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Summa ry 

Due to the difficulties of handling non-linearities in many large systems to 

which on-line optimal control is being applied, many applications have had to be 

restricted to the linear model-quadratic cost ease. In particular, if the calcula- 

tions are performed in a decentralized manner, the sub-system problems must yield a 

rapid solution and in the simple linear-quadratic case analytic solutions to these 

sub-problems may be obtained. The method of quasilinearization for the resolution 

of boundary-value problems arising in the solution of non-linear differential equa- 

tions has been widely developed. This paper examines the use of quasilinearization 

algorithms for the solution of sub-problems arising in a problem decomposition using 

Lagrangian duality. The good convergence properties of the algorithms make them 

particularly useful for the solution of the sub-system problems. The actual improve- 

ment in operating costs obtained by handling more general sub-system non-linearities 

is compared with the increased computational burden for an actual on-line water 

control scheme. 
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i. Introduction 

The determination of optimal controls for on-line implementation is, in 

general, a most difficult task. Only in restricted cases, such as linearized process 

models and quadratic cost expansions, can analytic solutions to the control problems 

be obtained, and consequently determination of optimal controls and the associated 

optimal trajectories must often be obtained iteratively on a computer. Since many 

practical systems are non-linear it is desirable to have a control algorithm capable 

of handling such non-linearities. The dynamic programming method I-3 is capable of 

handling a very general type of problem, but has enormous high speed memory and 
4 

computational requirements. State increment dynamic programming reduces high speed 

memory requirements but still requires much computing time, while the successive 

approximation method 4 requires an equal number of state and control variables, al- 

though the time requirements are somewhat reduced. Thus a considerable amount of 

computing power has to he sacrificed if more general systems are to be handled using 

dynamic programming methods. 

For the solution of very large problems formulated in a decentralized manner 

clearly none of the above methods are appropriate, since any hierarchical control 

algorithm involves the repetitive solution of many sub-system problems. The quasi- 

linearization method, 5 developed by Bellman and Kalaba, is a useful method of obtain- 

ing an approximate solution to the non-linear sub-system boundary-value problem. It 

basically solves a sequence of linearized problems which hopefully converge on the 

true solution of the non-linear problem. Although convergence is in no sense guaran- 

teed, in cases where it does work it provides a computationally efficient method of 

solving the non-linear sub-system problems. 

If this method is to be of use in solving many non-linear sub-system problems 

in a hierarchical structure, clearly it must converge very rapidly. In this paper 

the quasilinearization algorithm is used for the solution of non-linear sub-system 

problems arising from the spatial decomposition technique used in Lagrange duality 

theory. 7 A modified 6 algorithm, which uses a scaling factor in the sub-system 

variations and has a descent property in the error indices, is assessed for its use- 

fulness in speeding up sub-system convergence. The method is applied to a water 

supply control scheme, which includes sub-problems of a fairly general form, involving 

the minimization of a functional subject to differential, non-differential, inequality 

and terminal constraints. A comparison is made between pump energy requirements as 

predicted by linear and non-linear models at the sub-systems, and the increased 

computational burden of handling the non-linear case. 
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2. Statement of problem 

The subject of this paper is the optimal control of a large dynamical system 

whose hierarchical structure allows it to be described as a set of N interconnected 

dynamical sub-problems 7 in the following way: 

f Min ~ {Fi(xi(tf)) + tf fi(~i'~i'~i'~i 't)dt} 

~i,~i,~i,X i i=l - t o 

subject to 

-l $i(~i'~i'li'~i 't) 

-ix'(to) = ~io 

hi(~i,~i,li,~i,t) ~ 0 

~i(~i(tf)) ~ 

~i(~i,~i,li,~i,t) 0 

~i(~i,~i,Xi,~i,tf) = 

i = 1,2 ..... N (I) 

