Best Possible Bounds on the Weighted Path Length of Optimum Binary Search
 Trees

by

Kurt Mehlhorn

Abstract :

We derive upper and lower bounds for the weighted path length P opt of optimum binary search trees. In particular,

$$
1 / \log 3 \mathrm{H} \leq \mathrm{P}_{\text {opt }} \leq 2+\mathrm{H}
$$

where H is the entropy of the frequency distribution. We also present an approximation algorithm which constructs nearly optimal trees.

I. Introduction

"One of the popular methods for retrieving information by its 'name' is to store the names in a binary tree. We are given names $B_{1}, B_{2}, \ldots, B_{n}$ and $2 n+1$ frequencies $\beta_{1}, \ldots, \beta_{n}, \alpha_{o}, \ldots, \alpha_{n}$ with $\Sigma \beta_{i}+\sum \alpha_{j}=1$. Here β_{i} is the frequency of encountering name B_{i}, and α_{j} is the frequency of encountering a name which lies between B_{j} and B_{j+1}, (a name in the interval $\left.\left(B_{j}, B_{j+1}\right)\right) \alpha_{0}$ and α_{n} have obvious interpretations". ([5]).

Fachbereich 10
Angewandte Mathematik und Informatik
Universität des Saarlandes, D 66 Saarbrücken

A binary search tree T is a tree with n interior nodes (nodes having two sors , which we denote by circles, and $n+1$ leaves, which we denote by squares. The interior nodes are labelled by the B_{i} in increasing order from left to right and the leaves are labelled by the intarvals $\left(B_{j}, B_{j+1}\right)$ in increasing order from left to right, Let b_{i} be the distance of interior node B_{j} from the root and let a_{j} be the distance of leaf $\left(B_{j}, B_{j+1}\right)$ from the root. To retrieve a name $X, b_{i}+1$ comparisons are needed if $X=B_{i}$ and a_{j} comparisons are required if $B_{j}<x<B_{j+1}$. Therefore we define the weighted path lenght of tree T as :

$$
P=\sum_{i=1}^{n} \beta_{i}\left(b_{i}+1\right)+\sum_{j=0}^{n} a_{j} a_{j}
$$

It is eqial to the expected number of comparisons needed to retrieve a name.

The following two problens are among the most important in this area ([5]).
a) Prove good lower and upper bounds for the weighted path length of optimum binary search trces, i.e. the trees with minimal weighted path length. Such bounds would provide us with a simple a-priori test for the performance of binary search trees.
b) Design efficient algorithms for constructing optimal (or nearly so) binary search trees.

In this paper, we attempt to solve both problems.

II. Upper Bounds

In this section, we will show that $1+\sum \alpha_{j}+H \quad-\quad H=$ $-\sum \beta_{i} \log \beta_{i}-\sum \alpha_{j} \log \alpha_{j}$ is the entropy of the frequency distribution -- is an upper bound on the weighted path length $P_{\text {opt }}$ of the optimum binary search tree. Furthermore this bound is best possible among the bounds of the form
$c_{1} \sum \beta_{i}+c_{2} \sum \alpha_{j}+c_{3} \cdot H$.

We prove the upper bound by coscribing and analyzing an approximation algorithm. This algorithm constructs binary search trees in a top-down fashion. It uses bisection on the set

$$
\begin{aligned}
& \left\{s_{i} ; s_{i}=\sum_{p=0}^{i-1}\left(\alpha_{p}+\beta_{p}\right)+\beta_{i}+\alpha_{i} / 2\right. \\
& \text { and } 0 \leq i \leq n\}, i . e .
\end{aligned}
$$

the root k is determined such that $s_{k-1} \leqslant 1 / 2$ and $s_{k} \geq 1 / 2$. It proceeds then recursively on the subsets $\left\{s_{i} ; i \leq k-1\right\}$ and $\left\{s_{i} ; i \geq k\right\}$.

The main program
begin

$$
\begin{aligned}
& \text { let } s_{i}+\sum_{p=0}^{i-1}\left(\alpha_{p}+\beta_{p}\right)+\beta_{i}+\alpha_{i} / 2 \text { for } 0 \leq i \leq n ; \\
& \text { construct-tree }(0, n, 0,1)
\end{aligned}
$$

end
uses the recursive procedure construct-tree.
construct-tree (i, j, cut, 2) ;
conment we assume that the actual parameters of any call of construct-tree satisfy the following conditions.
(1) i and j are integers with $0 \leq i<j \leq n$,
(2) 2 is an integer with $2 \geq 1$,
(3) cut $=\sum_{p=1}^{2-1} x_{p} 2^{-p}$ with $x_{p} \varepsilon\{0,1\}$ for all p,
(4) cut $\leq s_{i} \leq s_{j} \leq$ cut $+2^{-l+1}$.

