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1. Introduction 

Unlike most process industries a wastewater treatment plant receives a raw in- 

put material whose variations with time are large and imprecisely defined. Some of 

these disturbances, which result from rainfall-runoff into the urban sewer network, 

are quite disruptive for the operation of the treatment plant and may also cause a 

subsequent overloading of the receiving river's self-purification capacity. The 

effluent from a sewer network, i.e. the influent to a wastewater treatment plant, is 

as it were, the fulcrum about which the control of the sewer network and the treat- 

ment plant is balanced. Therefore, an advance knowledge of the dynamic variations 

of the influent flow would play an important role in the more efficient operation of 

the treatment plant and the minimisation of storm-water overflows from the sewers. 

Most previous models for urban rainfall-runoff/sewer effluent flow relationships 

tend to be of the large, deterministic~ internally descriptive type. For certain 

control objectives it may~ in practice, be sufficient to use a much simpler black box 

conception of the system. In this paper results are presented for the identification 

of a stochastic input/output, time-series model using the method of maximum likelihood: 

the data are taken from the Kippala treatment plant and meteorological stations in the 

district surrounding Stockholm. The identification phase of the analysis is an intro- 

ductory stage in the examination of the potential applicability of an on-line, adaptive 

predictor for the influent flow to the treatment plant. The prediction problem is 

separated into two steps: in the first step the parameters of the black box model are 

estimated recursively with a least squares technique; the second step makes a pred- 

iction of the plant influent flow on the basis of the newly updated model and param- 

eter estimates. 

The predictor is adaptive in the sense that it automatically adjusts the model 

l~ramete~to any unknown changes in the process dynamics. It is practical in the 

sense that it assumes very little on-line instrumentation of the system: in genera]~ 

the innovation of an automatic control for water quality is severely hampered by a 

lack of the relevant, reliable, and robust measuring equipment. From a comparison 

of the prediction with the observed K~ppala data it turns out that a good advance 

knowledge of the influent flow variations can be obtained in the absence of any 

measurements of the rainfall incident on the urban land surface. 
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2. PROBLEM FORMULATION 

Consider the water quality system defined by figure 1. Consider further the 

competing demands made on the quality "resources" of a reach of river by the assim- 

ilation of waste material from one urban community and the supply of potable water 

to a second, adjacent~ downstream urban community. A proper understanding and cont- 

rol of the dynamic variations in river water quality would seem to be of vital 

importance to the organisation of the river's resource and amenity potential. Yet~ 

although we have seen this stated many times before, automatic control, a common 

feature of most process industries, is notable by its absence from the water quality 

system. Much effort is still required to obtain suitable dynamic models for sub- 

sequent control system synthesis; a review of this field, with particular reference 

to the application of system identification and parameter estimation techniqueSyis 

given in BECK (1975) 4 . 

A knowledge and control of river water quality dynamics implies a knowledge of 

the dynamic characteristics of the sewer network and the wastewater treatment plant. 

In particular, figure I shows that the periodic oscillations of the consumer effluent, 

~c2 ' and the sudden, impulsive nature of urban runoff from any rainfall event, -~O2 , 

makes the input raw material to the treatment plant, [23 , a highly variable, and 

generally imprecisely known, quantity. Control objectives for the neiwork and plant 

become, then, very much a matter of acquiring advance knowledge of the flow component, 

y , of the vector ~23" Such a knowledge permits, in theory, the prior organisation 

of the network/plant operation for the minimisation of the polluting overflows [24 

and ~4 to the river, and ultimately, it provides a basis for establishing a truly 

controllable input to the treatment plant, which implies a greater flexibility in the 

regulation of the final treated effluent to the stream~ ~34 " 

