Data Base System Evaluation

Harry L. Hill, IBM

The evaluation of data base systems embraces four very significant fields, the first
being the design of resource management necessary to build into the product necessary
performance attributes to make that product or system an attractive saleable item.

The second part is the prediction of performance for a given configuration and work-
load. The third is the ability to measure the performance and confirm or deny the
expectation obtained from the predictive process; and finally the ability to tune the
system to accommodate changes made either in the configuration that exists or the user

workload that is currently presented to the system.

To cover these four elements of data base evaluation, | have chosen to describe within
this paper these topics:

I. Concepts of system performance

2. Performance and the development process

3. Predicting and measuring system performance

4

. System performance tuning

I. CONCEPTS OF SYSTEMS PERFORMANCE

Let us look at some of the basic concepts behind system performance. The key ques-
tion is one of systems performance sensitivity - the problem is always to find what

is in the critical path. Fig. 1 describes clearly the approach that is taken, given
that one can identify the bottleneck in the system; the key question is that if | remove
that bottleneck, at what point and under what conditions do | hit the next one (because

there is always a next one).

292

When we talk about the goodness of performance, i.e. how well a system performs, it
is necessary to establish measures of goodness. We talk about performance in the
following ways, as shown in fig. 2 - in terms of throughput, jobs per unit time,
system data rate, number of accesses per second to a storage device, etc, There are
perhaps more sophisticated and better ways of describing performance. For example,
throughput per rental, dollars per second per access to a storage device, cost per
job, cost per transaction. These latter measures of performance tend to be more
revealing of the 'value to the user' as we sometimes call it, i.e. the cost performance

trade~off,

It should be observed, as in fig. 3, that there are some very significant trends in
performance evaiuation. In the eariy days when we described performance in terms

of component or device productivity, you will recall the measures of CPU goodness

were in terms of add time, subtract time, multiply time, etc. We have emerged from that
somewhat primitive measure of performance and today we talk about performance in

terms of systems productivity, where the system is the sum of the hardware, the
software and the workload effects. Tomorrow | am confident that we will be talking
about systems performance not so much in terms of just the system but in terms of the
user relationship to that system. | call that 'people productivity', where people's
productivity is geared to maximise the objectives of a given enterprise or business. The
computing system is then but one key element in meeting a business objective. This

is particularly important for live terminal systems where the business of a company

may be totally dependent on the availability and usability of the total system.

System performance is really best described in terms of the management of time spent
waiting for systems resources. Fig. 4 describes a representation of systems resources
because that is what performance is ail about, the management of resources within a
system allocated to a given profile of work. Every single system that has been constructed
to date behaves in this way. The element of work is offered to the central processing

unit or work engine and that work is executed by merging data with a program to a point
where more data or programs are required. At that point in time the processing ceases
and a request is queued in front of a storage device (i.e. a resource) in order to obtain
additional data or programs to continue or complete the processing. When that work is
completed, the processing engine proceeds on to another task. What we have is a serial

processing engine operating on elements of work who's data and programs are queued

293

in parallel against system resources. By placing a 'meter' in the line between the
storage and the queue for processing one can get a measure in terms of transactions

per second or system data rate.

Fig. 5 shows a plot of system performance against the number of tasks, that is, the depth
or level of multiprocessing and the consequence on the system of these tasks executing
work. Notice that as you increase the number of tasks, the system performance increases
to the point where a bottleneck is reached and ! have chosen in this case to show the
channel at the first bottleneck. If | were to add channels to the system | would relieve
that bottleneck within the system and | would hit the next one which [have, in this case
shown to be storage devices. So performances progress through 'ceilings' or bottle-

necks.

Work that is presented to a computing system does not represent a constant load on all
resources. In fig. 6 | have shown diagramatically a time varying workload effect on the
system where the height of each pedestal represents 100% utilisation of that resource -
notice that | am showing only 3 resources, a channel, a CPU and a drive device. The
point is that not all of the time is any one resource the bottieneck, but the bottleneck
changes from rsource to resource depending upon the demand of the time varying work-
load placed against it. When that resource is 100% utilised, it clearly forms a black mark
on top of the pedestal, so by removing that bottleneck, that is, by putting a more power-
ful CPU in or a larger number of channels, this serves to improve the overall system
performance. Clearly we are seeking an economic design where the number of black
marks on top of the pedestal is reasonably balanced, that is, resources are not wasted.
Fig. 7 depicts a system transaction rate versus a time varying workload, and a

similar argument applies.

