DATA BASE USER LANGUAGES FOR THE NON-PROGRAMMER

Peter C. Lockemann
Fakultaet fuer Informatik, Universitaet Karlsruhe
D~75 Karlsruhe 1

Abstract

In light of the necessary investments, commercially available data
base systems usually offer comparatively general-purpose interfaces.
These are suitable only for the data base specialist. In order for a
data base system to attract non-programmer users, interfaces must be
provided that approximate the special user terminology and
conceptualizations. if, in particular, these users form a
heterogeneous group, a variety of interfaces will be required.
Questions of interest are then the extent to which user interfaces
should be standardized, the technigues which allow rapid
implementation of new more specialized interfaces, or the procedure
for selecting the most suitable interface for a given problem. Based
on the concept of hierarchy of abstract machines, the paper presents a
possible approach to the solution of these questions. Three examples
will be introduced to critically examine the concept and demonstrate
some of its merits and shortcomings.

184

1 Introduction

The success or failure of & data base system, no matter bhow
well-conceivea 1t may appear to the author’s mind, is ultimately
decided by the users the system is supposed to serve. This aspect 1s
often overlooked by system planners wio devote almost their entire
effort towards organizational problems such as analyzing the
intormational needs of an institution or organization, the current
status of information flow within the organization and the necessary
improvements to it. From the analysis a number of requirements are
derived such as the extent of information integration, time
characteristics, information system structure, adaptation of the
organizational structure, relinguishment of o©ld resources and
provision of new ones. All too often, much less attention is being
paid to the individuals who must use the system. They are simply
expected to appreciate the needs of the organization and tc adapt most
willingly to the new environment.

Human nature, however, is conservative. Human individuals will cling
to the sgame terminology and methodclogy and try to solve the same
problems unless and until one can make a most convincing point for
reorientation. In many cases data base systems are not even introduced
to solve new kinds of problems. Rather they are supposed to improve
the solution to existing and already well-understood problems, or at
least use these problems as a point of departure. OUnder these
circumstances there 1is no reason wiy users spould be burdened with
radical changes in style.

Unfortunately, for the manutacturer of a data base system this is just
one side of a coin. For him, the development and implementation of a
data base system represents a large investment which he can only
justify by <corresponding sales figures. UThis precludes him from
attending to each of a large variety of individual user needs but
compels him to offer general-purpose interfaces. On the other hand it
is these general-purpose interfaces that prove repugnant toc many a
potential user who has his own special terminology, conceptualizations
and application problems.

In order to resolve the dilemma, techniques must be developed that

permit the adaptation of a Gata base system to various user needs. In

particular, the solutions should address themselves to the following

guestions,

(i) How can user language interfaces be separated from the
operaticnal and management characteristics of the data base

system?

185

{(ii) Are there any techniques that allow, in a systematic way, for
the rapid implementation of a user language according to given
gspecitications?

{iii) To which extent 1is it economically feasible to construct and
stockpile "off-the-shelf" user languages?

{iv) Given a set of language specifications, under which conditions
can one build upon an already existing user language? Can one
define a relation on user languages that formalizes these
conditions and determines the amount of effort required?

To answer these guestions we shall define a hierarchical relationship
between user languages. The nature of the relationship will be
discussed in some detail. A number of examples will be introduced to
explicate the approach and to point out its merits as well as some of
its present shortcomings. The discussion is intended basically for
non-procedural interactive languages.

2 Hierarchies of user languages

2.1 Concepts

The hierarchy of language interfaces shall be defined as follows [Kr

75]:

- Each interface is defined in terms of a ("lower") interface, and may
itself serve as the basis for definition of a ("higher") interface.

- There 1is exactly one interface which cannot be defined in terms of
another interface and hence serves as the ultimate basis for all
other interfaces.

Such a hierarchy of interfaces may be graphically represented in the
form of & tree where each node corresponds to a particular interface.

figure 1

186

The hierarchy must be chosen such that it reflects & hierarchy of
users., Level § corresponds to the data base specialist, while level 3
might cater to a user completely untrained in computer affairs.

The previous guestions can now be restated with a little bit more

precision,

(i) Can =all fundamental operational and management functions be
solved underneath the basis on level §7?

{ii) What are the formal criteria that allow to construct a hierarchy
by defining new languages in terms of existing ones?

{iii) Up to which level in the tree should interfaces be standardized?

(iv) Suppose a given language specification is represented as a nocde.
Can a path to an existing node be constructed, and the length of
the path be "measured"? Can one determine the path with minimum
length? If the path is too long, should intermediate nodes be
introduced, and what would be their specifications?

At tnis point in time, "length"™ is no mcre than an intuitive notion
for which a formal measure does not exist. However, a rough outline of
tne definition of one node in terms of another one may often give some
insight into the amount of effort necessary and thus provide an
estimate of the length.

Language hierarchies have long been mentioned in connection with
programming languages, e.qg. Assembler -~ Low-level programming
languages {e.g. PL 2368 |[Wi 68), ESPOL [Bu 72]) -~ High-level
programming languages - Very high level languages (e.g., set oriented
languages [S8I 74]}). However, except £for macro languages these do
rarely conform to the strict definition given above (e.g. COBOL is not
defined in terms of a lower-level programming language), the reason
being that this would entail inefficient compilation. The same
argument does not hold for data base languages where language analysis
is but a minor part of guery processing [Kr 75].

2.2 Bxplications

The notion of hierarchy as introduced above is still vague and should
be made more precise. Below several concepts known from the literature
are introduced. Their usefulness as well zs some of their deficiencies
will be discussed in the remainder of the paper.

187

(1) Characteristics of the root.

