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Abstract 

Phenomena exhibiting discontinuous change, 

divergent processes, and hysteresis can be 

modelled with catastrophe theory, a recent 

development in differential topology. Ex- 

position of the theory is illustrated by 

qualitative interpretations of the appear- 

ance of functions in central place systems, 

and of price cycles for urban housing. 

Introduction 

A mathematical theory of "catastrophes" has recently been developed 

by the French mathematician R6n6 Thom [6,7] in an attempt to rationally 

account for the phenomenon of discontinuous change in behaviors (out- 

puts) resulting from continuous change in parameters (inputs) in a 

given system. The power and scope of Thom's ideas have been exploited 

by others, notably Zeeman [I0,11], to give a mathematical account of 

various observed discontinuous phenomena in physics, economics, biology, 

[4] and psychology. We particularly note the work of Amson [I] on 

equilibrium models of cities, which is most closely associated with the 

work presented here. With the notable exception of Amson's work, little 

use has been made of the powerful tools of catastrophe theory in the 

study of urban problems. Perhaps this is not surprising since the 

theory is only now becoming generally known in mathematical circles. 

However, despite the formidable mathematical appearance of the basic 

theorems of the theory, the application of catastrophe theory to a given 
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situation is often quite simple, requiring only a modest understanding 

of simple geometric notions. In this regard, catastrophe theory is 

much like linear programming in the sense that it is not necessary to 

understand the mechanism in order to make it work--a fairly typical 

requirement of the working scientist when faced with a new mathematical 

tool. 

Thus~ our objective in this article is twofold: first, to supply 

a brief introduction to the basic philosophy of catastrophe theory in 

a form which we hope will be congenial to workers in the urban field, 

and second, to illustrate the applications of the theory to some 

classical problems in urban economic geography. Specifically, we 

consider an example for central place theory in which the simplest 

type of nontrivial catastrophe provides a satisfactory global picture 

of the observed developmental patterns of functions provided to the 

population~ A second example illustrates application of one of the 

more complex elementary catastrophes to the issue of equilibrium 

residential property prices in urban land markets. Although these 

examples are provided primarily as qualitative illustrations of the 

theory, it is hoped that they may be of interest in their own right as 

providing an alternative and possibly more comprehensive account of 

the dynamics of these problems than those obtained by other methods. 
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Catastrophe Theory 

In this section, we present a brief discussion of the basic 

assumptions and results of catastrophe theory in a form useful for 

applications. For details and proofs, we refer to [8,9]. 

Let f: R k x R n ÷ R be a smooth (infinitely differentiable) function 

representing a dynamical system ~ in the sense that R k is the space of 

input variables (controls, parameters) while R n represents the space of 

output variables (responses, behaviors). We assume that k < 5, while 

n is unrestricted. The fundamental assumption is that [ attempts to 

locally minimize f. We hasten to point out that in applications of 

catastrophe theory, it is not necessary to know the function f. In 

fact, in most cases f will be a very complicated function whose structure 

could never be determined. All we assume is that there exists such a 

function which ~ seeks to locally minimize. 

Given any such function f, if we fix the point csR k, we obtain a 

local potential function f : R n ÷ R and we may postulate a differential 
C 

equation 

x = - grad f 
X 

where xsR n, gradxf = grad fc \0x I' .... 

Thus, the phase trajectory of ~ will flow toward a minimum of fc; 

call it x c. The stable equilibria are given by the minima of fc' and, 

since there are usually several minima, x c will be a multivalued function 

R k R n of c; that ist x : ÷ is not one-to-one. The objective of 
C 

catastrophe theory is to analyze this multivaluedness by means of the 

theory of singularities of smooth mappings. 

We first state the fundamental result of catastrophe theory in 

relatively precise mathematical language. We then interpret each of 

the conclusions of the main theorem in everyday language to show their 

reasonableness and applicability for real-world problems. 

For completeness, and to round out the mathematical theory, we 

consider not only the minima but also the maxima and other stationary 

values of fc" Define the manifold MfCR k+n as 

Mf = {(x,c) : gradxf c = 0] , 

and let Xf : Mf ÷ R k be the map induced by the projection of R k+n ÷ R k. 

Xf is called the catastrophe map of f. Further, let J be the space of 

C~ -functions of R k÷n with the usual Whitney C~ -topology. Then the 

basic theorem of catastrophe theory (due to Thom) is the following. 
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Theorem: 

functions, 

(i) 

(ii) 

(iii) 

There exists an open dense set J C J, called generic 
0 

such that if f~Jo 

Mf is a k-manifold; 

any singularity of Xf is equivalent to one of a finite 

number of elementary catastrophes; 

Xf is stable under small perturbations of f. 