All transaction-based systems tend to behave in a similar way and fig. 8 shows a three-
dimensional plot of response times versus real storage versus transaction traffic rate.
Notice that as the real storage available for processing is decreased, the response time
increases. Similarly, as the transaction traffic rate increases, the response time increases
and all systems tend to behave this way. It should be realised that in virtual operating
systems the decrease of storage causes an increase in paging rate. Under these condi-
tions the CPU utilization generally decreases and the system gradually becomes 1/0

bound.

294

2., PERFORMANCE AND THE DEVELOPMENT PROCESS

As data base systems have grown and become sophisticated, it is necessary to achieve
not only good performance, but predictable performance. This has to be built into the
development process of the product. | should like to take as an example the development
of storage which is a key resource in any data base system. Fig. 9 shows a typical
development process which, in the early days of the computer industry, started off with
the research and development of what | would describe as the basic parameters of the
storage device. These parameters were offered to engineering groups who designed them
into products and we developed on that basis the well-known disk drive. The drives
were offered to the CPUs and were integrated with software systems which in turn were
offered to industries to configure and use on behalf of that industry, and those industries
designed those systems together with their applications to generate useful data processing
facilities. The point is that in the early days we started off with the basic technology
and we did what is described as a 'bottom-up' design - that is how the technology of
the industry grew up. If we look today at the basic relationship of the direct access
storage device (fig. 10) you will see that only certain combinations of those basic
parameters are of interest to the systems designer, such as data rate and access times -
areal density is frankly not very significant to the system designer. Similarly as block
size decreases data rate becomes less important than access time. The consequence of
this 'bottom-up' development process has been that we have decreased in a rather

dramatic way the effective cost to the user of storage.

The decrease in storage cost as seen by the user is shown in fig. 11, i.e. the relation-
ship between dollars per megabyte per month for a variety of products versus the year
of announcement. In fig. 12 you will also notice the access rate characteristics where the
accesses per doliar and the accesses per second are shown for the same range of products.
If we are to look now at fig. 13 we will see that the storage technology spans a range of
access times, storage capacities and cost per bit. This figure is interesting - observe
the gap in the continum of storage devices. This gap occupies the same time domain as
task switching in several of the medium and high speed processors. The technology for
storage and data base systems is rich - rich in function and rich in performance and in
cost choices. There is in fact sufficient technology to reverse the process and instead

of doing a 'bottom-up' design, to take the requirements of modern applications and do a
'top-down' design (again see fig. 9}, that is, to define the systems and the applications

that are required in a business or enterprise and to map them into the technology.

285

3. PREDICTING AND MEASURING SYSTEM PERFORMANCE

The timely development of performance tools forms an essential part of developing a
computing system. It has two major characteristics. One, it is important to be able to
predict the performance of a complex data base/data communications system prior to either
the hardware or the software being in existence and two, it is important that having
predicted it and built it, it is important to be able to measure it and validate the predic-

tion. The learning process is being able to describe differences.

The essential objective in developing performance tools is to be able to establish a disci-
pline both for developers and subsequently for users of avoiding surprises in performance,
since late discoveries are hard to correct. Fig. 14 describes this objective and describes
the methods that are generally used to achieve them, that is, to develop models, to vali-
date those models, to be able to track the instruction path length within a system and, as
knowledge is gained, to be able to document that experience and construct a vocabulary
that communicates both the predictive and the measurement processes. Fig. 15 shows

the process. There are really two types of predictive capabilities, one is analytic and

the other is simulative. In the measurement area there are two types of facilities required
to produce the data necessary for measurement; one is hardware and the other is soft-

ware monitors.

Measurement is both time consuming and expensive, therefore there has been significant

emphasis and progress placed upon the development of models in order to determine the

performance of a system, while measurement techniques are increasingly used to validate
these models so that performance information and guidelines can be generated spanning

a range of applications, configurations and workload demands. It should be recognised,

however, that multiple sub-systems operating within one operating system are often hard

to handle by conventional analytic means, and one is forced to consider hybrids of analy-
tic and simulative techniques. It is most important that the developer or user of a model
has clearly in his mind the guestion he wants the model to answer. Rarely is a general

purpose mode! sensitive to questions that were not known at the time the model was

developed.