There exist several schools that claim to provide the just and only
basis for data base concepts. Before one may pass any judgment on
these claims one ought to agree on the criteria that a basis would
have to meet. It is commonly accepted that a data base is to be
considered as the model of a certain reality. Hence a basis should be
such that it provides concepts so primitive that any reality, be it
physical or conceptual, could be adequately covered by it. Some
authors [Ab 74, Su 74] have attempted to enumerate certain primitives:
elementary objects, properties, relations, orderings, categories (or
types), names, as well as sets of operators for creating, accessing,
manipulating and deleting these. In addition, one might consider
organizational gquestions such as parallelism and sharing of models by
various users.

(2) Dependencies between successive nodes.

Since it is extremely general, the root is of little practical value
to the averade user. Users are invariably concerned not with all
possible realities but with <certain classes of realities, and wish
their models to reflect the corresponding limitations. In other words,
the modeling tools on level 1 will differ from those on level ¢ by
defining certain restrictions on the way the primitives may interact.
The same obvicusly is true for level 2 vis-a-vis level 1, etc. These
restrictions relate mainly to the manner in which objects may be
composed 1into new objects, relations into new relations, and/or
operations into new operations.

{3) Characterization of a node as an abstract machine.

Basically, the restrictions defined on the permissible compositions
determine the dependencies between successive nodes. To make this a
little bit more precise, the concept of abstract machine is
introduced. An abstract machine 1is a set of object types, a set of
operators for manipulating objects and defined on object types,
together with a control mechanism that allows to construct and execute
sequences of operations. Each node is then described in terms of an
abstract machine.

(4) Dependencies between abstract machines.

By agsigning an abstract machine to each node, the following
properties must hold between two successive nodes Aj and Ajyyq [Go 731:

188

a) The resources and the functions provided by A; form the complete
basis on which to build Aj.3. There is no way to use properties of
Aj_1 in building Aj4+}. Hence every Aj is a complete interface
description in the hierarchy.

b} Resources of Aj; used in defining new resources of Aj;] can no
longer be present in Aj4) (i.e. they may become resources of Aj4)
only 1f they are not part of a definition for another resource of

Aj+1) .

Keeping these rules in mind I shall attempt, as a matter of
illustration, a tentative classification of some results discussed in
the literature [Ab 74, Co 78, We 74, Kr 75, Wo 68, Wo 73, Gr 69, Col
68] .

Alr~
SQUARE SEQUEL line Lug?r Pharmacy
guide gealogy
restricted restricted estricted
ALPHA ! Inatural natural natural
nglish English German

Relational redicate semantic set
model logic] primitives | theory

figure 2

2.3 Consequences

The concepts and rules introduced above impose @& certain discipline on
the design of wuser languages, on their application, and on the
transition between them. Some of the consequences are outlined below.

{1) If we strictlvy keep to the rules above, a new interface must be
defined in terms of its immediate predecessor and not any
arbitrarily chosen predecessor, i.e. immediate predecessors must
not be bypassed ("stepwise abstraction"). On the other hand, given
certain specifications and a suitable node in a tree, intermediate
nodes that hopefully are of general usefulness should be
introduced on the intervening path whenever the path proves too
"long® ("stepwise refinement™).

189

(2) Given & path to the root, a user should be put into position - at
least in principle - to formulate his requests in any of the
languages that correspond to the nodes on the path. As a matter of
fact, we found this an essential prerequisite for efficient system
testing since system activities may be observed and controlled to
any desired level of detail [Kr 75].

(3) Queries are stated on some level and must successively be
translated between levels wuntil the root has been reached.
Definition (of &an abstract machine) and translation reciprocate
each other: The definition of the next higher level from a given
one determines the rules that govern the translation of statements
on the higher level to those on the lower level.

(4) Results are produced on the lowest level but must be presented to
the wuser on a higher level. As & consequence, following the
evaluation of a guery a second ("reverse®) translation must be
invoked in order to propagate the results to higher levels.

3 Set theoretic basis

3.1 #otivation

The rules of ch.2 have been applied to the construction cf the KAIFAS
guestion-answering system and have proven highly useful there. Hence
this system will be chosen as the first example to demonstrate the
practicability of the rules. For a more detailed description of the
system the reader is referred to the literature [Kr 75].

Restrictions with regard to the general basis are motivated by the
realities one wishes to consider. In the case of EKAIFAS we presume
that relations are exclusively of the property type (sets) or are
binary relations and, more important, that objects are selected
exclusively on the basis of given properties or relations which tihey
meet o©r undergo, perhaps in logical combination., Indeed one can show
that the set theoretic approach may be viewed as a generalization of
the inverted file technique [Kr 75}.

190

3.2 Set theoretic machine

OUbject types

I Elementary objects {individuals), e.g. Hans Maier, Bonn,
Aspirin

M Bets, e.g. city, medication
List of individuals.

R Relations, e.g. father, contraindication
List of cordered pairs of individuals.

Z Numbers

D Measures, €.g. 2 years, 4 tablets/day
Ordered pairs {(number, unit expression).

F Measure functions, e.g. age, dosage
Lists of ordered n-~tuples whose last components are
measures.

B Truth values

Operators

Un retrieval the machine is supposed to function in the following way.
Set, relation, and function names refer to objects in permanent
storage. In order to manipulate the objects they must be transferred
into unnamed registers of which an unlimiteé number is thought to
exist. Hence all operations except for the load operations are
register-to-register cperations.

Load operators

Mw, ev, en, ef Load a set, a relation (ev, en}, and a measure
function, respectively.