A call construct-tree ($i, j,-,-$,) will construct a binary. search tree for the nodes (i+1) $\ldots, 0$ and the leaves $i, \ldots, j ;$
begin
if $i+1=j(\operatorname{case} A)$
then return the tree

else comment we determine the root so as to bisect the interval (cut, cut $+2^{-t+1}$)
begin
determine k such that
(5) $i<k \leq j$
(6) $k=i+1$ or $s_{k-1} \leq$ cut $+2^{-\ell}$
(7) $k=j$ or $s_{k} \geq$ cut $+2^{-\ell}$
comment k exists because the actual parameters are supposed to satisfy condition (4);
if $k=1+1$ (case D)
then return the tree

LE $k=j(\operatorname{case} C)$
then return the tree

if $i+1<k<j($ case $D)$
then return the tree

end
end.

Lemma:

The approximation algorithm constructs a binary search tree whose weighted path length $p_{\text {approx }}$ is bounded above by

$$
1+\sum \alpha_{j}+H
$$

The algorithm can be implemented to work in $O(n \log \Omega)$ units of time and $O(n)$ units of space.
proof:
We state several simple facts.

Fact 1 :
If the actual parameters of a call construct-tree (i, j, cut, e)
satisfy conditions (1) to (4) and $i+1 \frac{1}{T} j$ then a k satisfying conditions (5) to (7) exists and the actual parameters of the recursive calls of construct-tree iniated by this call again satisfy conditions (1) to (4).

Fact 2 :
The actual parameters of evory call of construct-tree satisfy conditions (1) to (4) (if the arcuments of the top-level call do).

We say that node (h (leaf h respectively) is constructed. by call construct-tree (i, $j, ~ c u t, \ell)$ if $h=j(h=i$ or $h=j)$ and case A is taken or if $h=i+1(h=i)$ and case B is taken or if $h=j(h=j)$ and case C is taken or if $h=k$ and case D is taken. Let b_{i} be the depth of node (i) and let a_{j} be the depth of leaf \bar{j} in the tree returned by the call construct-tree ($0, n, 0,1$).

Fact 3:
If node (h) (leaf h) is constructed by the call constructtree (i, j, cut,l) then $b_{h}+1=\ell\left(a_{h}=\ell\right)$.

Fact 4 :

If node (h) (leaf h) is constructed by the call constructtree $(i, j$, cut, $\ell)$ then $B_{h} s 2^{-\ell+1}\left(\alpha_{h} \leq 2^{-\ell+2}\right)$.

Pact 5 :

The weighted path length $\mathrm{P}_{\text {approx }}$ of the tree constructed by the approximation algorithm is bounded above by $1+\sum \alpha_{j}+H$.

We sketch now an efficient implementation of our approximation algorithm. The complexity of the algorithm is determined by the complexity of the search for k. If we search for k simultaneously from both ends, i.e. $\operatorname{try} k=1+1, k=j, k=i+2, k=j-1$, ... successively, then the complexity of this search is O (min ($k-i, j-k+1$) . Hence we get the following recurrence relation for the complexity of construct-tree (as a function of j-i.).
$T(m) \leq \begin{cases}0 & \text { 立 } n=0 \text { (by definition) } \\ c_{1} & \text { if } n=1 \\ \max _{0<k<m / 2}\left[T(k)+T(m-k+1)+c_{2}(k+i)\right] \text { otherwise }\end{cases}$
for some constants c_{1}, c_{2}.

Eact $7:$
The recurrence relation $(*)$ has a solution $T(n) \leqslant O(n \log n)$. Fact 8 :

The approximation algorithm can be implemented to work in
$0(n \log n)$ units of time and $O(n)$ units of space.

$$
q \cdot e \cdot d
$$

Theorem 1 :

Let $\alpha_{0}, \beta_{1}, \alpha_{1}, \ldots, \beta_{n}, \alpha_{n}$ be any frequency distribution, let Popt be the weighted path length of the optimum binary search tree for this distribution, let $P_{\text {approx }}$ be the weighted path lencth of the tree constructed by the approximation algorithm, and let $I=-\sum \beta_{i} \log \beta_{i}-\sum \alpha_{j} \log \alpha_{j}$ be the entropy of the frequency distribution. Then

$$
P_{\text {opt }} \leq P_{\text {approx }} \leq 1+\sum \alpha_{j}+H
$$

Furthermore, this upper bounds is best possible in the following sense : If $c_{1} \sum \beta_{i}+c_{2} \sum \alpha_{j}+c_{3}$. H is an upper bound on $P_{\text {opt }}$ then $c_{1} \geq 1, c_{2} \geq 2$, and $c_{3} \geq 1$.