It is perhaps useful to examine a data base/data communication system from a performance
standpoint, and for this | have chosen IMS/VS and have constructed a flow chart for the

main processing blocks of that system. Fig. 16 shows the flow of such a transaction;

296

notice that it divides itself into three major parts. The communication part where message
switching and message queues are handled; the processing of that message against
program and data and the multiple calls to that data base for that particular transaction;
the completion of that transaction and the generation of the output message in the message
queue, and the handling of that message through a terminal access method to a terminal.
That is, if you like, the life of a transaction; it is born at the terminal where it enters
the system and it dies at the terminal when the transaction is completed. If we were to
place 'meters’ in the lines joining those function to queues and libraries, etc., we could in
fact measure the activity that is going on with the system. As we pass multiple messages
into such a system, we see that the problem of performance resolves down to the allocation
of resources, CPUs, channels, programs and data to handle the requirements of each dif-
ferent transaction. The job, then, is to define algorithms for using resources and for
waiting for resources. These algorithms start with what priorities are associated with
each transaction type and must include recovery strategies in the event that a resource,

a data path or a queue discipline fails. Availability and performance are becoming incre-

asingly dependent upon recovery schemes designed into the product.

There are really only two ways of improving the performance of a data base/data com-
munication system. One is to shorten the transaction path length and the other is to
provide either faster or parallel processing resources. It is thus often desirable to be
able to calculate the number of instructions executed on behalf of an IMS transaction.

Fig. 17 shows a typical appraoch to such a problem, where T is the total instructions
executed for the IMS transaction, K1 through K5 are coefficients representing various IMS
and VS releases; Q,U,N and C represent major parameters of most importance and signi-

ficance in terms of overall systems performance.

Now if we were to take these transactions and were to apply values to those parameters,
it is conceivable that one could divide the instruction processing capability of the machine
by the path length of the transaction and come up with a theoretical maximum number of
transactions per second that that resource could process, given that the processing unit
was in fact the major botileneck in the system. This has been done in fig. 18 and shows
the difference in transactions per second processed for an 85% utilised 158 and 168, It
should be clear that these are not measured values, they are predicted values, and are
shown merely to demonstrate the sensitivity of system performance to changes in the key

parameter values that affect it.

297

Fig. 18 is, then, designed to show the sensitivity of a system to changes in the major
parameters that affect the system performance. Again this is not a measured environment
this is a predicted environment and it is probably not possible to accurately reproduce
this in a measurement environment without rigorously defining several other important
system and user dependent factors. It does, however, aiso show on the same theoretical
basis the difference in path length between an MVS system and an MVT system.
Traditionally, it is thought that the systems that have higher sophistication have longer
path lengths and whereas in general this is true, it is clear that in the MVS system, as
the data base call structure becomes more complex, the difference in path length dimini-

shes significantly in favour of MVS.

Independent of the investment made in developing and using models of the system, it is
essential to measure the real thing as rapidly as possible. One method used in IBM is
shown in fig. 19, where a simulated network is represented in both hardware and soft-
ware and a data base is constructed to represent the application and system data bases.
The simulated network is programmed to generate scripts at a given interval and with a
given think time, or range of think times, such that the system under test appears to be
loaded with transactions as though they were coming from real terminals. By the appli-
cations of suitable hardware probes and suitable software probes, we are able to measure
the utilisation of resources occurring within the system under a variety of transaction
rates, types and call étructures. A typical measurement is shown in fig. 20, in this
case an IMS/VS 1.0.1 system running under VS2 release 2. Notice the linear CPU utili-
sation as transaction rate goes up on this 158 CPU with 2400 Baud lines and 4800 Baud

lines.

The measurement in question is designed to explore the sensitivity of line speeds to sys-
tem performance. Note that in the 2400 Baud lines case, with ten lines, the line utilisation
became a significant bottleneck in the system and this is evidenced by the response times
starting to rise rather rapidly, whereas at 4800 Baud line speed, the response time is

well contained.

System performance can be viewed in two ways and fig. 21 shows that we are either using
a resource or we are waiting for it. Let us now take the flow chart (fig. 16) that we
developed to show the life of an IMS transaction. Let us look at that flow chart with

respect to the time we spend waiting for a resource, that is, waiting for a line, waiting

208

for buffers, waiting for a processing region, waiting for an application program to be
brought in, waiting for /0, that is, storage accesses to bring data or programs into the
system, waiting for lines to handle the output message and waiting for services to trans-
mit that message to the terminal. Let us also look at the amount of time using the resou-
rces. Fig. 22 shows, and it is drawn to scale, where if this were 8 inches long, the
response time from beginning to end would be 1 second, making 3 loops around the DL1
call, It is also clear, as we approach a 100% utilised system, the units of processing -
occupy a smaller and smaller portion of the total response time. This chart shows the

waiting time and processing time for only one transaction within a 75% loaded system.