Remarks: 

I . 

2. 

3. 

4. 

5. 

Here equivalence is understood in the following sense: maps 

k : M + N and ~ : M ÷ N are equivalent if there exist diffeomorphisms 

h, g such that the diagram 

x 
M ~ N 

is commutative. If the maps X, ~ have singularities at xsM, xcM, 

respectively, then the singularities are equivalent if the above 

definition holds locally with hx = x. 

Stable means that Xf is equivalent to Xg for all g inca neighborhood 

of f in J (in the Whitney topology). 

The number of elementary catastrophes depends only upon k and is 

given in the following table: 

k I 2 3 % 5 6 

number of elementary I 2 5 7 11 
catastrophes 

A finite classification for k > 6 may be obtained under topological, 

rather than diffeomorphic, equivalence but the smooth classification 

is more important for applications. 

Roughly speaking, Jo being open and dense in J simply means that if 

the potential function fcJ were to be selected at random, then 

fEJ ° with probability one. Thus, a given system function f is 

almost always in Jo' and furthermore, if it is not, an arbitrarily 

small perturbation will make it so. 

The importance of Mf being a k-manifold is that Mf is the place 

where controlling influence is exerted: from the standpoint of the 

decision maker, Mf is the manifold which he may manipulate. Thus, 

the dimension of the behavior or output space does not enter into 
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the classification at all. Since n, the dimension of the behavior 

spacer may be very large; this conclusion enables us to focus 

attention upon a much smaller set in investigating where and when 

catastrophic changes in behavior will occur. To summarize, Mf 

is where the action is. 

6. Conclusion (i~) shows that, mathematically speaking, only a very 

small number of distinctly different catastrophes can occur. 

Intuitively, catastrophes are equivalent if they differ only by a 

change of coordinate system. Since the coordinate system chosen to 

describe a phenomenon is not an intrinsic feature of the system, 

we may restrict our attention to the analysis of only a small handful 

of mathematical catastrophes, safe in the knowledge that more complex 

forms cannot possibly occur. In addition, as indicated below, the 

elementary catastrophes are all described by simple polynomials 

which make their analysis and properties particularly simple. 

7. The last conclusion, stability, means that should the potential f 

describing ~ be perturbed slightly, the new potential will also 

exhibit the same qualitative catastrophic behavior as f. Since no 

physical system is know precisely, this fact enables us to feel 

confident about various predictions based upon use of any feJ o. 
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Discontinuity, Divergence, and the Cusp Catastrophe 

Our critical assumption is that E, the system under study, seeks 

to minimize the function f: that is, E is dissipative. Thus, the 

system behaves in a manner quite different from the Hamiltonian Systems 

of classical physics. In this section we shall mention two striking 

features displayed by catastrophe theory which are not present in 

Hamiltonian systems but which are observed in many physical phenomena. 

The first basic feature is discontinuity. If B is the image in R k 

of the set of singularities of Xf, then B is called the bifurcation set 

and consists of surfaces bounding regions of qualitatively different 

behavior similar to surfaces of phase transition. Slowly crossing such 

a boundary may result in a sudden change in the behavior of ~, giving 

rise to the term "catastrophe". Since the dimension of the output 

space does not enter in the classification theorem, all information 

about where such catastrophic changes in output will occur is carried 

in the bifurcation set ~ which, by a corollary of conclusion (i) of the 

Theorem, is a subset of the input space R k. Hence, even though ~ may 

have an output space of inconceivably high dimension, the "action" is 

on a manifold of low dimension which may be analyzed by ordinary geo- 

metric and analytical tools. 

The second basic feature exhibited by catastrophe theory is the 

phenomenon of divergence. In systems of classical physics a small 

change in the initial conditions results in only a small change in the 

future trajectory of the process, one of the classical concepts of 

stability. However, in catastrophe theory the notion of stability is 

relative to perturbations of the system itself (the function f), rather 

than just to perturbations of the initial conditions, and so the 

Hamiltonian result may not apply. For example, adjacent tissues in a 

homogeneous embryo will differentiate. 

Let us now illustrate the above ideas by considering the cusp 

catastrophe. It will turn out that a minor modification of this 

catastrophe is also the appropriate catastrophe for one of the main 

examples of this paper, the problem of central place discontinuities. 

Let k = 2, n = I, and let the control and behavior space have 

coordinates a, b, and x, respectively. 