Thus, given measurements of the rainfall u , say, at several spatial locations 
1 

i (i=I,2, ..., m) on the urban land surface, we wish to determine a dynamic model 

which relates u. to y , the effluent from the sewer network; this is the identifie- 
i 

atien problem. Most previous investigations of this problem have divided it into two 

sub-problems: (i) given u i , determine the inlet discharge to the sewer network from 

runoff (e.g. CHEN and SHUBINSKI (~971) 7 , PAPADAKIS and PREUL (1973) 19) ; (it) given 

all flows entering the network, determine the output flow~rate y (e.g. HARRIS (1970) 

13) . One striking feature of the currently available models is their purely deter- 

ministic and highly complex structure. Clearly these large, internally descriptive 

models reflect the complexity of the laws which describe the underlying physical 

phenomena governing the system's behaviour. Yet a theoretically complete analysis 

produces an unwieldy and possibly intractable model, with a multitude of parameters 

to be evaluated, and it is admitted that "to a varying degree most of these methods 

rely upon empirical relationships and experience" (PAPADAKIS and PREUL (1973) 19) . 

It seems, therefore, that a stochastic model derived from time-series analysis, 
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herein the maximum likelihood method (~STR~M and BoHLIN (1965)2), might yield equally 

usable results. Such an input/output, black box model for the relationships between 

u and y assumes little or no a priori knowledge of the physical laws of the system 
i 

and takes a relatively macroscopic view of the cause/effect relationships involved. 

A similar approach to sewage flow modelling~ after BOX and JENKINS (1970) 6 , has 

been adopted by GOEL and iaGREGA (1972) 11 . For adaptive prediction of the effluent 

sewer flow %he identification part of the analysis is required primarily for the det- 

ermination of a suitable order and structure for the predictor model.The prediction 

problem can be stated as follows: at time t~ given the noisy observations y(t), 

y(t-]), .... , of the presen% and past values of the influent to the plant and a model 

for the dynamic variations of y, we wish to make a k-step ahead prediction of y(t+k).In 

addition, the predictor should be simple, adaptable to changes in the process dyn- 

amics~ and require little on-line instrumentation. 
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3. IDENTIFICATION and ADAPTIVE PREDICTION 

The class of models to be examined is one of parametric, linear, time-invariant 

models of a canonical form. They are black box models in the sense that they assume 

no knowledge of physical relationships between the system,s inputs and output other 

than that the inputs should produce observable responses in the output. 

3.!. Maximum Likelihood Identification. 

In the general case, given the set of input/output data samples (n i (t) , i = 1, 

2, ..., m; y(t) ; t = I, 27 ...~ N), where u. (t) , i = 1~ 2, ..., m are the m input 
1 

signals, y(t) is the output signal and t is the time of the t th sampling instant~ the 

identification problem is to find an estimate of the parameters of the system model 

(~STRD~ and BOHLIN (I 965) 2, GUSTAVSSON (1 96912), 

m 
A(q -1)y(t) = ~ B i (q- l )u  i ( t )  + ~C(q -1 )e ( t )  (1) 

i=1 

in which e(t) is a sequence of independent~ normal (0,15 random variables and q 

denotes the shift operator 

q { y ( t ) }  = y ( t + l )  e tc .  (2) 

-I 
A(q -I)'" , Bik q ) , i = I, 2, ..., my and C[q -I)~" are the polynomials 

-I -n 1 

A(q -I) = I + alq + ... + anq 

B ( q - l )  + -1 -n i 1,2, ,m (3) 
i = bio bilq + "'" + binq = "'" 

-I -n 
C(q -I) = I + clq + ... + Cnq 

The residual errors of eqn. (I), {e(t) , t = I, 2, ..., N} , defined by 

m 
-I C(q-1)~(t) =A(q-1>y(t) - 7~ S i (q )ui(t) (45 

i=1 

are thus an independent and normal (O,X) sequence. Notice that in this application 

the inputs of the system correspond to the rainfall u. measured at the locations i = 
1 

I, 2, ..., m and the output y is the influent flow to the treatment plant (see fig- 

ure 2). 