4. SYSTEM PERFORMANCE TUNING

The goodness of performance then, of a data base/data communication system is balancing
or tuning two things. It is balancing the supply of resources with the demand on them,
because we are either waiting for that supply or we are using that supply. Fig. 23 shows
this balancing scheme. If we have a high supply with respect to the demand, then we
are wasting resources. {f we have a high demand with respect to the supply of resources
we are going to suffer poor response times. In general, performance is a user option
since it requires the additon of resources and these generally cost money; but not always
is that the case. In some cases, it is necessary and possible that the resources be tuned
to meet the demand of the workioad. Performance tuning is concerned primarily with the
elements shown in fig. 24, being data base profiles, transaction profiles, profiles of the
IMS system, of the processing requirements of the region, of the hardware and software
configuration, of the overall teleprocessing configuration, and importantly, the use of tools

to measure these resources.

Fig. 25 shows the primary factors affecting the performance and the design of the system.
The number of transactions per second is typically in the range of 1 to 50, although
within the next five years | am confident that you will see that range grow towards 200
transactions per second. In terms of EXCPs per call, we are looking today in the range
0.1 to 5 per data base call. In terms of calls per transaction, we typically find anywhere
from 5 to 50 cails with several transaction types exceeding 50 and reaching close to 100
calls per transaction, so the data base designer is faced with designing a system of
resources which can efficiently and economically accommodate the range of performance

critical factors.

299

The tuning of data base systems is clearly a complex matter involving firstly an awareness
of utilisation of resources, and secondly the understanding and knowledge about the sen-
sitivity of changing the resource allocation to achieve an overall system performance level.
The objective then is shown in fig. 26 -~ either minimise the transaction path length and/
or invoke parallelism of key resources. The method recommended is firstly to guantify
the profiles of the transaction and of the system; understand the behaviour of the system
in response to changes in the workload; use software monitors to quantify that behaviour
and resort to hardware monitors which do not interfere with the processing characteristics
of the system; to define experiments to uncover and order the bottleneck; and to make
changes, one at at a time, to the system and measure the effects. Only by measurements

do we really get smart.

Performance tuning can be an iterative process because what one is trying to do is to
optimise the utilisation of resources and match them against the workload. Frequently that
workload is changing and one's job is not done until one has resolved the differences
between what one expects, that is the expectation of performance, and what one has
actually got. If there is significant differences between those two elements, then clearly
there must be an explanation which always seems to lie in better understanding of what
the system is doing. | mentioned the complexity of tuning a data base/data communication
system. It is certainly not true that every one behaves differently. There are some
typical causes of bottlenecks which are frequently uncovered and those really fall into
three categories, as shown in fig. 27 - resources of a teleprocessing network - balancing
of those resources and the selection of buffer sizes and message format buffers; the
region resources, that is the amount of program loading that is done; the structure and
the size of application programs; the structure and the size of the data base; the use

of extended function within that data base structure; and lastly, the CPU resources,
where its use is determined largely by the amount of system and user 1/0 and the use

of bufferpool services.

Finally, T should lile to discuss trends within data base/data communication system
performance. Those trends really fall into three broad areas - trends in prediction,
trends in measurements and trends in tuning. | think that over the next five years we
are going to see generalised use of analytic tools for dedicated systems and some guide-
lines based on analytic tools for mixed systems. We are going to see the specific use of
simulation and hybrid tools for mixed or complex systems. We are also going to see the

availability of tools at an early point in the design of systems to help users choose

300

amongst different configurations which have different price performance characteristics.

In terms of measurement trends, we are going to see integrated software performance
monitors, because basically performance is a user option and it is proper that the user
understands what the system is doing and what choices he has to change it. Where 2
software monitor impacts the basic behaviour of the system, we are going to see integ-
rated hardware built into the product to facilitate measurement and so be able to monitor
the performance with little or zero overhead. We are going to see selective performance
report generation, and we are going to see dynamic performance information and monito-
ring of key resources, so that information can be made available to a user to permit him
to manage his system in line with some overall strategic direction that has known cost

performance trade-offs.