N 
Y G. (x. ,u. ,y. ,m. ,t) = 0 

i=l 

N 

_Ri(xi,ui,xi,_mi,t) ,< 0 
i=l 

(2) 

where x. are the states, u. the controls, Xi the dependent variahles, m. the 
-i -i --I 

coordinating variables, F. the terminal cost, f. the instantaneous cost, all for 
i i 

the i th sub-problem. Using the additive separability of the Lagrangian, 7 the 

following N sub-problems may be defined 

;tf f~ at} 
Min {Fi(xi(tf)) + t 

xi'ui'mi o 

subject to constraints (I) and (2), where 

fi = fi + <~-'Gi> + <l'R-i > (3) 

where ~ and ~ are appropriate N-vector multipliers, giving the well-known Goal 

Coordination Algorithm which maximizes the dual function at one level and repetitively 

solves a set of N sub-problems at a lower level until overall convergence is 

reached. A similar decomposition in discrete time may also be obtained. This paper 

is primarily concerned with the derivation of efficient solution methods for general 

sub-problems of this form within this hierarchical structure. In particular, if true 

model non-linearities are used, is the increased computational burden associated with 

obtaining solutions by a modified quasilinearization method worthwhile in terms of 



276 

the increased cost savings over the results for the linear case? 

Ignoring the subscripts, clearly each sub-system problem is of the form 

Min J = F(x(tf)) + I tf f(~,u,l,~,t) dt 

~,~,~,l t o 

where 

_~ = g(x,u,l,_m,t ) 

_X(to) = x ° 

h(~,H,l,~, t) ~ 9 

hf(~,~,l,~,tf) ~ 0 

~(x,_u,z,m,t) = 0 

~(x,u,z,m, tf) = O 

(4) 

Defining the multipliers ~(t) to handle the differential constraints, ~(t) to 

handle the equality constraints, and a constant ~ to handle the terminal time 

constraints, this problem may be written 

Min J = ftf (iTi+H)d t + G 
J 

~,~,Z,~,~,~,H t o 

(5) 

where the Hamiltonian is defined 

= ~_Tg T H A f - + 0_ q (6) 

and 
A 

G = F(~(tf)) + T~ (7) 

If standard optimal control theory is applied, the following conditions of optimality 

are obtained: 

- $ = O ~(to) = 5o 

= o 

~(tf) = 0 

i -H = O 

K 0 H -u -y 

(-%+G-x) tf = O 

= H 
-m 

subject to the inequality constraints at each interval. 

and states satisfying these equations to a specified degree of accuracy. 

(8) 

The object is to find controls 

Defining a 



277 

norm function 

N(~) = _~r~- = I[-~]]2 (9) 

we may specify the optimal control problem in terms of the minimization of the cumu- 

lative errors 

where 

J = Jl + J2 (IO) 

Jl = I tf {N(_i-g) + N(R)}dt + N(~(tf)) (ii) 
t 
o 

J2 = Itft {N(~-~x) + N(~x) + N(Hy) + N(Hm)}dt + N(~+Gx)tf (12) 

o 

and stop the iterations when J is smaller than some pre-specified accuracy. The 

normal quasilinearization algorithm corresponds to updating the current ~,u,~,~,%,~,H 

by increments derived from the solution of the first order expansions of the optimality 

conditions (8). A new expansion point is then obtained which reduces J , and the 

procedure repeated until convergence is achieved. 

The inequality constraints may in general be handled by penalty methods with 

very little modification of the quasilinearization method. In this present work, 

however, attention is restricted to what is the most important case in engineering 

problems, simple upper and lower physical bounds on the variables. In this case, a 

gradient projection method due to Rosen 8 may be used. This basically checks the 

variables at each iteration to see if the limits are violated. If a variable exceeds 

the limit, it is set equal to that limit, and the next step in the minimization pro- 

ceeds along the projection of the gradient along that limit. 

The object of this paper, then, is to obtain solutions to very general sub- 

system problems and to coordinate their solutions into a coordination algorithm for 

the hierarchical control of the system. 