3.2. Adaptive Prediction 

For the derivation of an adaptive predictor (WITTENMARK (1974) 22 ) let us 

consider once again the discrete-time process, eqn.(1), which we rewrite as, 

m' 
A(q-1)y(t) = ~ Bj(q-1)vj(t) + kC(q -I) e(t) (5) 

j=1 
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Here Vj(t), j = 1,2, ., m' .. , are auxiliary variables which aid in the characteris- 

ation of the time-series y (see eg. WITTENMARK (1974) 22 HOLST (1974) 14 ) , ; more 

specifically, for reasons which become apparent later, vj may be thought of either 

as a suitable deterministic, synthetic signal, e.g. a periodic function, or as 

measurements of the process input variable u i (eqn.(1) ). Now denote the k-step 

ahead prediction of the output signal y based on the sampled observations y(t),y(%-1), 

..., and the signals Vj(t+k), vj(t+k-1), ..., (j=1,2,..., ~), by ~(t+klt). Introd- 

ucing the loss function 

Vk(t ) = E{~(t+k) 2} (6) 

where E{...}is the expectation operation and s(t+k) is the prediction error, 

c( t+k)  = y( t+k)  - ~,( t+k l t )  (7) 

the predictor which minimises eqn.(6) is derived in ~ST~dM (1970) I for the case where 

the process, eqn. (5), hss known A, Bj, C polynomials. According %o ~str'dm, using 

the identity~ 

-k  C(q -I = A(q -I) F(q -I) + q G(q-1) (8) 

where 

F(q -I 

G(q-1 
-I -k+1 I = I + flq + .... + fk_lq 

- I -n+1 

= go + gl q + .... + gn-1 q 

(9) 

The k-step ahead predictor 

9(t+klt) = 

for eqn. (5) is given by 

m e 

~(q-1)y(t) + F(q -11 Z Bj 
- j=1 

C(q -I ) c(q -I ) 

(q-l) vj (t+k) (10) 

Alternatively, if the polynomials A, Bj, C are unknown, they can be estimated off- 

line by the method outlined in section 3.1 above and then substituted into eqns. (8) 

and (10) to obtain the predictor. 

However, for an on-line predictor of an unknown process we should prefer to 

identify the process and make predictions "simultaneously". In other words, we 

have a learning (or adaptive, self-tuning) procedure in which the parameters of the 

predictor, eqn. (IO), are recursively estimated at each time t~ rather than estimat- 

ing a priori the parameters of the process, eqn. (5). WITTENMARK (1974) 22 solves 

this problem by transforming it into the already solved problem of an adaptive reg- 

ulator (WITTENMARK (1973) 21). 
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In the current application a slightly modified version of Wittenmark's algorithms 

are employed (HOLST (1974)14). The derivation is briefly as follows. Rearranging 

eqn. (10), and introducing e(t) from eqn. (7)7 we have at time t, 

m r 
y(t)  = G(q-1)y(t-k) - (C(q -I ) - 1)9(tlt-k) + p(q-1) ~ Bj 

j=l  

Eqno (11) is now re-written as, 

m S 

y(t) = A*(q-1)y(t-k) - B*(q-1)9(tlt-k) +~-~, 
j=1 

(q-l) v j ( t )  + ~(%) 

(11) 

F~(q-1)vj(t) + s(t) (12) 

such that we have the identities~ 

A*(q -I) ~ G(q -I) ; B*(q -I) ~ C(q -I) - I 

F~(q -I) m F(q -I) Bj(q -I) j = 1 , 2  . . . . .  m' 
.) 