Lastly, in performance tuning, | believe that we are going to see a family of tools avail-
able for the design of major components. That is, the design of TP networks, of data
bases, of multiprocessing systems to permit the designer at an early stage to become
familiar with the behaviour of those elements of the system that are likely to be a system
bottleneck. We are going to see system-managed performance generation reports, and
tuning controls that are made available on an open loop basis. [t is conceivable that in
the next five to ten years many of the tuning controls can be architected into a closed
loop system so that the system is able to tune itseif, and at this point | refer to tuning
of the system in terms of allocating resources in accordance with a predetermined set of
performance strategies. Some of these can be determined by the manufacturer and some

will be determined and selected by the end user.

This concludes my presentation on the Evaluation of Data Base Systems.

301

Concepts of System Performance
Sensitivity

The Problem: Find What's in the Critical
Path, i.e., What's the Bottleneck

And . .. What's the Payoff When | Remove
That Bottleneck and Hit the Next One.

Fig. 1 Because . . . There Always is a Next One

Performance Measures of Goodness

How Can We Talk About Performance?

Thruput (Jobs/Unit Time)
System Data Rate

Accesses/Sec

Terminals Supported

Terminal Response Time Or Perhaps:

Thruput/Rental
$/Sec/Access
Cost/Job

Fig. 2 Cost/Transaction

302

Trends in Performance Evaluation

Notice the Trend from:
Component or Device Productivity
To
System Productivity
{System = Hardware + Software + Workload)
To
People Productivity

Fig. 3 {People Productivity = Maximized Enterprise Objectives)

A Representation of System Resources

Key
CH — Channel
D — Device
Q ~ Queue

___TJO

O @

|

-

Transactions/Sec

—
=
ré)
)
= BEE

Fig. 4

303

A Way to Think About Bottlenecks

T T T T T T

CPU

SN, N, S N N N
System Drives
. N T ——

Performance /
Channels

{e.g.: System \>e< .
Data
Rate)
1 L | | 1
12 3 4 5 ———7—————————— n
Fig. 5 Tasks

SYSTEMS PERFORMANCE VS TIME
FOR A TIME VARYING WORKLOAD

SYSTEMS
PERFORMANCE CPU BOUND

|

DR CPU CH

Fig. 6

304

TRANSACTION RATE VS TIME
FOR A TIME VARYING DBDC WORKLOAD

ax_
\ % RESOURCE
UTILIZATION 7 TRAﬁil;%TION
(T/SEC)
/ 2X 1.6X
/ ,‘ .
~ X
/ / // /--
100 / - -~
// /
s -
/ iy _/
100 = T
100
1 /
100

DASD R.O. T.p. CPU
Fig. 7

DBDC PERFORMANCE RELATIONSHIPS

RESPONSE
TIME

TRANSACTION
TRAFFIC
RATE

A

REAL
STORAGE

Fig. 8

305

The Development Process

A View of the Development Process

Fig. 9

Parameters) Products
Bits/inch
Tracks/Inch
Research and Access Time Engineer
Develop Rotation Speed 9
Capacity
zl5lzlzlelsle
SIRIRIBIRIBIR
industries Systems
135
145 [V81
Configure 158 Integrate vs2
168 & VM/370
155/165 VS2/2
BEHE ol ol ol ol ole
5 Slel.is st gt of & wie
2 ZISF 1S L
é g T Applications CPUs
g
= System Design

and
Instal

DASD Parameter Relationships

Fig. 10

Bit Track Record Track Rotation Seek
Density Density Band Length Period Time
Laten
Areal Y
Density
Capacity Data Access
Rate Timeto

Data

306

The Cost of Attached Storage

160 T i i i 1 i H l i i i i T 1 ¥ T i i T
120 -
B
$/MB/Month g0 L
40 -
0 L 3330-11
54 56 58 60 62 64 66 68 70 72 74
Fig. 11 Year of Announcement -—
Access Rate Characteristics
50
a5 L 3340 ©
40 k- /
/
» - /
/
30 — / - 30
/
25 - / — 25
3330 /
Accesses/$ (X 103) 20 l—-— /O 2 Accesses/Sec to 1200 Bytes
15 -
10
5 e
o
54

Fig. 12

Year of Announcement

307

Present Storage Technologies

T LT] [o
/j/q | [BUF ;
T

- N
2] CORE

o - .01

(Cost (¢/tit)