Set operators

MU: Mxi->M Union

Mna: MxM->M Intersection

Km: Mxk->H Relative complement {x|ixeMjAxéMy}
Kz: bim> 4 Cardinality

Binary relation ocoperators

Ko: R-3K Converse relation

Rb: RxM~>R Restriction {(x,y)|{(x,y)eRaxen}

Rp: RxR->R Froduct {(x,y)l} z:(x,z)eRjA(z,y}eRy}
Ryu: RxR~»R Union

Reduction of binary relations
vo: R=->H pomain {x}3y:(x,v)ek}

191

Na: R-»¥ Range {x]3v:(v.x)eR}

vg: RxI~->M Individual domain {x](x,I)eR}

Ng: RXI~>M Individual range {x|(I,x)eR}

vgl: RxM~>M Restricted domain {x](x,v)eRayveM}

Reduction of measure functions
Fw: FxI->D (n=2)

Logical operators
e: IxM~>B Test on set membership

[+H] MxM=->B Test on set inclusion

In addition, the standard logical operators are available as well as
the standard arithmetic and comparison operators for numbers and
measures.

Control mechanism

Sequencing of operations

"Programs" for the set theoretic machine are expressed in a functional
notation. Operations are performed from left to right and, for each
nested argument, from inside out.

Example: A question such as "Are cities birthplaces of engineers?"
would take the following form in the set theoretic machine

c{Mw(ticity), VgU(en{Rpirthplace), Mw(Mengineer)))

Loops

Loops are introduced by the use of pounded quantifiers whicih have
three arguments:

1) An expression resulting in a set of objects (range).

2) An expression for the condition resulting in a truth value
{scope); it may be regarded as the loop body.

3) The name of a bound variable; each of its substitutions defines an
invocation of the loop.

Important quantifiers are
AL: MxB -»B all, every
El: MxB -»B some

DB: MxB ->»M which

192

LB: MixB ->%¢ how many
with tne Jeit-hand # tne bounding set and the left-hand B the
conuition.

Examples:
DB (x.Mw(ficity), e(x,VgUlen{Kpirtnplace) MW (Mengineer))))
with the meaning of "which cities are birtnplaces ot engineers”.

DB (X1,
MW (Mpanufl »
ZB (X3,
Vg(en(Rper)yxl):
DB({x3,
MW (Mailment)
e(x2, Vg(en(Rpedic),x3)))))

with the meaning o¢f “"How many products of which manufacturers are
medications for which ailments?”

Set membership of an arbitrary kind is expressed by including, in the
representation of a set, arbitrary set expressions. Example ({in
German) :

Mrezeptpflichtig
Ispasmocibalgin
Vg (en(Rperivat)r IOxazolidin)
Imorphin
bw (Mopiate)
Hw (Mgypnotika)
IMethadon
Vg{en(Rperivat), ISuccinimid)
Vg (en{Rheilmittel) » Iagitiertheit)

® ©

where C) indicates all derivates of Oxazolidin to be prescription
drugs, C)all opiates, etc.

This concept is extended to relations and measure functions. Two of

its advantages are:

~ Since all objects are evaluated on request only, changes to the datea
base may be made locally without regard to any interrelationships
that may exist.

193

- Expressions may be stored without regard for the existence of any
individuals for it. Hence one could construct a data base consisting
exclusively of higher-order relationships.

Une. consequence, however, is that the control mechanism must itself be
defined recursively since it may be invoked on any load operation.

3.3 Natural language

Few users will feel at ease with the highly stylized language
introduced in sec. 3.2. One possible step of abstraction, therefore,
is the definition of a new abstract machine accepting natural language
input. By necessity this is a highly restricted form of natural
language since its semantics, and hence its syntactic forms, can be no
more than what may wultimately be reduced to a set theoretic
interpretation. MHoreover, it must be considered more restrictive than
the set theoretic interface because while one may nest set theoretic
expressions to an arbitrary depth, those beyond a certain depth simply
cannot be stated in natural language in any comprehensible fashion.

To speak of objects, operators and control mechanism in connection
with natural language turns out to be highly unnatural, or rather
impossible. It is possible, however, to define an abstract machine on
that level in terms of the syntax of the interface which in turn may
still be based on object types. This is in striking similarity to Very
High Level languages vis~a-vis High Level programming languages: Very
High Level languages are loosely described as languages used to
specify what is to be done, rather than how it is to be done [SI 74].

In accordance with sec.2.2, the object types must relate to the ones
of the set theoretic machine. In this case the relationship is
straightforward as indicated by the following list:

N proper names for the objects of the universe.

A attributes (properties of an object of the universe).

R references from one object of the universe to a second one (e.g.
Thebacon is referred to by Morphium as its derivate).

M references to measures.

L]

numbers or measures.

8 sentences. These are of two kinds: sentences to be answered by yes
or no, and sentences to be answered by counting or enumerating
proper names.

194

Some examples from RKAIFAS in which German was cicsen as natural
language interface.

Ist Psyguil rezeptpflichtig?
N A
Betraegt die Tagesdosis von Chinidin 2 Gramm?
M N b
Welche Lerivate von Norphium sina rezeptpilichtig?

K & A

Tne syntax of toe interifsce 1s described by & grasunar witi the
following general properties:

(1) Syntactical variables must relate to the object types, hence they
cannot Dbe based on the traditional grammatical categories sucn as
noun, noun phrase, adjective, etc. but on categories that are
essentially semantical in nature. The variables are IN(names), #E
{attributes), Ri(references), #i(references to measures), 44
{numbers), SA (sentences), QU (quantifiers).

{2} On the other hand, the traditional categories aust be accounted
for in some way, e.g. in order to reject incorrect inflections. As
a conseguence, each syntactical variable is indexed oy a number of
features. Examples:

MAS masculine) NOM neminative)

FEM feminine)gender GEN genitive } case

NEU neuter) DAT cative H

STR strong declension ACC accusative)

ATT attribute apposition ALJ wora class{aaject./noun)

#UM number (singular/plural)

(3y wven for restricted¢ nastural language, grammars are known to be
extremely complex because of the multitude of syntactic aspects to
be observed. 7The application of features simplifies the grammar
insofar as it can be arranged in two levels,

a) a context-free grammar in terms of the variables
from (1};

b) & feature program to be associated with each production
on level a).