(13) 

with the polynomial definitions, 

A* (q-!) -I -n+1 
= ~ + ~q~_ + .... + ~n_1 q o 

-I -n 
B*(q -I) = ~i q + .... + Bnq 

y~(q-1) + -I -n-k+1 

= Yjo Yjl q + "'" + Yj,n+k-1 q 

I 
l 

j=1,2,...,m' [ (14) 

2 

Eqn. (12) forms the basis of the adaptive predictor algorithms, whereby (HOLST (1974) 
14); 

Step I : Estimation 

At time t, upon receipt of a new observation y(t), the parameters, .. ~o' " '~n-1' 

8],..., Y1o,.o.,Y1,n+k_1 ,..., Y~o ' .... , Y m~n+k_ I are estimated in the prediction, 

model, 

m I 

y(t) = A*(q -I ) y(t-k) -B*(q-1)9(tlt-k) + j~__ir# (q-1)vj(t) +s (t) (15a) 

by the method of least squares; 

Step 2 : Prediction 

Using the estimates ~(q-1) , ~.(q-1) ~ andS* (q-l) obtained in eqn. (15a)~ 
J 

make a k-step ahead prediction, 

9(t+klt) = ~.(q-1 )y(t) _~.(q-1) 9 (t+klt) + Z] ~#(q-1)vj (t+k) 
j=1 

Since a least squares estimation is readily implemented in reeursive form, the 

(1 5b) 
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the predictor is well suited to real-time applications with each step of the proced- 

ure being repeated at each sampled instant of time. Thus, if the following vectors 

are defined as 

zT(t) = [y(t-k),...,y(t-k-n+l), -9(i-lJt-k-1),...,-9(t-nli-k-n), v1(t),... , 

v 1 ( t - k - n + 1 )  (%), .., (t-k-n+1)] ~, . . . .  , Vmt • .  Vm~, 

a(t) = [~ ,..., ' ~I' Bn' "'''YI "'" Ymr, n+k-1] T e ~n-1 "''' Y1o' ,n+k-1 ' .... ' Tmle' ' 

eqn. (15a) becomes y(t) = zT(t) a + s(t) (16) 

and the well known recursive least squares algorithms for the estimates ~ of a are 

given by (e.g. YOUNG (1969) 23 , YOUNG (1974)24), 

~_(t) =~ ( t - 1 )  - P ( t - 1 ) z _ ( t )  [ 1  + zT(t)_ P ( t -1 )z ( t ) ]  - I _  E_zT(t) _~" ( t - l )  - y ( t ) ]  

P(t) = P( t -1 ) -  P(t-1)~(t)[1+zT(t)_ P(t-1)~(t)_ ] - IzT(t)  P(t-1) 

I in which P(t) a_ z(j)zT(j) (18) 
j=1 

Remarks 

(i) Estimation bias: 

(a)I(17) 

(b)J 

If C(q -I) = I in eqn. (5) it can be shown that e(t) = ke(t) 

and, providing that e(t) is not correlated in time and is independent of y(t)~ vj(t) 

(j=1,2,...,m'), the estimates ! are unbiased. In practice however, where it is 

more probable that C(q -I)¢I , the predictor still appears to behave nicely; notice 

that if the estimates ~ converge to ~, it implies that certain covarianees and cross- 

eovariances equal zero (HOLST (1974) 14 , WITTENMARK (1974)22). 

(it) Time-varying parameters: In view of the nature of this particular application 

(see section 4.2) it is useful %o allow for the estimation of time-varying parameters. 

One method of achieving this is with exponential weighting of past data (e.g. YOUNG 

(1969) 23, EYKHOFF (1974)8); introducing a weighting factor~ ~ where 0<<W<I, the 

recursive least squares algorithms of eqn. (17) are modified to give (EYKHOFF (1974)8), 

= it-1) - zJ(tl -1[Fit  it_1) _ y(t)] <all9) 

where now P(t) e ~-JK(j)~T(j 
j=1 

(iii) Auxiliary variables: When measurements of any process inputs, e.g. rainfall in 

this instance, are to be used as auxiliary variables,note that the measurements v. 
J 

(t+k), vj(t+k-7),..., are required at time t for prediction according to eqn. (15b). 
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Clearly, additional information of this kind is only of real benefit providing 

~o =~I ..... ~k = 0~ i.e. there exists a pure time delay T in the input/output 

process dynamics where T> k. 0%her forms of auxiliary variables are typically 

(here) average weekly and daily periodic dry-weather flow profiles. 