001
0001

‘ +—-00001
L—{ 000001
. ? ™

T

STRIPS

— 10M

100M .
—-tmd 1B Storage Capacity
y + 108 {bits)

. -~7L» - l‘lOOB
- 1T
10 100 1 10 100 1 10 100 1 19
ns ons us 4S ps ms ms ms s H
Average Access Time

Fig. 13

OBJECTIVES AND METHODS
Objective

« DON'T CREATE SURPRISES iN PERFORMANCE —
LATE DISCOVERIES ARE HARD TO CORRECT

Method

+ DESIGN TOOLS (MODELS) TO ASK/ANSWER
QUESTIONS IN A DISCIPLINED WAY

« DOITEARLY TO INFLUENCE DESIGNERS
« SPECIFY AND TRACK PATH LENGTHS

+ VALIDATE MODELS AND MEASURE TO
GET SMART

» WHEN YOU'RE SMART — DOCUMENT IT

Fig. 14

PERFORMANCE TOOL DEVELOPMENT

{ PREDICTION MEASUREMENT

MODELS MONITORS

Y Y oy Y
ANALYTIC SIMULATIVE HARDWARE SOFTWARE

VALIDATE -

PERFORMANCE INFORMATION
AND
Fig. 15 GUIDELINES

MAIN PROCESSING BLOCKS
OF A TRANSACTION
IMS/VS

TEAMINAL @
DL/ CALLS

TO
VTAM DATA BASE

LOG l
DL/t CALLS —
INPUT TO QUTPUT MESSAGE
MESSAGE MESSAGE QUEUES
HANDLING
l LOG
PREPARE
E?BD h Plssss EQECUTION 'alé;::g‘z
AR OF mpP HANDLING QUEUES

APPL.. LOAD MPP
PROGRAM b= _ START VTAM
LIBRARY EXECUTION

DL/ CALL
FOR INPUT
MESSAGE TERMINAL

"Ti
&
=Y
(7]

309

IMS PATH LENGTH ANALYSIS

HOW MANY INSTRUCTIONS ARE EXECUTED
ON BEHALF OF AN IMS TRANSACTION?

T=(Ky+ Ky') + (Kyx Q) + (K U) + N[K, + (Cx Kg)]

K;--Ks ARE COEFFICIENTS REPRESENTING

VARIOUS IMS AND VS RELEASES.

Q= FRACTION OF INQUIRY TRANSACTIONS
U= FRACTION OF UPDATE TRANSACTIONS
N = NUMBER OF DATA BASE CALLS/TRANSACTION
C = NUMBER OF DATA BASE 10S/CALL
T= TOTAL INSTRUCTIONS EXECUTED FOR

ONE IMS TRANSACTION

Fig. 17

IMS PATH LENGTH ANALYSIS

VS
TRANSACTION
PATH LENGTH
(anNsTR x 109

IMS/MVS
TRANSACTIONS
PER SECOND
£OR 85% CPU
UTILIZATION
ON 158, 168

CALLS/TRANSACTION

10°S/CALL
0/0 INQUIRY
0/0 UPDATE

Fig. 18

VS| 154 | 160 | 176 | 239 | 162 | 169 | 185 | 247
MVT| 114 | 124 | 148 | 243 | 114 | 124 | 148 | 243
14 4
130 125 12.3
12 4 1 M3 ™] 12 10.8
10 4]
8.3 8.1
8
5. 5.2
81 2 ;—3— 4.8] = BY |as
4 3.6 —
2 4
0
3 5 10 30 3 5 16 30
3.3 200 10 03 33 20 10 03
05 05 05 05) 0 o 0
05 05 05 05 10 1.0 1.0 1.0

310

PERFORMANCE MEASUREMENT
ENVIRONMENT

RESPONSE TIME (SECONDS)

5 REAL 5
TEST/360 (7) (7) SYSTEM
3 LINES 3
SIMULATED DASD
NETWORK ~ SYSTEM
— DATA BASE
M, CTL UNITS/LINE
N, TERMINALS/CTL UNIT
Fig. 19
IMS/VS 1.0.1 ON'VSZ/2 iMS PERFORMANCE
10 LINES, 300 TERMINALS MEASUREMENT
100 1 2400, 4800 BAUD LINES LINE COMPARISON
i 158 CPU
90
80
=
g 704
|-—
< 60+
N
= 504
]-'
> RESPONSE
o 404 TIMES
S
= 304
20 2400 BAUD
4800 BAUD
104
0 1 i H 1 1 H H
0 1 2 3 4 5 6 7