proof:

The first part of the thoorem follows from the preceding lemma. The second part is proven by oxhibiting suitable frequency distributions.
$c_{1} \geq 1:$ Take $n=1, \alpha_{0}=\alpha_{1}=0$ and $\beta_{1}=1$.
$c_{2} \geq 2:$ Take $n=2, \alpha_{0}=\alpha_{2}=\beta_{1}=\beta_{2}=0, \alpha_{1}=1$.
$c_{3} \geq 1:$ Take $n=2^{k}-1, B_{i}=0$ for all i and $\alpha_{j}=2^{-k}$ for all j. It is easy to see that the complete binary tree is the optimal binary search tree for this distribution. Thus

$$
\mathrm{H}=\log \mathrm{n}+1=\mathrm{k}=\sum_{\text {leaves }} 1 / 2^{\mathrm{k}} \cdot \mathrm{k}=\mathrm{P}_{\text {opt }} .
$$

a. e. d.
E.N. Gilbert and E.F. Moore (1) proved this theorem in the special case that all internal nodes have weight zero (i.e. $B_{i}=0$ for all i). Their proof suggest the approximation algorithm which we presented above. Other " rules of thumb " are discussed in $[7,8]$; we prove in $[7]$ that the strategy " choose the root so as to equalize the total weights of the left and right subtree as much as poosible " yields trees whose weighted path length is bounded above by $2+1,44$. H.
C.P. Schnorr improves this bound to $3+1,07 \cdot \mathrm{H}$ in $[8]$. In the case that all internal nodes have weight 0 an algorithm due to T.C. Hu and A.C. Tucker $[3]$ finds the optimum binary search tree in $O(n \log n)$ units of time and $o(n)$ units of space. In the general case, D.E. Knuth shows how to find the optimum tree in $0\left(n^{2}\right)$ units of time and $0\left(n^{2}\right)$ units of space [5].

III. Lower Bounds :

We turn now to lower bounds. Again we will exhibit bounds which are best possible. Upper and lower bounds differ only by a constant factor; thus they define a narrow interval containing the weichted path length of the optimurn (and the nearly optimal) search trec. This perrits a simple a-priori test for the perfor-
mance of binary search trees.

Theorem 2 :

a) ($[1]$) : If all internal nodes have weight zero,

$$
\begin{aligned}
& \left(\text { all } B_{i}=0 ;\right. \text { then } \\
& H \leq P_{\text {opt }}
\end{aligned}
$$

b) Otherwise

$$
1 / \log 3 \mathrm{H} \leq \mathrm{P}_{\text {opt }}
$$

c) Both bounds are best possible in the following sense : If $c_{1} \sum \beta_{i}+c_{2} \sum \alpha_{j}+c_{3} H$ is a lower bound on the weighted path length of optimum binary search trees then $c_{3} \leq 1$ in case a) and $c_{3} \leq 1 / \log 3$ otherwise. Furthermore, if $c_{3}=1$ in case a) or $c_{3}=1 / \log 3$ in case b) then $c_{1}, c_{2} \leq 0$.
d) Both bounds are sharp for infinitely many distributions.

Proof:

Let $\beta_{o}, \alpha_{1}, \ldots, \beta_{n}, \alpha_{n}$ be any frequency distribution and let $T_{\text {opt }}$ be the optimum binary search tree for this distribution, let $b_{i}\left(a_{j}\right)$ be the distance of node (i) (leaf j) from the root, and let $p_{o p t}=\sum B_{i}\left(b_{i}+1\right)+\sum \alpha_{j} a_{j}$ be the weighted path length of $\mathrm{T}_{\text {opt }}$.
We define new frequency distributions. If all internal node
have weight $o\left(\right.$ all $\left.B_{i}=0\right)$ then define

$$
\begin{aligned}
& \beta_{i}^{\prime}=0 \text { for } 1 \leq i \leq n \\
& \alpha_{j}^{\prime}=2^{-a_{j}} \text { for } 0 \leq j \leq n,
\end{aligned}
$$

otherwise define

$$
\begin{aligned}
& B_{i}^{\prime \prime}=3^{-\left(b_{i}+1\right)} \text { for } 1 \leq i \leq n \\
& \alpha_{j}^{\prime \prime}=3^{-a_{j}} \text { for } 0 \leq j \leq n .
\end{aligned}
$$

It is easy to see that $\sum B_{i}^{\prime}+\sum \alpha_{j}^{\prime}=\sum B_{i}^{\prime \prime}+\sum \alpha_{j}^{\prime \prime}=1$.