A full analysis of the adaptive predictor of eqn. (15) will appear in a forth- 

coming report (HOLST (1975)15). 
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4. A CASE STUDY - THE K~PPALA PLANT~ STOCKHOLM. 

Figure 3 shows the sewer tunnel system which collects waste water from an area 

of some 1191 km 2 covering part of the City of Stockholm and it's surrounding districts 

and serving a population of 290,000. The observed influent flow-rate to the K~ppala 

plant is analysed for the period between October Is% (08.00 hrs) and October 31st 

(07.00 hrs), a total of 720 hourly samples. For the same interval data are available 

(from the Swedish Institute of Meteorology and Hydrology, Stockholm) for the rainfaIl 

measured at four stations, RUsk~r, Steckholm-Bromma, Stockholm, and Liding~ (see 

figure 3). Because of several imperfections in the data, notably the presence of 

large pumping disturbances in the flow-rate measurements and the low frequency of the 

sampling in the rainfall measurements, e.g. once, twice, per day, it is particularly 

difficult to obtain suitably identified input/outputmodel for the urban runoff/sewer 

effluent dynamics. 

4.1. Identification. 

The problems of the data and of maximum likelihood identification are discussed 

in greater detail elsewhere (BECK (1974)3). Briefly, i% is necessary to low-pass 

filter the data before any useful analysis can be attempted. A rainfall-runoff flow 

(RRF) model, which incorporates a deterministic component describing the dry-weather 

weekly flow periodicity and a stochastic model for rainfall-runoff flows, is identif- 

ied: 

yr(t) = -alYr(t-1) + b 3 u(t-3) + b7(t-7 ) +X(e(t) + cle(t-1) ) 

where 

(20) 

Yr(t) = y(t) - Yw (t) (21) 

Yr(t) may be considered as the excess flow resulting from runoff sources (m 3 s-l), 

y(i) is the (low pass filtered) observation of the treatment plant influent (m3s-1), 

and Yw(t) is a mean weekly dry-weather flow pattern (m 3 s -I) computed a priori from 

the (low-pass filtered) data on y(t); the input u(t) is a signal representing a single 

(low-pass filtered), spatially-averaged rainfall time-series (mm). The estimates of 

the parameters are given by, 

m I = -0.739 ~ 0.028 , b 3 = 0.063 ~ 0.032 ; b 7 = 0.086 ± 0.031 ; 

m I = 0.984 ~ 0.001 ; Z = 0.027 ~ 0.001. 

Figure 4 shows the data, deterministic output response, and model error for the 

deterministic component of eqn. (20) substituted in eqn. (21) to obtain y(t). The 

effects of the pumping disturbances are visible as regularly placed (approx. once 

daily) spikes in the observed output and model error sequences; thee are also reeog- 

nisable daily and weekly fluctuations in y(t) with additional peak responses from the 
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rainfall-runoff.The residuals £(t) of the stochastic model, eqn. (20), have a stand- 

ard deviation (X) of + 0.027 (m3s -I ) , a large part of which is contributed by the 

pumping disturbances. Notice that these residuals are also the one-step ahead 

prediction errors of the model, eqn. (20), c.f. section 4.2. In short, there are 

considerable difficulties in the estimation of the B(q -I) and C(q -I) polynomials and 

the model is only as good as the quality of the data, which, as we have indicated, 

leaves much to be desired. 

4.2. Adaptive prediction. 

In an initial study of the feasibility of an on-line adaptive predictor it would 

have been advantageous to identify the process, eqn. (I I by maximum likelihood methods, 

compute the optimal (minimum variance) predictor through eqns. (8) and (10), and 

then compare the adaptive predictor, eqn. (15), for the unknown process with the 

optimal predictor for the known process. The preceding remarks do not really 

support the use of such a procedure, although, at the very least, it is possible to 

conclude that a suitable predictor would have low-order A*(q -I) amd B*(q-1)polynomials. 