3. Quasilinearization algorithm 

The standard method of solving the problem outlined in the previous section is 

to consider the linearized set of optimality conditions defined by 
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(i-g) k + ~ (x_'-g) = 0 

~x = 0 
-0 

k 
+ ~ = o 

~k + d~(tf) = 0 

(~-ix)k + ~(i-H_ X) : 0 

H k + ~H = 0 
--U --U -- 

H k + 6 H  = 0 
- y  - y  - 

H k + ~H = 0 
-m -m - 

~(%+Gx)tf + (%+Gx)k = 0 

where the linearization is performed about some nominal operating point at the 

iteration, denoted by the superscript 

ing set of differential equations: 

(13) 

k th 

k . These may be expanded to yield the follow- 

_ _ gyA l - + _ = 
(14) 

subject to the algebraic constraints 

TAx qTAu T + TAm k + _ + RyAI _+q = 0 

_4x~ + <~u+ ~ ~+ ~-~um~m + -4~- + ~b~ + ~ : o -uy - - -u - 

-yx -yu = -ym _ IA~_ H + H k 0 . . . . . .  y 

(15) 

and the initial and terminal conditions 

(Ax_) t 0 
O 

(AX)tf + {GTx Ax + GTu Au + GTxyAX + GTxmAm + _  _ GTpA~}tf 

= 0 

+ (%-+Gx) tf 
= 0 

(16) 

The solu£ions Ax,A~,A~,Am, A~,A~,A~ may then be added to the current estimate of the 

solution to yield an estimate at the k th iteration of 
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k+l k 
X = X + A X  

I k+l = I k + AX 

k+l k 
U = U + AU 

k+l k 
m = m + Am 

k+l k 
l = l + Al 

k+l k 
IX = Ix + A~_ 

k+l k 
0_ = 0_ + Ap 

This leads to a change in the performance index of 

~Jl + ~J2 

where 

~Jl 

o 

-2J I 

+ qT6~}dt + 2~T(tf)~(tf) 

ft  { (~_Hx)T8 (.~_Hx) 8J 2 = 2 :f + IITsH + HTsII . . . . .  u -u -y -y 
t 
o 

-2J 2 

+ ~6H_m -m}dt + 2(%+Gx)~fS(%+Gx)tf . . . .  

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

substituting in for the incremental changes of equation (13) and using the definitions 

of Jl and J2 " Thus 

~J = -2J (23) 

showing a reduction in the value of J at each iteration. 

The modified 6 quasilinearization 

of the optimality conditions for 0 ~ 

(g_~)k + 

k + 

~k + 

(_~-_~x)k + 

H k + 
--U 

H k + 

-In 

(~_+Gx)k + 

method uses the following linearized version 

E1 

~ (_i-~) = _o 

c~Sx = 0 
-O 

~ = o 

~8~(tf) = O 

~ (_~-~_x) = 0 

~6H = 0 -u 

c~H = 0 
-y 

~6H = O 
-m 

~ (~_+_Gx) k = _0 

(24) 
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which, if expanded, leads to a reduction in the performance index 

6J = -2~J (25) 

and hence, by suitable choice of ~ at each iteration, the performance index may be 

rapidly extremized. This optimum choice of e may be obtained by a one-dimensional 

search on J(~) at each iteration. 

4. Soltuon of two-point boundary value problem 

The previous section has formulated the quasilinearization approach for a 

general control problem. Here, the solution algorithm for the linearized two-point 

boundary-value problem is described. 