The following inequality is well-known (cf. [4]). If p_{1}, \ldots, p_{n} and q_{1}, \ldots, q_{n} are two frequency distributions $\left(\sum p_{i}=\sum q_{i}=1\right)$ then
$-\sum p_{i} \log p_{i} \leq-\sum p_{i} \log q_{i}$
wioh equality if and only if $p_{i}=q_{i}$ for all-i.

It yields in our case :

$$
\begin{aligned}
H & =\sum \alpha_{j} \log 1 / \alpha_{j} \\
& \leq \sum \alpha_{j} \log 1 / \alpha_{j} \\
& \leq \quad \sum \alpha_{j} \log 2^{a_{j}}=P_{\text {opt }}
\end{aligned}
$$

if all inter:nal nodes have weight zero and

$$
\begin{aligned}
H & =\sum \beta_{i} \log 1 / \beta_{i}+\sum \alpha_{j} \log 1 / \alpha_{j} \\
& \leq \sum \beta_{i} \log 1 / \beta_{i}^{\prime \prime}+\sum \alpha_{j} \log 1 / \alpha_{j}^{\prime \prime} \\
& \leq \sum \beta_{i} \log 3^{\left(b_{i}+1\right)}+\sum \alpha_{j} \log 3^{a_{j}} \\
& \leq(\log 3) P_{\text {opt }}
\end{aligned}
$$

otherwise with equality if $\beta_{i}=\beta_{i}^{\prime}\left(\beta_{i}^{\prime \prime}\right)$ and $\alpha_{j}=\alpha_{j}^{\prime}\left(\alpha_{j}^{\prime \prime}\right)$ for all i and j.

Assume now that $\beta_{i}=\beta_{i}^{\prime}\left(\beta_{i}^{\prime \prime}\right)$ and $\alpha_{j}=\alpha_{j}^{\prime}\left(\alpha_{j}^{\prime \prime}\right)$ for all i and j. Then it is easy to see that the approximation algorithm of section II constructs $T_{\text {opt }}$. Thus $P_{\text {opt }}=I$ if all internal nodes have weight o and $p_{\text {opt }}=1 / \log 3 \mathrm{H}$ otherwise. The lower bounds stated above are hence sharp for infinitely many distributions.

Part c) of the theorem is now inferred easily. The details are left to the reader.

IV. Conclusion

We proved that $P_{\text {opt' }}$ the weighted path length of the optimum binary search tree, lies in the following interval
$1 / \log 3 \mathrm{H} \leq \mathrm{P}_{\text {opt }} \leq 1+\mathrm{H} \quad$ if all leaves have weight o
$H \leq P_{\text {opt }} \leq 2+H \quad$ if all internal nodus have weight o
$1 / \log 3 \mathrm{H} \leq P_{\text {opt }} \leq 1+\sum \alpha_{j}+\mathrm{H} \quad$ othorwise.
All bounds are best possible. Furthermore, we exhibited an approximation algorithm which constructs trees, whose path legth lies in the intervals stated above, and which can be implemented to work in 0 ($n \log$) units of time and $O(n)$ units of space.

Acknowledciement :

I want to thank Prof. C.P, Schnorr for many extremely stimulating discussions on the subject of this paper.

Bibliography:

1. E.N. Gilbert and E.F. Moore: Bell System Tecinn. Journal 38
2. T.C. Hu and K.C. Tan : Least Upper Bound on the Cost of optimum Binary Search Trees, Acta Informatica, 1, 307-310 (1972).
3. T.C. Hu and A.C. Tucker : Optimal Computer Search Trees and variable length alphabetic codes, Siam J. Applied Math. 21, 514-532, (1971).
4. T. Kameda and K. Weihrauch: Einfuhrung in die Kodierungstheorie,
5. D. E. Knuth : Optimum Binary Search Trees, Acta Informatica, 1,
6. D.E. Knuth: The Art of Computer Programming, Vol. 3.
7. K. Mehlhorn : Nearly Optimum Binary Search Trees, Preorint, Fachborcjen To, Universitat des Saarlanics, 1974 .
8. C.P. Schnorr : 'lwo Algorithms for Nearly optinal pinary Search Trecs, Preprint, Fachbereich Mathematik, Indversitit Frarkfurt, 1974.
