
Best Possible Bounds on the Weighted 

Path Length of Optimum Binary Search 

Trees 

by 

Kurt Mehlhorn 

Abstract : 

We derive upper and lower bounds for the weighted path length P 
opt 

of optimum binary search trees. In particular, 

I/Iog3 H S Popt ~ 2 + H 

where H is the entropy of the frequency distribution. We also present 

an approximation algorithm which constructs nearly optimal trees. 

I. Introduction 

"One of the popular methods for retrieving information by its 'name' 

is to store the names in a binary tree. We are given n names 

BI,B2,...,B n and 2n+I frequencies B 1,...,Bn,~o,...,en with ZB.+Z~.=I.I 3 

Here 8. is the frequency of encountering name B., and e. is the fre- l l ] 

quency of encountering a name which lies between Bj and Bj+I, (a name 

in the interval (Bj,Bj+I)) ~o and ~n have obvious interpretations". 

([5]). 
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A binary search tree T is a tree with n interior nodes ( nodes 

having two sons ), which we denote by circles, and n + I leaves, 

which we denote by squares. The interior nodes are labelled by 

the B. in increasing order from left to right and the leaves are 
1 

labelled by the intervals ( Bj, Bj+ I ) in increasing order from 

left to right. Let b be the distance of interior node B. from the 
l l 

root and let a~ be the distance of leaf ( Bj, Bj+ I ) from the root. 

To retrieve a name X, b i + I comparisons are needed if X = B~ and 

< X < B . Therefore we define comparisons are required if B 3 j+1 

the weighted path lenght of tree T as : 

P = 
n n 

~ S i ( bi+1 ) + X e a. 
j -=o ] ] i=I 

It is equal to the expected number of comparisons needed to re- 

trieve a name. 

The following two problems are among the most important in this 

area (E 5 ~). 

a! Prove good lower and upper bounds for the weighted hath length 

of optimum binary search trees, i.e. the trees with minimal 

weighted path length. Such bounds would provide us with a 

simple a-priori test for the performance of binary search 

trees. 

b) Design efficient algorithms for constructing optimal ( or 

nearly so ) binary search trees. 

In this paper, we attempt to solve both problems. 
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II. U~ner Bounds 

In this section, we will show that I + [ ~j + H -- H = 

- [ S i log ~i - ~ ej log ej is the entropy of the frequency 

distribution -- is an upper bound on the weighted path length 

P of the optimum binary search tree. Furthermore this bound 
opt 

is best possible among the bounds of the form 

ci ~ Bi + c2 ~ ej + c3 " H. 

We prove the upper bound by describing and analyzing an 

approximation algorithm. This algorithm constructs binary 

search trees in a top-down fashion. It uses bisection on the 

set 
i-I 

{ s. ; s. = [ ( ~ + ~ ) + s. + ~ /2 
l l p=o P P 3. l 

and o < i _< n }, i.e. 

the root k is determined such that Sk_ I i I/2 and 

s k A I/2. It proceeds then recursively on the subsets 

{ si; i & k - I } and { si; i ~ k }. 

The main program 

_beqi_~n 
i-I 

let s. + 
l p=o 

( ~p + Bp ) + B.I + ~i/2 for o _< i _< n; 

construct-tree ( O, n, O, 1 ) 

end 

uses the recursive procedure construct-tree. 

construct-tree ( i, j, cut, Z ) ; 

comment we assume that the actual parameters of any call of 

construct-tree satisfy the following conditions. 

(1) i and j are integers with o ~ i < j ~ n, 
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(2) Z is an integer with Z Z I, 

o-P (3) cut = [ x - with x e { 0, I } for all p, 
p=1 P P 

~4) cut ~< s i ~< sj < cut + 2 -Z+I. 

A call construct-tree ( i, j, -, -,) will construct a binary. 

search tree for the nodes ~ ..... ~ and the leaves 

..... IT_l, 

beoin 

if i + I = j ( case A ) 

then return the tree ~ % _  

else comment we determine the root so as to bisect the interval 

( cut, cut + 2 -~+I ) 

begin 

determine k such that 

(5) i < k % j 

< cut + 2 -Z (6) k = i + I or Sk_ I _ 

(7) k = j or s k Z cut + 2 -~ 

cov~ent k exists because the actual parameters are 

supposed to satisfy condition (4); 

if k = i + I ( case B ) 

then return the tree 

~I construct-tree (i+1,j,eut+2-9",Z+1) ; 

if k = j ( case C ) 

then return the tree 

construct-tree (i,j-l,cut,%+1) ktl; 



end. 
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if i + I < k < j ( case D ) 

then return the tree 

c o n s t r u c t - t r e e  ( i , k - 1  , c u t , . ~ + l  ) c o n s t r u c t - t r e e  
( k , j  , cu t+2-£ , .~+2  ) 

end 

Lemma : 

The approximation algorithm constructs a binary search tree 

whose weighted path length P is bounded above by approx 

I + ~ aj +H. 

