined to consist of one search along the negative gradient followed 

by one search along the PARTAN direction). It is of interest to note the little diffe- 

rence between the convergence histories of the CGI method and the thus defined PARTAN 

method (in which per iteration roughly twice as much work has to be done). 

A second set of comparison runs which was tried was concerned with four runs with 

the CGI method, with restarts after every 6 iterations, in combination with four diffe- 

rent strategies for taking care of the bounds on the values of the control variables:the 

use of the clipping-off technique, the use of the transformation technique, the use of a 

mixture of these techniques (first 15 iterations with the clipping-off technique, there- 

after the transformation technique) and finally the use of the clipping-off technique 

after a reformulation or rescaling of the control variables as discussed in Section 3.4. 

The convergence histories of these runs are presented in Figure 4.8. It follows that the 

best convergence behavior is obtained through the use of rescaling or reformulation in 

combination with the clipping-off technique. The second best strategy is to alternate 

between the clipping-off technique and the transformation technique.The pure strategies, 

i.e. using the transformation technique of the clipping-off technique for all interations 

produced a less good convergence behavior. 

5. CONCLUSIONS 

Numerical experiments have been carried out with six different gradient methods for 

the determination of the optimal control of a simplified version of the controlled 

World 2 model of Forrester. The main conclusion of these experiments was that the most 

efficient method in terms of computer time and generally also in terms of number of 

iterations and number of function evaluations was the CGI method (i.e. the infinite 
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dimensional equivalent to the Conjugate Gradient method of Fletcher and Reeves, first 

suggested by Lasdon, Mitter & Waren (1967)) in combination with a clipping-off 

technique (as described by Pagurek and Woodside (1968)) to take care of bounds on the 

values of the control variable components and periodically restarted every 18 iterations. 

A good second choice proved to be the DFP method (i.e. the infinite dimensional 

equivalent of the Davidon-Fletcher-Powell method following the algorithm of Tripathi- 

Narendra (]968)) in combination with the clipping-off technique, which in general 

turned out to be a more efficient method to take care of bounded controls than the 

transformation of variables technique. 

The results of numerical experiments with the determination of the optimal control 

of the complete controlled World 2 model of Forrester showed in general good agreement 

with the results obtained for the simplified model. Again the CGI method in combination 

with the clipping-off technique turned out to be the most efficient method when the 

problem first had been rescaled by means of a reformulation of the control variables. 

Scaling proved in this case to be one of the most important factors for convergence. 
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Fig.4.7 Complete controlled World 2 model: Convergence histories of 4 gradient 
methods in combination with the transformation technique with 

(kl=k2=k3=k4=l.0) 
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Fig.4.8 Complete controlled World 2 model: Convergence histories of the CGI- 
method in combination with different techniques for taking into 
account bounds on the values of the control variables. 