Let f : R 2 x R I ÷ R be given by 

4 2 
x ax f(a,b,x) = ~- + --~- + bx 

The manifold Mf is given by the set of points (a,b,x) C R 3 where 
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gradxf(a~b,x) = 0 , 

that is, 

~f 3 
-- = x + ax + b = 0 (I) 
Zx 

The map Xf : Mf ÷ R 2 has singularities when two stationary values of 

f coalesce, that is, 

b2f _ 3x 2 + a = 0 
22 
x 

(2) 

Thus, Equations (I) and (2) describe the singularity set S of X- It is 

not hard to see that S consists of two fold-curves given parametrically 

by 

(a~b,x) = (-312,213,~) , ~ ~ 0 , 

and one cusp singularity at the origin. The bifurcation set B is given 

by 

(a~b) = (-312,213) 

which is the cusp ~a 3 + 27b 2 = 0. Since Mf and S are smooth at the 

origin, the cusp occurs in B and not in S. Figure I graphically 

depicts the situation. 

It is clear from the figure that if the control point (a,b) is 

fixed outside the cusp, the function f has a unique minimum, while if 

(a,b) is inside the cusp, f has two minima separated by one maximum. 

Thus, over the inside of the cusp, Mf is triple-sheeted. 

The phenomenon of smooth changes in (a,b) resulting in discontinuous 

behavior in x is easily seen from Figure I by fixing the control 

parameter a at some negative value, then varying b. On entering the 

inside of the cusp nothing unusual is observed in x; but upon further 

change in b, resulting in an exit from the cusp, the system will make 

a catastrophic jump from the lower sheet of Mf to the upper, or vice 

versa, depending upon whether b is increasing or decreasing. The 

cause of the jump is bifurcation of the differential equation 

= -grad f, since the basic assumption is that Z always moves so as to 
x 

minimize f. As a result, no position on the middle sheet of maxima can 

be maintained and ~ must move from one sheet of minima to the other. 
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A hysteresis effect is observed when moving b in the opposite 

direction from that which caused the original jump: the jump phenomenon 

will occur only when leaving the interior of the cusp from the opposite 

side to the point of entry. 

To see the previously mentioned divergence effect, consider two 

control points (a,b) with a > 0, b ~ 0. Maintaining the b values 

fixed with decreasing a, the point with positive b follows a trajectory 

on the lower sheet of Mf, while the other point moves on the upper sheet. 

Thus, two points which may have been arbitrarily close to begin with 

end up at radically different positions depending upon which side of the 

cusp point they pass. 

While the cusp is only one of several elementary catastrophes, it 

is perhaps the most important for applications. In Table I, we list 

several other types for k < 4, but refer the reader to [6] for geomet- 

rical details and applications. 

Table I. The Elementary Catastrophes for k i 4. 

Name 

fold 

cusp 

swallowtail 

butterfly 
6 

X 

potential function f 
3 

x + ux 

x + ux 2 + vx 

5 x + ux 3 + vx 2 + wx 

+ ux 4 + vx 3 + wx 2 + tx 

hyperbolic 
umbilic 

3 y3 
x + + uxy + vx + wy 

elliptic 
umbilic 

3 2 
x - xy + u(x 2 + y2) + vx + wy 

control behavior 
space space 

dimension dimension 

I I 

2 I 

3 I 

4 I 

3 2 

3 2 

parabolic 2 $ 2 vy2 
umbilic x y + y + ux + + wx + ty $ 2 
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Central Place Catastrophes 

To illustrate the cusp catastrophe in an urban context, consider 

the supply of goods and services to an urban-centered market area under 

all the normal postulates of classical (geometric, static, deterministic) 

central place theory. Then there exist spatial monopoly profits, 7, 

in the distribution of that vast majority of goods whose threshold lies 

between the size of the existing market and that of the market that 

would be required to induce a competing supplier to locate there. The 

argument is similar for the number of establishments handling that good, 

the number of functions in a given central place, and the order of that 

central place (cf. Dacey [3] for definition of terms). 

But not let there be emigration from that market area, or some other 

process producing a slow leakage of aggregate local purchasing power. 

Then ~ + 0, the minimum threshold, at which point the good ceases to 

be distributed. 

The threshold for (re-) appearance of the good (establishment, 

function) is, however, higher than ~ = 0 since an entrepreneur would 

choose that combination of good and market area offering maximal spatial 

monopoly profits (the upper threshold). Thus we have the characteristic 

discontinuity and hysteresis effects of catastrophe theory. 