Example: Typical productions of level a) are

ME ~-> ME ME ME -> QU Mk
Mf -> RE 54 -» ME sind Me?
“E -> RE M8 5A -» Bina #b NE?

ME ~>» RE 1IN

195

The production

HMEy =-> MEp MEj

refers to the following feature program (syntactic variables are
nunbered for referencej.

Part 1: Test of right-hand features for acceptance
(reduction takes place only if the condition is true).
test (MEp,+ADJ+ATT) A test (HE3, -ADJ-ATT)
A meg (MAS,FEM,NEU,MEZ,NE3) A meqg (NOM,GEN,DAT,ACC,HE;,HEg)
Aequ (HUM,HEq,ME3)
Part 2: Assignment of features to the syntactic variable on the
left-hand side,
-ADJ-ATT, cop (NUM,ME,),
and (MAS,FEM,NEU,MEj,ME3), and (NOM,GEN,DAT,ACC,HEp,ME3)

Feature operators are underlined. For example, test is true when
the features of the first argument meet the condition specified by
the second argument., meg is true whenever at least one of the
listed features agree in both syntactic variables specified. cop
copies the features of the syntactic variable specified.

3.4 Pharmacology

The natural language level 1is supposed to serve a variety of
application areas. We postulate that these application areas are all
served by the same natural Ilanguage grammar since each must be
explainable in terms of set theory. Consequently, these areas differ
only in the vocabulary they assign to the cobject types. Level 3 is
reached from level Z simply by introducing names, and relating them to
the cbject types. EBelow a few typical examples of assignment are given
in the area of pharmacology.

proper names| medications, substances, companies, ailments,
€.9. Thebacon, Morphium, CIBA, Angina pectoris

attributes properties
e.g. Tablette, rezeptpflichtig

references €.g. Indikation and Kontraindikation (from ailment to
medication), Hersteller (from company to medication)

references e.g. Preis, Dosis, Haltbarkeit

to measures

numbers or e.g. 5 D#, 2 Tabletten/Tag, 4 wWochen

meastures

sentences e.g. Welche Preise haben Praeparate, die bel Angina

Pectoris indiziert sind und deren Kontraindikation nicit
Glaukom ist?

196

3.5 Trenslations

The path between adjacent nodes 1s traversed by translation (sec.2.3,
{(3) and (4)). We shall briefly illustrate this for the passage between
natural and set 1language. In this case translation consists of the
three traditional phases: lexical analysis, syntactic analysis anc
code generation., The sentence

"Welche Firmen sind Hersteller tablettenfoermiger Medikamente?"

shall serve as an example.

Lexical analysis includes the mapping from the pharmaccolegical t¢ the
natural language level, and for each word encountered, with a few
exceptions, proceeds in three steps:

{1} reduction of a word to its word stem;

{ii) dictionary lookup resulting in a syntactical varlable, values of
some of its features, and e morphemic class, as well as the set
level name for the word.

(iii) assignment of further features on the basis of the morphemic
class and the actual morphemic ending.

The lexical analysis of the entire sentence results in

word Isyn. | features [int.name

fvar | |

welche I QU [+MASHFEM+NEU -NUM+NUM+ACC | [5323

Firmen | ME | FEM-RUM+NOM+GEN+DAT+ACC | M26

sind |- - | -

flersteller| RE | +MAS+NUM+NOM+DAT+ACC | R23
] RE | +HMAS-NUM+RNOM+GEN+ACC]
tabletten~| ME | +HAS+NUMANOM+ATT+ETR+ADT]

foermiger | ME |4 FEMANUM+GER+DAT+ATTHSTR+ADT | MG
| ME |+MAS+FEM+NEU-RUM+GEN+ATT+8TR+ADI |

Medika~ | ME | +NEU-NUM+NOM+GEN+ACC | mz2
mente | i |

? = 1 - -

Note tne syntactic ambiguities due to the different feature
combinations for ‘Hersteller’ and ‘tablettenfoermiger . Mote also tnat
lexical analysis by itself cannot always determine the case (as for
‘Firmen , all four cases are still possible}, or the gender (as for
“tablettentoermiger ") .

197

Syntactic analysis iIncludes three phases: reduction (level a)),
feature analysis (level b)), final code manipulation. For each
production applied, reduction and feature analysis follow each other
immediately. Hence a production is applied in three steps:

(i) Matching of input string and right-nand side.

(ii) Test of right~hand features for acceptance.

(iii) If true, reduction to left-hand side and assignment of features.

For example, the production and feature program from sec.3.3 result in
the following when applied teo the phrase “tablettenfoermiger
Medikamente":

ME2 (’tablettenfoermig’):

1) +MAS+NUM+NOHM+ATTHAD] (rejected on meq)
2) +PEM+NUMAGEN+DAT+ATT+ADI {rejected on meq)
3} +MAS+FEM+NEU-NUM+GEN+ATT+ADS

ME3 (“Medikamente”’)

1) +REU-NUM+ANOM+GEN+ACC

MEl (resuit}:

1) +NEU+GEN-NUM~-ADJ-ATT

{note the disambiguation)

The syntactic analysis of the entire sentence is illustrated in figure
3. Because of the possibility of ambiguities the result is a parsing
graph rather than a tree (in this case the ambiguity of the sentence
is due to ‘Hersteller’). The numbers adjacent to the syntactic
variables refer to an associated list of features.

Final code manipulation is left to the final stages of code
generation, but must be considered part cf the syntactic analysis
because without it context-sensitive or transformatiocnal rules could
not be avoided.