The algorithm can be implemented to work in O ( n log n ) units 

of time and O (n) units of space. 

proof : 

We state several simple facts. 

Fact I : 

If the actual parameters of a call construct-tree ( i, j, cut,Z ) 

satisfy conditions (I) to (4) and i + I + j then a k satisfying 

conditions (5) to (7) exists and the actual parameters of the 

recursive calls of construct-tree iniated by this call again 

satisfy conditions (I) to (4). 

Fact 2 : 

The actual parameters of every call of construct-tree satisfy 

conditions (I) to (4) ( if the arguments of the top-level call 

~]o ), 
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We say that node ~ ( leaf ~ respectively ) is constructed 

by call construct-tree ( i, j, cut,£ ) if h = j ( h = { or h = j ) 

and case A is taken or if h = i + I ( h = i ) and case B is taken 

or if h = j ( h = j ) and case C is taken or if h = k and case D 

is taken. Let b i be the depth of node Q and let aj be the 

depth of leaf ~ in the tree returned by the call construct-tree 

( o, n, o, I ). 

Fact 3 : 

If node Q ( leaf ~ ) is constructed by the call construct- 

tree ( i, j, cut,Z ) then b h + I = ~ ( a h = Z). 

Fact 4 : 

If node ~ ( leaf ~I ) is constructed by the call construct- 

tree ( i, j, cut,Z ) then Bh~ 2 -I+I ( ~h.<2 -Z+2 ). 

Fact 5 : 

The weighted path length Papprox of the tree constructed by the 

• + H. approximation algorithm is bounded above by I + ~-~3 

We sketch now an efficient implementation of our approximation 

algorithm. The complexity of the algorithm ~s determined by the 

complexity of the search for k. If we search for k simultaneously 

from both ends, i.e. try k = i + I, k = j, k = i + 2, k = j - I, 

... successively, then the complexity of this search is 0 ( min 

( k - i, j - k + I )). Hence we get the following recurrence re- 

lation for the complexity of construct-tree ( as a function of 

j-i). 
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if n : o ( by definition ) 

I 
o 

<~) ci if n = I 
T ( m )< 

max o<k<ml2 ~T (k) + T (m-k+1) + c 2 (k+1~J otherwise 

for some constants c I, c 2. 

Fact 7 : 

The recurrence relation ( { ) has a solution T (n) { 0 (n log n). 

Fact 8 : 

The approximation algorithm can be implemented to work in 

0 ( n log n ) units of time and 0 ( n ) units of space, 

q. e. d. 

Theorem I : 

Let eo' BI' ~1'''''Bn ' ~n be any frequency_ distribution, let 

Popt be the weighted path length of the optimum binary search 

tree for this distribution, let P be the weighted path length approx 

of the tree constructed by the approximation algorithm, and let 

I{ = - ~ S i log B i - [ ~j log ~j be the entropy of the frequency 

distribution. Then 

Popt ~ Papprox ~ I + [ ~j + H. 

Furthermore, this upper bounds is best possible in the following 

sens<~ : If c I [ B i + c 2 [ ~j + c 3 • H is an upper bound on 

Popt then c I ~ I, c 2 k [, and c 3 h I. 

proof : 

The first part of the theorem follows from the preceding !emma. 

The second part is proven by exhibiting suitable frequency distri- 

butions. 
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c I A 1 : Take n = 1, ~o = ~I = o and ~1 = I. 

c 2 k 2 : Take n = 2, ~o = e2 = ~I = B2 = o, el = I. 

- - = = 2 -k for all j. c 3 > I : Take n = 2 k I, B i o for all i and ~] 

It is easy to see that the complete binary tree is the 

optimal binary search tree for this distribution. Thus 

H = log n + I = k = [ I/2 k- • k = Popt" 
leaves 

a. e. d. 