We consider the case where we have only (low-pass filtered) measurements of the 

influent flow-rate to the treatment plant, y(t). 

One-step ahead prediction 

It is found that an appropriate structure for the one-step ahead predictor (k=1) 

is defined by, 

~ ( t + l l t )  = % y ( t )  - % 9 ( t l t - 1 )  +~oVl(t+l) +~lVl(t) +Y2oV2(t+l) 
+ ~21v2( t )  (22) 

where V l ( t  ) = Yw(t )  and v 2 ( t  ) = ~ d ( t )  are r e s p e c t i v e l y  s y n t h e t i c ,  d e t e r m i n i s t i c ,  

weekly and daily dry-weather flow profiles computed a priori from the data. Given 

the a priori estimates ~(O) , 

~Zo(O) = 1.20 Ylo(O)  = 0.47 Y2o(O) = 0 .37 

~1(0) = 0.42 #11(0) = -0 .27  #21(0) = -0 .30  

and a priori diagonal matrix P(O) = (0.1) I , where I is the identity matrix, for the 

algorithms of eqn. (10) (exponential weighting factor ~ = 0.995), the results of 

figures 5 and 6 are obtained for the adaptive predictor of eqn (22). Despite the 

inevitable errors from the pumping disturbances, the one-step ahead prediction is, 

perhaps surprisingly, remarkably close to the observed data; in particular, the 

runoff from rainfall is well described, even though the predictor is operating in the 

absence of any information on these events. Notice that the recurs%re parameter 

estimates are relatively insensitive to the intermittent effects of runoff, which are 
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tantamount to an apparent change in the process dynamics. It is argued that a 

spatially-distributed rainfall event produces a temporally distributed response in 

the plant influent flow, y(t). Hence the predictor is capable of quickly recognis- 

ing such a dynamic disturbance through y(t) and ~(tlt-1) in eqn. (22) and significant 

adaptation of the parameters, e.g. ao and ~I , becomes redundant. 

The standard deviation of the predictor errors e is ~ 0.029 (m3s -I), which 

compares well with that for the residuals of the RRF model. 

Multiple-step ahead prediciion. 

Both a two-step and a four-step ahead predictor have been analysed; some results 

for the latter are given in BECK (1974) 3. The salient featur~ of the four-step ahead 

prediction results are as follows. The prediction 9 (t+41t) is found to be independ- 

ent of the previous prediction ~ (%+31t-I) and there is altogether a stronger depend- 

ence upon the auxiliary variables~ especially the weekly component v1(t ). The runoff 

process is not well predicted and the resultant peak flows are substantially attenuated. 

Simultaneously, the estimate of eo is considerably adapted in order to track the 

changing properties of the system's dynamics, of which the structure of the four-step 

ahead predictor is relatively "ignorant". However after such temporary disturbances 

returns slowly to its steady-state value for dry-weather conditions thus giving 
o 

a good illustration of the adaptability of the predictor (see figure 7). 
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Figure 7 Recursive estimates of s o for a four-step ahead adaptive predictor 
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5. SOME COMMENTS ON ADAPTIVE PREDICTION AND CONTROL APPLICATIONS. 

Time-varying parameters:Exponential weighting of past data (EWP) is one method of 

allowing for the recursive estimation of time-varying parameters. But it is a 

method which does not allow any prior selection between those parameters which may be 

expected to be time-varying and those which are not. For instance, we might expect 

the F . (q-l) polynomials for the auxiliary variables to be constant, while the 

A*(q-1)~and B*(q -I) polynomials could be expected to vary much more. Furthermore, 

the EWP method is only appropriate for the case of slowly-varying parameters, yet the 

rainfall-runoff is a relatively fast, almost impulsive, disturbance of the system. 