The cusp catastrophe provides a reasonable global picture for 

these central place phenomena. Let the independent or control variables 

be x, the population of a market area, and y, the disposable income per 

capita. The behavior or output variable can then be interpreted as the 

order of the central place, or number of functions or goods provided 

there; all three may be generally referred to as the functional level, 

m, of the central place or market area. (The implicit potential 

function for this system is, in contradistinction to the prior 

discussion, maximized by the action of the central place process. Thus 

we operate with -f and apply the preceding theory.) The relevant 

picture is given in Figure 2. Each point on the manifold M represents 

a functional level corresponding to given levels of aggregate local 

purchasing power. But though x and y determine the functional level, 

the fact that M is triple-sheeted within a region near the relevant 

thresholds means that m can take on two distinct stable equilibrium 

values; values, moreover, which depend on the trajectory (history or 

direction of change) in x and y. Thus in Figure 2 it may be readily 

seen that, for a fixed level of disposable income per capita, smooth 

increases in population will have but small effects on the functional 

level of the central place until the locus of that trajectory crosses 

the right-hand cusp border into region II (see a). At this point the 
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functional level jumps dramatically from the lower sheet of M to the 

upper (the middle sheet shown in Figure 2 corresponds to relative 

minima and is of no interest here). The vector b shows the same 

qualitative result, and clearly various combinations of a and b will 

do the same provided such combinations pass through the x, y projection 

of the multi-sheeted part of M. 

The hysteresis effect can be demonstrated by examining m for, say, 

fixed income and changing population. Let population increase along a 

as before; thus the cusp region is entered from I and no discontinuous 

output; the point then leaves I and enters region II with a positive 

jump in functional level. But then let population smoothly decrease 

(-a) : the cusp is entered from II at the same point as before, and the 

point exits into I as before. The only difference is that this time the 

catastrophic jump downwards in functional level takes place when entering 

I and not II. Only an exit from the cusp region across a different 

boundary than the entry branch gives rise to catastrophic change. Thus 

the cusp catastrophe illustrates the theoretical prediction, and 

observed fact, that the threshold for (re-) appearance of a function is 

higher than for its disappearance. Mote that this qualitatively nice 

behavior is obtained even with the highly restrictive and unrealisitic 

postulates of classical central place theory. More realistic models 

incorporating entrepreneurial inertia (lagged feedback plus conservative 

behavior in the face of uncertainty), non-zero entry costs, and sub- 

stantial indivisibilities would only serve to accentuate the hysteresis 

effect. 

The third basic feature, divergence, can be appreciated by examining 

the change in functional level from nearby initial points p and q as 

disposable income falls for a fixed population. The trajectory in M 

from p passes to the left of the cusp point C, and consequently m drops 

smoothly to levels on the lower sheet of M. On the other hand, the 

point q, which began with a population close to p, has a trajectory 

which takes it to the right of C; m is thus maintained, for a while at 

least, at "artificially" or "anomalously" high levels. The critical 

factor is that slow change of the same sort in real regional systems with 

similar initial conditions may lead to fundamentally different futures, 

depending on the location and orientation of cusp points. Moreover, 

one would expect these m-anomalies to be most glaring at low levels of 

population and income. 
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Property Prices and the Butterfly Catastrophe 

The cusp catastrophe is probably useful in many other urban settings. 

Casual observation suggest that many of the lifestyle definition pro- 

cesses or our proliferating subcultures--processes noted for teenage 

gangs long before becoming part of the conventional wisdom about the 

post-industrial middle classes [2]--may exhibit the characterisitic 

non-Hamiltonian divergence of catastrophe theory, and may under special 

conditions display discontinuities and even hysteresis [5]. We discuss 

a more prosaic example, the purchase price of urban dwellings, not so 

much to exploit the cusp further but to use it as a vehicle to introduce 

a generalization which is perhaps the second-most-important elementary 

catastrophe for applied work, the so-called butterfly catastrophe. 

Let r represent the real rate of change of housing prices in a 

particular urban market. In the first approximation, we assume that 

there are two types of buyers who are interested in this sort of 

property, and that the combined level of their activities in the 

property market dictates r. Call there buyers consumers and speculators. 

The former are interested in a wide range of attributes of the housing 

bundle and their demand is strongly price-elastic, especially in 

volatile or cyclical markets. Speculators, on the other hand, are 

overwhelmingly concerned with short-term (and often highly leveraged) 

capital gains. Since the two groups have fundamentally different 

objectives, time horizons, and price elasticities, they may reasonably 

be thought of as disjoint sets of investors. If D represents the 
c 

demand for property by consumers and D s the demand by speculators, 

then the global behavior of property prices may in this simple case be 

as depicted in Figure 3. 