E.N. Gilbert and E.F. Moore ( I ) proved this theorem in the 

special case that all internal nodes have weight zero 

( i.e.B. = o for all i ). Their proof suggest the approximation 
l 

algorithm which we presented above. Other " rules of thumb " are 

discussed in ~, 8] ; we prove in ~7] that the strategy " choose 

the root so as to equalize the total weights of the left and right 

subtree as much as poosible " yields trees whose weighted path 

length is bounded above by 2 + I, 44 • H. 

C.P. Sehnorr improves this bound to 3 + I, 07 • H in [8] . 

In the case that all internal nodes have weight o an algorithm 

and A.C. Tucker ~3~ finds the optimum binary search due to T.C. Hu 

tree in 0 ( n log n ) units of tame and o (n) units of space. In 

the general case, D.E. Knuth shows how to find the optimum tree 

in 0 ( n 2 ) units of time and 0 ( n 2 ) units of space FSq . 

III, Lower Bounds : 

We turn now to lower hounds. Again we will exhibit bounds which 

are best possible. Upper and lower bounds differ only by a con- 

stant factor; thus they define a narrow interval containing the 

weighted path length of the optimum ( and the nearly optimal ) 

search tree. This per~dts a simple a-priori test for the perfor- 
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mance of binary search trees. 

Theorem 2 : 

a) ( [I~ ) : If all intermal nodes have weight zero, 

( all B. = o ) then 
l 

H < P 
opt 

b) Otherwise 

I/log 3 H S P opt 

c) Both bounds are best possible in the following sense : 

If c I [ Bi + c2 [ ~j + c3 H is a lower bound on the weighted 

path length of optimum binary search trees then c 3 ~ I in ease 

a) and c 3 ~ I/log 3 otherwise. Furthermore, if c 3 = I in 

case a) or c 3 = I/log 3 in case b) then ci, c 2 ~ o. 

d) Both bounds are sharp for infinitely many distributions. 

Proof : 

Let ~o' ~I' ..., 8 n, a n be any frequency distribution and let 

Top t be the optimum binary search tree for this distribution, let 

b i ( aj ) be the distance of node Q ( leaf ~I ) from the 

root, and let Popt = [ ~i ( bi + I ) + [ ~j aj be the weighted 

path length of T 
opt" 

We define new frequency distributions. If all internal node 

have weight o ( al] ~. = o ) then define 
1 

B! = o for I < i < n 
-a. 

~j' = 2 3 for o < j < n , . .  _ 

otherwise define 

B'.' = 3 -(bi+1) 
for I < i < n l 

--61. 

e'~ = 3 ] for o < j < n. 

It is easy to see that [ ~ + [ ~, .-_ [ B., + [ n': : I. 
i 3 l 3 
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The following inequality is well-known ( cf. ~4~ ). If pl,...,pn 

and ql,...,qn are two frequency distributions ( [ Pi = [ qi = I ) 

then 

- [ Pi log Pi ~ - [ Pi lo~ qi 

wiuh equality if and Only if Pi = qi for all-i. 

It yields in our case : 

H = ~ ej log I/ej 

[ ~j log 1 / ~  
a. 

< ~ ~j log 2 ] = Popt 

{f ~iI inte]:nal nodes have weight zero and 

H = [ h i log I/h i + [ ~j log I/~j 

_ log I/~" < [ ~i :~og 1/hi  + [ ~j j 
(b i+ l )  a. 

< ~ B i log 3 + ~ ~j log 3 3 

( loc 3 ) Popt 

otherwise with equality if h i = B~ ( h'~ ) and aj = e[ ( ~'f ) 
z l 3 3 

for all i and j. 

Assume now that B i = h~l ( Si" ) and ~j = el3 ( e'~3 ) for all i and j. 

Then it is easy to see that the approximation algorithm of section II 

constructs Top t. Thus Popt = H if all internal nodes have weight o 

and Popt = I/log 3 H otherwise. The lower bounds stated above are 

hence sharp for infinitely many distributions. 

Part c) of the theorem is now inferred easily. The details are left 

to the reader. 

q.e.d. 
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TV. Conclusion 

We proved that Popt' the weighted path length of the optimum binary 

search tree, lies in the following interval 

I/log 3 H ~ P < I + H if all leaves have weight o 
opt - 

H 5 Popt ~ 2 + H if all inter~al node,s have weight o 

I/log 3 H 5 Popt ~ I + [ ej + H otherwise. 

All bounds are best possible. Furthermore, we exhibited an approxi- 

mation algorithm which constructs trees, whose path legth lies in the 

intervals stated above, and which can be implemented to work in 

0 ( n log ) units of time and 0 ( n ) units of space. 
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