It seems likely, therefore, that a more sophisticated, but easily programmed, technique 

of time-variable parameter estimation could improve the operation of an adaptive pred- 

ictor. For example, if the parameters ~(t) are assumed to vary in a simple random- 

walk manner, a modified version of the least squares algorithms, eqn. (17), are given 

by (YOUNG (1969) 25, YOUNG (1974)24), 

: + D z(t) 1+zT(t) P(t-1) ÷ D I -I ~(t~ ~<t1> [P(t_1) ] _ [ -~ [ ] ~t) • 
• [~'(t) ~(t_1~ _ y<t~ (a)] 

P(tl P~tl) [ P<t-1 ÷ D] ~(t~ [1÷F(t). _zTt( 1 LrP[P<t-1)~t-11 + D]÷ D] ~It)] ~-(b)j (24~ 

where D is a positive, definite, (usually) diagonal matrix which reflects the ~ expected 

rates of change in the parameters ~ (c.f. eqn. (19) ). 

Auxiliary variables and additional measurements: For higher values of k the use of 

rainfall measurements would be of benefit to the predictor. Note that from eqn. (20) 

there is good reason to believe that the ~ppala sewer system has a pure time delay T 

=3 (hrs).In a practical situation, therefore, an on-line predictor could cope with a 

delay of up to 3 hours in the receipt of rainfall measurements, although the time to 

the peak runoff response Tp(> T) is perhaps a more critical measure for determining 

the benefits of using these data. It is~ after all, the peak flows which cause the 

greatest upsetto the operational control of the network and treatment plant. 

Sewer network flow control: Sewer flow control is exercised largely by the install- 

ation of storage tanks in the network, although a small amount of storage is available 

in the sewers themselves (see e.g. PEW et al (1973)20). This large-scale control 

problem seems to be amenable to the hierarchlcal approach (e.g. LABADIE et al (1975) 

16). (Similar approaches have been applied to the analogous problem of POtable 

water supply network control, FALLSIDE and PERRY (1975) 9, FALLSIDE et al (1975)10). 

Wastewater treatment plant control: Currently there are many more problems than 

solutions in wastewater treatment plant control (e.g. 0LSSON et al (1973)18). How- 

ever, the prediction and control of the influent flow has wide-ranging implications 

not only for the treatment plant but also for the whole water quality system (YOUNG 



262 

and BECK (1974) 25 , BECK (1975)4): the essential point is that flow control alleviat- 

es gross overloading of the water quality system and, a% the same time~ it regulates 

the dynamic behaviour of many of the unit processes of wastewater treatment. A 

first study of flow equal%sat%on, i.e. the modulation of diurnal variations, shows 

that significant benefits might accrue, for example, in the operation of sedimentation 

processes (LaGREGA and KEENAN (1974)17). Of course, flow prediction is only a part 

of the problem of character%sing the plant input raw material; in addition~ it is 

necessary to describe the quality of the sewage flow. Recently, BERTHOUEX et al 

(1975) 5 have used similar time-series analysis techniques (BOX and JENKINS (1970) 6 ) 

for the modelling of plant input biochemical oxygen demand variations. 

6. CONCLUSIONS 

The major limitation in this study of the adaptive prediction of urban sewer 

flows has been the poor quality of the data. In any future study it can be expected 

that~ while pumping disturbances may not be eliminated completely, better data would 

be available for analysis. With a view to on-line implementation of the predictor 

it would,therefore, be important %o site the flow-measuring equipment at a carefully 

chosen location. 

0ne-step ahead forecasts of the plant influent flow are obtained from an adaptive 

predictor which closely approaches the satisfaction of the practical constraints on 

the system: namely, as little automated instrumentation as possible should be assumed. 

The salient feature of the black box model for the predictor is its simplicity and 

compactness when compared with other, largely deterministic, models based on the 

physical laws of the system behaviour. For it should be remembered that the currently 

existing technology of wastewater treatment favours the simple rather than the sophist- 

icated. 
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