Increasing either D c or D s tends to increase r, but the key to 

catastrophic rises and falls lies with the speculators; changes in D 
c 

for constant D s cause only smooth changes in r. All of the features 

observed in the previous example--divergence, discontinuity, and 

hysteresis--are also present here. Moreover, in empirical applications 

there is frequently a relation between the location of the cusp point 

and the time constants of the system, with loci avoiding the multi- 

sheeted parts of M tending to be slower. In this example, suppose the 

process starts at O' in the D -D space. There are then two possib!ities 
c s 

for passage through the cusp region and back to O', the paths OPQRO and 

OPQSO. The first corresponds to a spurt of speculative demand causing, 

after a short lag, a jump in prices from P to Q, followed by a profit- 

taking sell-off by speculators with only moderate increase in consumer 

demand, triggering a collapse of prices at R. This sort of process is 
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Figure 3. Catastrophe Manifold for Urban Proberty Prices 
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characteristic of the high-frequency components of r and is quite 

typical in speculative markets. The demand by consumers for market 

intervention is related to both the magnitude of r and the amplitude of 

these relatively short-term "boom-and-bust" cycles. Slowing the 

frequency of the OPQRO cycle may be an appropriate response under such 

condition-s, if it allows D to build up sufficiently at Q to drive the 
c 

return path around the cusp through S. Rapid and distressing falls in 

price are thus avoided. This observation illustrates, if crudely, the 

fast time-slow time ("silly putty") behavior divergence which is 

characteristic of dynamic catastrophe models. 

Governments interested in orderliness and stability in housing 

markets--low and viscous r--usually regulate D and D by tightening 
c s 

or loosening the supply of money, that is, by raising or lowering 

interest rates. We now show how the butterfly catastrophe, a general- 

ization of the cusp, enables us to upgrade the urban property price 

example by including time dependence as well as interest rate changes 

in the catastrophe manifold. It will be seen that inclusion of these 

important factors generates the possibility for a third mode of stable 

behavior of r, a type of "compromise" rate of change of prices. 

For the butterfly (k = 4, n = I), the canonical form for the 

potential is given by 

6 I ~ I c2x3 I 2 f(c,x) = ~ + ~ ClX + ~ + ~ c3x + c4x , 

where csR 4, xsR. The associated catastrophe surface M is the four- 

dimensional surface given by 

~f _ 5 cix3 c2x2 ~x x + + + c3x + c 4 = 0 

The surface MCR 5 and the bifucation set ~C R 4. We draw two-dimensional 

sections of B to show how it generalizes the cusp. When the butterfly 

factor c I > 0, the x 4 term swamps the x 6 term and we obtain the cusp° 

The effect of the bias factor c 2 is merely to bias the position of the 
4 

cusp. When the butterfly factor c I < 0, then the x term conflicts 

with the x 6 term and causes the cusp to bifurcate into three cusps 

enclosing a pocket. This pocket represents the emergence of a compromise 

behavior midway between the two extremes represented by the upper and 

lower surfaces of the cusp. 
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Ct> 0 ~ c~>O 
C~ = 0 C 2 >0 

(4a) (4b) (4c) 

To employ the butterfly catastrophe in the urban property price 

setting, we let the bias factor represent the interest rate i, while 

the butterfly factor is the negative of time, -t. Thus normalizing 

the nominal interest rate at i = 0, we have the picture of Figure 5. 

C 4 - C4. 

¢~ C5 C~ 
(4d) (4e) (4f) 

Figure ~. Two-Dimensional Sections of the Butterfly Catastrophe 

Figure 5 shows that an increase of speculative demand coupled with 

a sufficiently high consumer demand will lead to a control space 

trajectory intersecting the interior pocket of intermediate r, rather 

than resulting in a dramatic jump to the upper or lower surfaces of M 2. 

As the previous diagrams showed, manipulation of the interest rate i 

influences both the size and position of this pocket of intermediate 

behavior, thereby in theory preventing catastrophic jumps or drops in 

property price rates--but at a price in secular inflation. 
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Figure 5. The Butterfly Catastrophe 
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Conclusions 

In this note we have presented some speculation on roles for 

catastrophe theory in urban studies. While the simple examples provided 

indicate that the mathematical theory may have something relevant to 

say about urban processes, it is clear that much work remains before 

these notions can be made into operational tools for predictive and 

prescriptive action. In particular, to make these ideas useful in 

actual decision-making contexts, the qualitative analysis given here 

must be made quantitative. This means the isolation cf the particular 

surface, or family of equivalent surfaces, pertinent to the process 

under study. To accomplish this task, it will be necessary to use 

experimental data to isolate the appropriate range of parameters which 

appear in the canonical potential functions. We hope to examine this 

circle of ideas in future work. 
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