Consider the problem of solving the differential equations (14) subject to the 

algebraic constraints (15) and the initial and terminal conditions (16). Clearly it 

is possible to solved equations (15) for Au,&z,~m,AP all as functions of &~ and 

m~ , since then there are 4 equations in 4 unknowns. Substituting these values into 

equations (14) and defining 

I 1 k+l = (26) 
%k+l = k k + Ak 

the problem may be restated as the solution of the linearized equation 

d__ k+l F(z k) + j(z k)(z k+l z k) (27) 
dt z = _ _ 

subject to the boundary conditions 

zi(to) = Zio i = 1,2,...,n 

zi(tf) = zif i = n+!, .... 2n 

( z s )  

where z. is the i th component of the 
x 

o.th 
Jacobian with ij element 

2nxl vector z , and J is the system 

~F. 
i 

Jij = ~ z---~ 
J 

(29) 

It is convenient at this stage to write the boundary conditions as 

zl(t°)akl + z2(t°)ak2 + "'" Z2n(t°)ak2n = bk 

+ + . = b l zl(tf)a~l z2(tf)ai2 .. Z2n(tf)a~2 n 

( 3 0 )  
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where there are k initial conditions and £ final conditions on z.(t) 
l 

Writing equation (27) as 

d k+l dt ~ = J(zk)zk+l + F(k) _ j(zk)z k (31) 

it is clear that the general solution consists of two parts 

~k+l(t) !k+l(t,to)zk+l(to ) + P(t) 

The first part or transient response is determined by solving 

(32) 

subject to 

d!k+l(t,to) : J(zk)~k+l(t,to ) 
dt 

!k+l(to,to ) = ! 

(33) 

(34) 

where I is the 2nx2n identity matrix. The particular integral satisfies 

dpk+l(t ) = j(zk)pk+l(t) + F(z k) _ F(zk)z k 
dt . . . . . .  

(35) 

and the general solution is 

_ k + l .  L k+l zk+l(t) = ~ [t,to)C + pk+l(t ) 

where C# +I is the 2nxl vector of constants of integration determined by the 

equations (30) Which may be rewritten in the form 

<ck+l,ai> = b i i = 1,2,...n 

<~k+l(tf,to)Ck+l+pk+l(tf),a=> = b. j : n+l .... 2n 
. . . .  3 3 

( 3 6 )  

where 

a .  : [ a .  , a  . . . . . .  a .  l r 
-i 11 l 2 ZZn- 

(37) 
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The iterations continue until 

k+l k,, 

where s is an arbitrarily small quantity. 

are shown on the flowchart of Fig.l. 

e (38) 

The basic steps of the solution algorithm 

The following section provides an illustration of the practical use of this 

technique for solving non-linear sub-system problems in a hierarchical structure 

arising from the spatial problem decomposition using Lagrangian duality. 

5. Solution of a non-linear water supply problem 

Consider the problem of obtaining the minimum pumping cost control for a water 

supply system 9 described by the following differential equations: 

dx I 
dt - 0.075XUl - 4.66x10-4XSl(Xl-X2) - 2.367xi0 -3 (39) 

dE~ _ 
dt - 9.527xi0 4XSl(Xl-X 2) + 0.1533×u 2 - 2.485×10 3xS2(x2-x 5) - 3.629xi0 -3 (40) 

dx 3 
dt - O.ixu 3 - 0.0239 (41) 

dx4 = -3xS3(x4-239)0"54 d--~- 0.25xu 4 - 3.726xlO - 2.95xi0 -3 (42) 

dx 5 
dt - 0"05×u5 + 8"ixlO-4XSz(X2-X5) - 8"97×10-3 (43) 

dx 6 
dt - 0"1712xu6 + l'25xlO-3xS4(375-x6) + 9"922xlO-4xS5(540-x6) - 1"35xi0-3 (44) 

subject to x(0) = x ° , where 

~24 I x xdl 2 I d 2 
J = 10 {~ _-_ ~ + ~L _x + ~-llu-u II R + _RLu}Ht 

(45) 

is a second-order expansion of operating costs. In this problem x is the vector of 

states or reservoir levels on the system, u is the vector of pump controls, and 

d d x ,u are their desired values respectively. All vectors are of dimension 6 , and 

Q,~L,_R,RL are the appropriate 6x6 weighting matrices. 