Whenever a production is applied, a semantic action assoclated with it
generates a functional set expression. Its arguments point to other
such expressions unless they are individuals.
Example:

(tablettenfoermigyer Medikamente)

AN
Mw (M9) Mw{(M22)
(tablettenfoermig) (Medikament)

198

¢ 2uanbrTa

~=IN3Is"
NIHYNIQIHAINI LI TEYL ANITIILSH AN aANILS NIWNL4 IHI 38
‘e =1 € ¢ 34 £E1°IS *1°30 stene
» 8 - 3¥ 9t°ne
S 6 “3IH L1 3H
| m ;
l 8% 73U
“«.un‘
2V IH
81°y5

61 °¥5

199

HELCKE FIRMEN SIND HERSTELLER TABLSTTENFOERMIGER MEDIKAMENTE ?

02300047 15000000 DB {
10000001 01100025 xi AR
15000000 140000¢C5 { M=T (5)
01100033 15000000 MW (
04000032 16000000 M26)
16000000 01200001) £
15000000 100006001 { X1
01100025 15000000 AA (
14100026 01100045 M=T (22) MV»
15000000 01200040 (VG

15000000 01100030 4
15000000 05000027 {
16000000 01200044 3
15000000 01100033 {
15000000 04000033 {
16000000 £1100033) Mu
15000000 04000026 (
16000000 16000000]
16000000 166006000)
16000000 16000000)
E

26000000 00000000 WIRBE TS s e

Figure 4

200

On completion of the parse, the pointer structure corresponding to the
syntactic variable 5A is transformed into a linear string. This string
must be submitted to a further string manipulation for two reasons.

{1) Completion cof the syntactic analysis.
Guantifiers do not yet appear in front of the expression. #oving
them there 1is subject to a number of rules that govern their
sequence.

(2) Uptimization.
In many cases qguantifiers {whose evaluation may be time-consuming)
can be replaced by standard set or relation operators, e.g. LB by

Mn.

The code resulting from translation of tne sentence above 1s spown in
the printout in figure 4.

Reyerse translation

S5et level names may immediately be translated into the pharmaceutical
level simply by again invoking the dictionary. However, under certain
conditions (empty sets) set expressions may themselves be part of a
result. This reguires a translation into both level Z and level 3.
Examples:

Vg(R1l2, 1I14) -> Heilmittel fuer Psychosen

Mw (M9) ~> tablettenfeermig

I2 -> Verophen

4 Semantic primitives as a basis

4.1 Motivation

in order to stuay tne adequacy of the rules of cn.Z ana to determine
whether they must be further refined or augmented it is nelpful, short
of constructing systems, to examine existing systems that are arrangeaq
in the form of layers. Une of the oldest systems of this kind (though
it was not conceived that way) is Woods ™ question-answering machine
[Wwo 68, Wo 73]. Like the set theoretic apprcach, Woods universe is
composed o©of objects and interrelationships between them. Unlike the
previous approach, these are not collected into mathematical sets and
relations but treated as propositions to which a procedural approach
is taken. This 1is probably due to an orientation towards explaining
the semantics of natural language rather than manipulating concrete
data bases.

201

4.2 Semantic primitives

Gbject_types

G

R

gD

Elementary objects, e.g. Bosteon, AA-57, DC-9, 8:08 a.m.

n-ary functions (n>l}), e.g. departure time (cof flight x; for place
%5). These need not be functions in the strict sense. If a
function may vyield more than one value (e.g. cofficer of & ship)
it is defineé as a successor function such that
{start) cfficer{x,0) = a3
officer(x,ay) = ay

L

{ena) officer(x,apn) = END

n-ary relation (predicate) (n3l), e.g. jet (flight xy is & jet),
arrive (flight xj goes to place x3).

Designators are either names of elementary objects or of the form
FO{xj,...,%,) where xj 1is a designator; e.g., departure time

(AA-~57, Boston) for 8:6¢ a.m.

Propositions RP(x3,...,xp) where xi is a designateor; e.g. jet
(AA-57), place (Boston), arrive (AA-57, Chicago).

Truth values

Example: A set of semantic primitives for the flight schedules table
(from [Wo 681):

Primitive Predicates

CONNECT (X1, X2, X3) Flight X1 goes from place XZ to place X3

DEPART (X1, X2) Flight X1 leaves place X2

ARRIVE (X1, X2) Flight X1 goes to place X2

DAY (X1, X2, X3) Flight X1 leaves place XZ on day X3
IN (X1, X2) Airport X1 is in city X2

SERVCLASS (X1, X2j Flight X1 has service of class X2
MEALSERV (X1,X2) Flight X1 has type X2 meal service
JET (%1) Flight X1 is a jet

DAY (X1) X1 is a day of the week (e.g.Monday)
TIME (X1) X1l is a time (e.g. 4:68 p.m.)
FLIGHT (X1) X1 is a flight (e.g. AA-57)

AIRLINE (X1) X1 is an airline (e.g.American)

AIRPORT (X1) X1 is an airport (e.g. JFK)

202

CITY (X1} X1 is a city (e.g. Boston)

PLACE ({X1) X1 is an airport or a city

PLANE (X1) X1 is a type of plane (e.g. DC-3)

CLASS (X1} X1 is & class of service {e.g. first-class)

ARD (81, S2) 51 and 52

OR (81, 82) S1 or 82 (where 81 and 82 are propositiocns)
NOT (81) 51 is false

IFTHEN (51, 82) if 81 then §2Z

Primitive Functions

DYIME (X1, X2) the departure time of flight X1 trom place X2

ATIME (X1, X2) the arrival time of flight X1 in place X2

NUMSTOUPS (X1,X2,X3) the number of stops of flignt X1 between place
X2 and place X3

OWNER {X1) the airline which operates flight Xl

EQUIP (X1} the type of plane of flight X1

FARE (X1,X2,X3,X4) the cost of an X3 type ticket from place X1 to

place X2 with service of class X4 (e.g. the cost
of a one-way ticket from Boston to Chicago witn
first-class service)

To every fupnction and relation there exists & programmes subroutine
{procedure) which uetermines a value of & function or the truth of a
proposition.