Fig. 20 TRANSACTIONS PER SECOND

31

WHAT IS PERFORMANCE

A SYSTEM OF
RESOURCES

(CPU, CHANNEL, DASD, TP, STORAGE, PROGRAM, QUEUE, LOCKS, . .}

USE OF WAITING FOR
RESOURCES RESCURCES
{(UTILIZATION) {WAIT/RESPONSE TIME)
DEFINE WHAT YOU MEAN BY PERFORMANCE Fig. 21
ELAPSED
IMS FUNCTION TIME INPUT — OUTPUT
INPUT ~ WAIT FOR [::—_—]k- INPUT TERMINAL
T.P. LINE
MSG Q
INPUT MSG HANDLING MES
PROCESSING |
WAIT FOR MPP
IMS/VS 1.0:1
370/158
4800 BAUD, 3270 R
PREPARATION OF — ACB
— APPLPGMLIB
APPLICATION PROGRAM MSG G
PROCESSING PER DL/1 ~—— DATA BASES
CALL L —— pYNLOG
3x
tee— LOG
OUTPUT WAIT FOR
T.P. LINE
—— MsG o
OUTPUT MSG HANDLING MES

Y outeuT TERMINAL

Fig. 22

312

DBDC PERFORMANCE TUNING
Supply <— Resource <— Demand

CPU

TP

STORAGE

DEVICES

P APP-
WASTED POOR
RESOURCES PERFORMANCE TRANS.,
\ / RATE
BALANCED SYSTEM
DB
DESIGN
DB
CALLS

TUNING ——3> BALANCE RESOURCE SUPPLY AND DEMAND

Fig. 23

DBDC PERFORMANCE TUNING

Primarily concerned with:

« DATABASE PROFILES

» TRANSACTIONS PROFILES

s IMS PROFILES

+« MPP PROCESSING REQUIREMENTS

+ HARDWARE CONFIGURATION

« OPERATING SYSTEM PROFILE

« TELEPROCESSING CONFIGURATION
= OTHER

and the use of tools
to measure critical parameters

Fig. 24

313

PRIMARY FACTORS AFFECTING
PERFORMANCE/DESIGN

PARAMETER TYPICAL VALUES

— # TRANSACTIONS 1 ~50
~— # EXCPS/CALL 01— 5
-~ # CALLS/TRANS 5.0 50

Fig. 25

A DBDC TUNING APPROACH
Objective

* MINIMIZE THE TRANSACTION PATH LENGTH.
* INVOKE PARALLELISM OF KEY RESOURCES.

Method

+ QUANTIFY PROFILES — TRANSACTIONS, SYSTEM CONFIGURATION
AND PERFORMANCE GOODNESS.

+ UNDERSTAND SYSTEM BEHAVIOR N RESPONSE TO WORKLOAD.

« USE SOFTWARE MONITORS TO QUANTIFY BEHAVIOR {A TIME),
MAYBE — HARDWARE MONITORS AND DETAILED TRACE.

o DEFINE EXPERIMENTS TO UNCOVER AND ORDER BOTTLENECKS.
¢ FORM IMPROVEMENT HYPOTHESIS, MAKE CHANGE, MEASURE EFFECT.
+« DOCUMENT EXPERIMENT AND RESULTS. GET SMART.

Result

« OPTIMUM UTILIZATION OF SYSTEM RESQURCES TO MATCH WORKLOAD.
+ RESOLVE DIFFERENCE BETWEEN EXPECTED AND ACTUAL PERFORMANCE.

Fig. 26

314

TYPICAL CAUSES OF
DBDC RESOURCE BOTTLENECKS

TP RESOURCES o BALANCING NETWORK LOADING
e SIZE OF TP BUFFERS
e SIZE OF MESSAGE FORMAT BUFFERS

REGION RESOURCES « AMOUNT OF PROGRAM LOADING

» STRUCTURE AND SIZE OF APPLICATION PROGRAMS
e« DATA BASE STRUCTURE AND # CALLS

» USE OF EXTENDED IMS FUNCTIONS

@

AMOUNT OF 1/0

CPU RESOURCES s AMOUNT OF §YSTEM AND USER 1/0
« USE OF BUFFER POOL SERVICES

Fig. 27