This regulator control problem arises from an actual control scheme developed 

on a computer-controlled water supply network, described in detail in reference 9. 
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The non-linearities S 1 .o. S 6 appearing i~ this formulation are of the 

general form 

S.(~) = Sgn(~)l~l O'54 i = 1,2 .... 5 (46) 
i 

which is in fact the steady state flow along a pipe of unit resistance, the head drop 

along the pipe being ~ . A graph of this is shown in Fig.2. 

4 
FLOW 

3 

2 

I I ~ i a 

/ 
/ 

/ 
/ 

/ 

2 6 

HEAD 

IO 

FIG.2 STEADY-STATE HEAD-FLOW RELATIONSHIP FOR A PIPE 

This problem may be decomposed by introducing the coupling variables 

~Z2 

~51 

= x I 

= x 5 

= x 2 

(47) 

.th 
where $il is the j coupling variable in the 

followimg 6 sub-problems are defined: 

.th 
l sub-system. In this way the 
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Sub-problem I: 

S.t. 

24 i 2 ½(xi_765)2 + ~ll(~ll_Xz)}dt + Fl(Xl(tf)) Min {~ u I + 
0 Xl,Ul,~ll 

Xl = O'O75×ui 

Xl(O) = 765 

Ul(t) ~ 1 

- 4.66xlO-4XSl(Xl-$11 ) - 2.367xlO -3 

Sub-problem 2: 

Min {i(x2_535 ) 2 

x2' u2' ~21' ~22 

1 2 
+ ~ u2 + B21(~21-x I) + $22(~22-x5)}dt + F2(x2(tf)) 

S.t. x2 = 9"527xlO-4XSl(~21-x2) + 0"1533Xu2 - 

x2(O) = 535 

u2(t) ~ 1 

2.48xlO-3xS 2(x2-~22) - 3.629xlo -3 

Sub-problem 3: 

Min 124 

x3,u 3 0 

S.t. x3 = O.ixu 3 - O.O239 

x3(O) = 489 

uB(t) ~ 1 

+ i u~}dt + F3(x3(tf) ) {~(x3-489)2 

Sub-problem 4: 

S.t. x4 = 

x4(O) 

u4(t) 

24 i 2 
Min {I(x4-307)2 + ~- u4}dt + F4(tf) ) 
x 4 , u 4 O 

0.25xu 4 - 3 , 7 2 6 x l O - 3 x S  3 ( x 4 - 2 3 9 )  - 2 . 9 5 × 1 0  - 3  

= 3 0 7  

.< 1 

Sub'problem 5: 

S.t. 

24 I 2 
Min {i(x5-393)2 + ~ u 5 + ~51(~51-x2)}dt + F5(x5(tf)) 

0 Xs,U5, ~51 

x5 = O'O5xu5 + 8"ixlO-4xS2(~51-x5 ) - 8"97xi0-3 

x5(O) = 393 

u5(t) ~ i 
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Sub-problem 6: 

[24 {}(x6_245) 2 i u~}dt (tf)) Min JO + 7 + F6(x6 
x 6 , u 6 

S.t. x6 = 0°1712xu6 + l'25×lO-3xS4(375-x6 ) + 9"922xlO-4xS5(540-x6 ) - 1"35xi0-3 

x6(O) = 245 

u6(t) $ I 

Using a goal coordination algorithm, each of these sub-problems is solved for 

a given value of the coupling multiplier _B . The solution x i ' -lu" and -~i of the 

sub-system problems are then used to update the multiplier according to 

where 

8k+l = 8 k + ~d k (48) 

d k 
_ = VB@ (~) (49) 

for a linear search or 

d k = ~V~_~(_B)] k + iiV~(~_)l[k2_ 1 _d k-I (50) 

for a conjugate gradient minimization of the dual function ~([) . In this case, the 

gradient is simply the error in the coordinating relations, and when this tends to 

zero, the solution has been obtained. In this case the dual function is 

6 
~(~) = Min { ~ [Fi + r ]tf (fi + <~'~i >)dt]} (51) 

x. ,u., . i=l t 
--i --i ~i O 

and from this 
6 

VB~ (B) = [ G. (52) 
- i=l -l 

for the minimizing values of xi,~i,~i . 