Examples (proceaure names are capitalized):

JET (AA~57) =~>» truye

ARRIVE (AA-~57,Chicagc) ~» true

ARRIVE (AA~57, Bboston) -» talse

DIIME (AA-57, poston) -> G:00 a.m,

whereas the abstract machine of ci.3 was based on object types put
specific operators, he abstract machine in this case is defined in
terms of both object and operator types. Specific instances must be
supplied by the wuser for both of them. However, with the aavent of
microprogramming, computer scilentists should have little problems in
adjusting to this kind of notion.

Control mechanism

As in tne 9preceding example, programs are expressed in functional
notation, e.g.

203

TEST (CONNECT (AA-57, BOSTON, CHICAGU))

would stand for “"Does AA~57 go from Boston to Chicago?". Likewise,
queries of any appreciable degree of complexity are based on the
notion of bounded quantifier as a representative for loops.

The format for a quantified expression is

FOR <quant> <wvar>/<class>:<pvar>; <gvar>

where

<guant> a type of quantifier (EACH,EVERY,SOME,THE, nMANY).

<var> a bound variable.

<class> class of objects over which quantification is to range.
The specification is performed by special enumeration
functions, e.g. BEQ,DATALINE,NUMBER,AVERAGE. Besides
enumeration these functions may perform searches or
computations.

<pvar> restriction on the range may both be quantified

<gvar> scope } expressions.

Unlike KAIFAS where the result of the evaluation of an expression is

automatically retranslated and displayed, this must be explicitly

requested by commands such as TEST (test truth of a proposition),

PRINTOUT (print the representation for a designator).

Examples:

(FOR EVERY X1 / (BEQ TYPECS):T; (PRINTCGUT (X1})

prints the sample numbers for all the lunar samples which are of
type C rocks, i.e. breccias (T stands for “true"j.

(TEST (FOR 30 MANY X1 / (BEQ FLIGHT):JET(X1); DEPART (X%1,BOSTON}))
“Do 3% jet flights leave Boston?®

4.3 Natpral language

As a general rule, the introductory remarks to sec.3.3 apply here as
well: The level of the "English-like" query language provided on level
2 is influenced by the range of expressions possible on the previously
discussed level 1. In contrast to KAIFAS, inspection of the data base
is not limited toc the evaluation of level 1 expressions but may take
place during translation from level 2 into level 1, too. The semantic
actions associated with a rule of grammar impose further restrictions,
e.g. they make sure that the first argument of CONKECT is indeed an
instance of the class FLIGHT.

204

This 1s 1illustrated by the following example. In a first step a
syntactic analysis is performed and a phrase marker is derived, e.g.

S,
&;/////’\\\\\\\VP
Ng J”’“’”"w1¥\~‘-~“‘“‘jw
M'-SY f!y PREP \i«l? PFE/P' NP
frlm N!PR 110 NLR
Boston Chi!x:qo

Since verbs in fsnglish correspond rougnly to precgicates, ana noun
phrases are used to denote the arguments of the predicate, the verb in
the phrase marker will be the primary factor in determining the
predaicate. In the example, the predicate will be CONNECT. For this it
is necessary that the subject be a flight and that there be
prepositional phrases whose objets are places representing origin
(from) and destination (tc). The grammatical relations among elements
of a phrase marker are defined by partial tree structures, e.g.

oh s\\ g2 g 63 g
| |
NP VP VP VP
| | VRN |
(1) \{ \{ NP PP
|
{2) (1) f2) PREP NP
subject-verk verb-gbject (1} {2}

preposition- object
modifying o VP

Among the three structures, Gl and 63 both match subtiees 1n the
phrase marker. which of these is acceptable depends on the additional
rules, e.g.
(G1:FLIGHT (1) anc{2) = fly).
((1) and {2) are positional variables in the partial tree structure).
This rule obviously is satisfied. More complex rules are possible; for
example, the topmost S-node of the phrase marker is matched by the
rule
1~-(G1l:FLIGHY ((1)) and (2) = fly) and
2= {33:(1) = frow and PLACE ((2))) and
3-{G3: (1) = to and PLACE((2)))

== CONNECT(1~1,2~2,3-2)

205

4.4 Airline guide

The system under discussion was first applied to a flignt scanecules
table. To illustrate the application interface, a few examples oi
gueries shall be given below (from [Wo 681).

Does American Airlines have a flight which goes from soston to
Chicago?

what is the departure time from Boston of every American Airlines
flight that goes from Boston to Chicago?

Wwhat American Airlines flights arrive in Chicago from Boston before
1:89 pom.?

How many airlines have more than 3 flights that go from Boston to
Chicago?

4.5 Lunar geclogy

More recently the system has Dbeen applied tc access, compare and
evaluate the chemical analysis data on lunar rock and soil compcsition
that was accumulating as a result of the Apcllo missions [wko 73).
Examples:

What is the average concentration of aluminum in high alkali rocks?
Give me all analyses of S16@46!

How many breccias contain olivine?

Do any samples have greater than 13 percent aluminum?

what 18 the average model concentration of ilmenite in type A rocks?

4.6 Critique

(1) The possibility of inspecting the data base both on level 1 and
during translation from level 2 to level 1 intrcduces a note of
cenfusion. Since, according to sec.2.3, translation is directly
related to definition, the translation process must make no
reference to the data base. The lack of separation will have
practical repercussions: Either certain changes on level 1 will
necessitate changes in the rules of grammar, or parts of the
contrcl mechanism for level 1 must be duplicated for translation
purposes,

{(2) In Woous' system the subroutines do not appear to verity that
their arguments are of the proper kind (e.g. ARRIVE does not check
whether AA-57 1is inceed a flight or Chicagoe a place), since this

206

is done on translation. It one left this (correctly} to level 1
then primitive predicates and functicns are related tc each other.
These interdependencies may be expressed by a set of axioms, or in
the parlance of data structures by types or categories
corresponding to those unary predicates tnat restrict ranges of
arguments. As a conseguence, the concepts of abstract machine and
relationships between abstract macnines must account not only ior
primitive terms oput for axioms as well. (Note tnat the KAIrAS
machine circumvents this problem only by prescribing all
operators.)

(3) Uperators (subroutines) anu objects are interdependent as well,
albeit in a2 one~to-one fasnlon. In order to make sure that the
requirements governing the relationship between abstract machines
are met it suffices to treat a predicate or function and its
corresponding procedure as two instances of the same resource.

5 Relational model

5.1 #Motivation

One of the most widely aiscussed approaches to cata bases is Couwt’s
relational mocel [Co 78, ¢ 72, we 74)] whican lends itself particularly
well to an interpretation by abstract machines. (cau supposes his
users to explain thneir universe in terms of table-like structures.
Intuitively speaking, a table consists of a number of entries that are
formatted in exactly the same way: & sequence of fielus orcerec on
certain headings or field names or, &s they are callea nere,
attributes. More formally, & entry is an oruered n-tuple and,
consequently, a table is a relation that may be nameu. Entries are not
named but are uniquely identified by a key, i.e. the contents cif
particular fields.

A certain familiarity with the relational medel is assumed on the

reader ‘s part. Only its interpretation by a machine will be examined
here.

5.2 Relaticnal algebra

Ubjects

A attributes naming a set of objects (domain)
RO relations

207

E® (B1+83,.../Ap) € A} X A X ... X By
Example: SUPPLIER (SUPPLIERNR, NAME, LOC), REY=SUPPLIERNR

SUPPLIER: SUPPLIERNR NAME LOC
1 Jonesg New York
2 Smith Chicago
3 Connors Boston
4 thompson New York

Rey attributes are indicatea; keys may be composite. Hierarcnical
ana cther relationships are usually eliminatea oy normalization.
tience all relations can be assumea to be normalizea.

T € RP n-tuple.
Operators [wWe 74}

Standard relation operators

RY, ® K% -» RMY YN, Direct Product:
{ (rn1™ph2) [P0y € RMATR2 € RN2)
(~ Concatenation operator)

gy R -3 RP Union attributes
R RN -» RR Intersection) must be
RR - gD - RN Diftference “compatible®

Special operators

R [A] -> RE Projection: relation RP restricteua to the
attrivutes A={Aj,...,Aq}.

KDL [AGB]RP2~» RPLIH2J0in:
{ (T ATy) {101 € RN A TH2 € RP2 A TRt [A]8TD2 [B]}
where A,p sets of attributes, ¢ one of {=,#,<,<,>,2}.
(slight modifications, e.g. natural join, are possible).

RO [Aa8B] -3» RN Restricticon: {IR|TNe RN A TN{A]6TN[E]}
where A,5,0 as above.

RN [A:BIRP ->RE pivision: [Co 71], p.74.

208

Since all operators have been defined as infix operators, "programs®
are formed by linear sequences cof operators and operands rather than
by nested expressions. rfor an example see sec. 5.3.

5.3 Relational calculus (ALPdA)}

In place of relation algecra <Coua proposes an applieu preuicate
calculus {relational <c¢alculus), ana proceeds to show tnat any
expression in tne relational calculus (alpha-expression) may be
recduced to an equivalent relation algebraic expression,

Alphabet tor the calculus:

Individual constants, ayr 82+ 835 ...
Index constants, 1, 27 3¢ 44 covnnnn
{attributes are indexeu per relation insteau of named)
Tuple variables, £31s L2r E3seecens
Predicate constants, monadic, Pys Pos P3seees;
dyadic, =,#,<,£,>,>
Logical symbols, 3 Viarven

Delimiters.

Simple alpha-expressions nave the form
(ty1, L2y sene, Ey) ¢ W
where - w a well-formeu formula,
~ tj distinct terms consisting of an indexea or
non—incexeu tuple variable,
- tne set of tuple variables occurring in ty, .., tg
ig precisely the set of tree varlables in w. -

Lxample: Alpna-expression for “gina the name and location of all
suppliers each of wnom supgplies all projects™:
(ryf{2}, £o(31):

ey aVEoro I Parg (e (1l=r3{1]) A (£3(3]1=r511]))

After reduction to relation algebrea:

SI=R1
52 = Rg
53=R3
S =51®s2® 583

Ty = 5[1=6]1N 5(8=4]
Ty = 13 [1,2,3,4,5])
Ty = T [(4,5)3(1,2)18)

#

]

209

T o= T9(2,3]

ALPrnA 1is a language for alpha expressions tonat is sligntly wmore
appealing tc the user than the predicate form shown above. ine example
may be reformulatea in ALPHA as
KANGE SUPPLIER L
g‘éljgg PROJECT »
RANGE HUPPLY K
Get W (L.NAME, L.LOC):
(VYP) (IK) ({L.SUPPLIERNA=K.SUPPLIERNK) A (K.PRUJHK=P.PrRUINK))
or, eguivalently (order of guantifiers must be maintained!),
RANGE SUPPLIER L
RANGE PRUJECT P ALL
RANGE SUPPLY K SUME
ggg W {L.NAME, L.LOC):
{L.SUPPLIERNRE = K.SUPPLIERNK) A (K.PRCJNR = P.PROJNK)

5.4 Higher levels

ror reasons similar to the ones in chs. 3 anu 4 languages have been
devised that do not have to rely on a user’s formal training. une
language of this kind is SQUARE [bo 74] which nas peen shown tc ope
recucible to the relational calculus. However, the view of relations
offered by SQUARE is different from that offered oy ALPHA:

(i) Scan a column or columns of a table looking for a value or a set
of values (as opposed to inspecting one row atter another).