Minimizing the Hamiltonian 

the optimality conditions 

I~o for each sub-system, as in Section 2, leads to 
l 

~H, 
~. = 

-i 

~ = _ _ !  

-l ~x. 
--i 

(53) 
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i 
- O ~u. 

-i 

i 
= 0 

-z 

(54) 

The values of -lu" and -~i in terms of -ix" and -ii" may be solved for from equations 

(54) and the problem reduces to the solution of the two-point boundary-value problem 

defined by equations (53), subject to the initial conditions 

~i (0) = ~io ~i(tf ) = ~if 

For all of the sub-problems, 24 integration steps are used, and the integration 

4 th of the differential equations performed using a order Runge-Kutta procedure. 

6. Results 

The above problem has been solved on an IBM 370/165 computer, and a typical 

system response to a step disturbance for the first sub-problem is shown in Fig.3. 

The described quasilinearization algorithm has been used to obtain sub-system solu- 

tions. The convergence requirements for each sub-system are summarized in Table i, 

together with the initial values of the multipliers. The global problem converges in 

about 30 iterations using a simple linear search. 

The optimum controls are calculated to minimize the control effort and the 

deviations of the state from desired levels when a step demand is placed on the 

system. As shown in Fig.3, a step demand for water is met by reducing the pump flow 

control as much as possible and meeting the difference by reducing the reservoir 

level. For example, the final control for sub-system 1 is 

ui(24 ) = O.O75xui(24) = 2.367xlO -3 mgd (55) 

and this is the minimum allowable pumped quantity of water. 

In general, this zone will be subjected to a time varying deterministic distur- 

bance which is obtained by forecasting the water demand from past data. Fig.3 merely 

shows the response to the steady state or average of this demand. 

An important practical consideration in the proposed on-line implementation of 

a scheme designed to handle non-linear models is whether the increased computational 

burden is justifiable in terms of cost savings. 
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Table I 

No. of iterations* Initial multipliers 
Sub-problem i for convergence Xo (t) O ~ t ~ 24 ~. (24) 

i i 
I 3 0.4 0.4 

2 2 0.15 o.15 

3 2 2.39 2.39 

4 12 0.047 0.047 

5 3 3.58 3.58 

6 20 0.0457 0.0457 
,. 
iterations are terminated when 

IIck+l-ckll ~ 10 -6 

To examine this, consider the solution to the first sub-system problem, using 

firstly a linear model and secondly a non-linear model. In the first case, the model 

is linearized about an operating point and the quadratic costs calculated. The results 

are tabulated in Table 2. Then, for a full non-linear model, solved by quasilineariza- 

tion, the trajectories are obtained and quadratic costs calculated, the results being 

shown in Table 3. 

Table 2 

t Ax I = 765-x I (AXl)2 Xl(t) %~(t) 

4 9.766xi0 -3 95.374xi0 -6 1.489 2.21855 

8 21.729×10 -3 472.149xlO -6 1.429 2.04209 

12 36.621xi0 -3 134.109xlO -5 1.312 1.746283 

16 53.711xi0 -3 288.487xi0 -5 1.146 1.31265 

20 75.928xlO -3 576.506xlO -5 0.886 0~78503 

24 104.98 ×10 -3 Ii0.208xi0 -4 0.513 0.26273 

~(Axl) 2 21579.352xi0 -6 

t ~ ~ = 8.3677339 
t 

Table 3 

t Ax I = 765-x I (AXl)2 Xl(t) X2(t) 

4 9.521xi0 -3 90.649xi0 -6 1.491 2~22243 

8 21.729x10 -3 472.149xi0 -6 1.430 2.04622 

12 36. 377xi0 -3 132. 328x 10 -5 I. 323 I. 75080 

16 53. 467xi0 -3 285. 872xi0 -5 I. 140 I. 29969 

20 75.195xi0 -3 565.43 xlO -5 0.880 0o776108 

24 i04. 492xi0 -3 i09.185xi0 -4 0.512 0.26245 

~(AXl )2 = 21317.67xi0 -6 
t 
~(~i )2 = 8.357703 
t 
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The quadratic costs in the first case are 