(ii)For each such value found examine tne corresponcing row anc
elements of given cclumns in this row.

SQUARE statements are of a form such as ("uisjunctive mapping”)

sRa (S)

(read: "find B of R where A is 5") that defines a mapping such that R
is @ relation, A and B are sets of attributes (domain and range,
respectively), S 1s an argusent that may itself be an expression.

Other forms, e.g. for projection, conjunctive and n-ary mappings, have
a similar appearance.

Example: nAREEME pgpy(T0Y7)
stanas for "Finu tne names of employees in the toy aepartment".

210

more recently attempts nave been reportec tnat allow a user to engage
a relational data base system In a wialog founcea on natural Englisn
{Co 74}. The apprcacn aifrers drastically from the ones uiscussec in
chs.3 and 4 in that a truly two-way communication is envisioned.

5.5 Comment

It has been shown tnat botn ALPHA and SQUARE are equivalent to the
relational algebra, i.e. any guery expressible in relation algebra is
expressible in ALPHA and in SQUARE, and vice versa. hence ALPu& and
SQUAKRE are themselves eguivalent. Equivalence is a symmetric relation.
The condition on the succession ¢f abstract machines does not preclude
equivalence, the definition of the hierarchy by restriction however
does, From the point of user sopnistication a hierarchy could still be
given as relational algebra -~ ALPHA - SQUARE (in the uirection of
increasing level). “nis incicates that further refinement on the
notion of hierarcny 1s necessary.

6 Conclusions

There are some striking similarities between the examples of cns.3,4

anag 53

- In each the lowest level nas peen well formalizeu.

- All rely on quantification as &a means for builoing complex
exXpressions.

- All tenda towards natural language on their higher levels.

- All three systems have been implemented and found some application.

On the otner hand, only one of them (ch.5) so far attemptea to provide
a less formal but still stylized language on an intermediate level.
Experiences indicate that, at least in some well~defined situations,
tnis may be necessary with the RAIFAS system (cn.3) as well.

wnile a few examples &o not constitute proof, at tnhne very least they
ao suggest that nierarcnies ot wuser Jlanguages coula meet the
objectives mentionea in the introduction. Of course, the relationshbip
between successive levels will have Lo be maue much more precise, as
nas been ilnuicatec belore. Furthermore, nigher levels imply a numoer
of successive translations, anc techniques must be explored to measure
and perhaps raise the eiftficiency of nigher levels. rinally, the paper
did not attend to the critical guestion wnat form the root snould
take; this appears to be a largely unsolved problem.

211

Acknowledgement., The autnor 1is grateful to G.Goos for carefully
reading the manuscript and making helpful suggestions.

References
[Ab 74] J.R.Abrial, Data Semantics, in [Kl1 74}, 1-59
[Bo 74] R.¥.boyce, D.D.Chamberlin, W.F.King, M.M.Hammer, Specifying

Queries a$ Relational Expressions, in [Kl1 74], 169%-176

[Bu 721 Burroughs Corp., B6788/7796 Executive System Programming
Language (ESPOL), Information Manual, 1972

[Co 78] E.F.Codd, A Relational Model for Large Shared Data Banks,
Comm.ACw 13(197¢), No.6, 377-387

[Co 721} E.F.Coaq, Relational Completeness of bata pase
Sublanguages, in: K.Rustin (ed), Data Base Systems, Courant
Computer Science Symp., Prentice~Hall, Inc. 1972, 65-98

[Co 74} £.F.Coaa, Seven Steps to Rendezvous with the Casual User,

in [K1 74}, 179-199

[Col 68] L.5.Coles, An Online Question~Answering System with Natural
Language and Pictorial Input, Proc. 23rd Natl. ACM Conf.
(l1968), 169~181

[Go 73] G.Goos, Hierarchies, in F.L.Bauer {(ed), Advanced Course on
Software Engineering, Lecture Notes in Econ. and Math.
Systems, vol.81, 29-46

[Gr 69] C.C.Green, The Application of Theorem Proving to
Question~Answering Systems, Tech. Kep. ho. C8138, Stanforc
Univ. 1969

K1 741 J.w.Klimbie, K.L.Xoffeman (eds), Data Base #anagement,

North-Hollanu Publ. Co. 1974

[Kr 751 K.D.&raegeloh, P.C.Lockemann, Hierarcnhies o¢f pata Base
Languages: An Example, Information Systems (in print)

[Su 74] B.Sundgren, Conceptual Foundation of the Infological
Approach to Data Bases, in [R1 74}, 61-94

[SI 74]) ACHM SIGPLAN Symposium on Very High Level Languages, #March
1974, ACH, New York 1974

[we

[Wi

[{Wo

741

68]

681

73}

212

H.Wedekind, Data base Systems 1, BI-wissenschaftsverlag,
Reihe Informatik, vol.l6, 1974 (in German)

N.Wirth, PL36#, A Programming Language for tne 368
Computers, Journ.ACM 15(1968), No.l, 37-74

W.A.woods, Procedural Semantics for a Question-Answering
Machine, Proc. AFIPS Fall Joint Comp.lonf. 33(1966),
457-471

W.A.Wwoous, Progress in Natural Language Understanuing - aAn
Application to Lunar Geology, Proc. AkIkS nNatl.Comp.oont.
42(1973), 441-4548