~I = X(Ax1)2 + Z(ul)g 
t t 

= ~(AXl )2 + (0.075) 2 ~(Xl)2 
t t 

= 686.546x10 -4  

and in the second case 

J2 = 683"297×10-4 

which is a percentage reduction of about 0.5% o The computational burden in terms of 

time requirements for handling the non-linearity is increased by a factor of 3 . 

Clearly the increase depends on the number of iterations Tequired in total to solve 

all the sub-system problems, and these can be reduced to a minimum using modifications 

of the quasilinearization algorithm. Experience has shown that the number of itera- 

tions to convergence can be halved using the modified algorithm and optimizing with 

respect to the choice of initial multipliers over the time interval. 6 Thus, for a 

50% increase in computer time requirements, pumping costs can be reduced by ½% . 

This additional saving of ~% in costs may be well worthwhile if the dynamics 

of the system under consideration are slow enough to allow the computer to calculate 

the optimal controls within one sampling interval, as is the case with the water 

supply problem. If, however, the additional time requirements of the quasilineariza- 

tion algorithm mean that a more powerful computer must be installed to control the 

system, then the savings will have to be compared with the additional computer costs 

to determine if it is worthwhile increasing the computer capacity to save the addition- 

al ½% operating costs. 

Conclusions 

The method of quasilinearization has been used to solve non-linear sub-system 

problems arising from a problem decomposition using Lagrangian duality. The method 

has been applied to a practical water supply problem, and results indicate that it is 

worthwhile handling non-linear models for on-line implementation in this application. 

Acknowledgements 

The authors are grateful to R.H. Burch and K.C. Marlow, of East Worcestershire 

Waterworks Company, for financial support, and to A.R. Farmer and M.S. Jennions of 

Kent Automation Systems, for technical cooperation° They are also grateful to 

M. Singh and J. Galy of Laboratoire d'Automatique et d'Analyse des Systemes du 

C.N.R.S., for a computer program on which these calculations are based, and to 



291 

P.D. Rice, of this department, for data processing. Thanks are also due to the 

Science Research Council and Peterhouse, Cambridge, fnr financial support. 

References 

i. R. Bellman: "Dynamic Programming", Princeton University Press, Princeton, New 
Jersey, 1957 (book) 

2. R. Bellman and S. Dreyfus: "Applied Dynamic Programming", Princeton University 
Press, Princeton, New Jersey, 1962 (book). 

3. R.A. Howard: "Dynamic Programming and Markov Processes", John Wiley and Sons 
Inc., New York, 1960 (book) 

4. R.E. Larson: "State Increment Dynamic Programming", John Wiley and Sons Inc., 
New York, 1960 (book) 

5. R. Bellman and R.E. Kalaba: "Quasilinearization and Nonlinear Boundary-Value 
Problems", American Elsevier Publishing Company, Inc., New York, 1965 (book) 

6. A. Miele, A. Mangiavacehi and A.K. Aggarwal: "Modified Quasilinearization 
Algorithm for Optimal Control Problems with Nondifferential Constraints", 
Journal of Optimization Theory and Applications, Vol.14, No.5, 1974 

7. F. Fallside and P.F. Perry: "Decentralized Optimum Control Methods for Water 
Distribution System's Optimization", Cambridge University Engineering Dept., 
TR 31 (elec) 1974 

8. J.B. Rosen: "The Gradient Projection Method for Nonlinear Programming - Pts 1 & 
2", Journal Soc.Ind.Appl.Math., 1960, 8, pp.181-217 

9. F. Fallside and P.F. Perry: "Hierarchical Optimization of a Water-Supply 
Network", Proc.IEE, Voi.122, No.2, Feb. 1975, pp.202-208 


