
Best Possible Bounds on the Weighted

Path Length of Optimum Binary Search

Trees

by

Kurt Mehlhorn

Abstract :

We derive upper and lower bounds for the weighted path length P
opt

of optimum binary search trees. In particular,

I/Iog3 H S Popt ~ 2 + H

where H is the entropy of the frequency distribution. We also present

an approximation algorithm which constructs nearly optimal trees.

I. Introduction

"One of the popular methods for retrieving information by its 'name'

is to store the names in a binary tree. We are given n names

BI,B2,...,B n and 2n+I frequencies B 1,...,Bn,~o,...,en with ZB.+Z~.=I.I 3

Here 8. is the frequency of encountering name B., and e. is the fre- l l]

quency of encountering a name which lies between Bj and Bj+I, (a name

in the interval (Bj,Bj+I)) ~o and ~n have obvious interpretations".

([5]).

Fachbereich Io

Angewandte Mathematik und Informatik

Universit~t des Saarlandes, D 66 Saarbr~cken

32

A binary search tree T is a tree with n interior nodes (nodes

having two sons), which we denote by circles, and n + I leaves,

which we denote by squares. The interior nodes are labelled by

the B. in increasing order from left to right and the leaves are
1

labelled by the intervals (Bj, Bj+ I) in increasing order from

left to right. Let b be the distance of interior node B. from the
l l

root and let a~ be the distance of leaf (Bj, Bj+ I) from the root.

To retrieve a name X, b i + I comparisons are needed if X = B~ and

< X < B . Therefore we define comparisons are required if B 3 j+1

the weighted path lenght of tree T as :

P =
n n

~ S i (bi+1) + X e a.
j -=o]] i=I

It is equal to the expected number of comparisons needed to re-

trieve a name.

The following two problems are among the most important in this

area (E 5 ~).

a! Prove good lower and upper bounds for the weighted hath length

of optimum binary search trees, i.e. the trees with minimal

weighted path length. Such bounds would provide us with a

simple a-priori test for the performance of binary search

trees.

b) Design efficient algorithms for constructing optimal (or

nearly so) binary search trees.

In this paper, we attempt to solve both problems.

33

II. U~ner Bounds

In this section, we will show that I + [~j + H -- H =

- [S i log ~i - ~ ej log ej is the entropy of the frequency

distribution -- is an upper bound on the weighted path length

P of the optimum binary search tree. Furthermore this bound
opt

is best possible among the bounds of the form

ci ~ Bi + c2 ~ ej + c3 " H.

We prove the upper bound by describing and analyzing an

approximation algorithm. This algorithm constructs binary

search trees in a top-down fashion. It uses bisection on the

set
i-I

{ s. ; s. = [(~ + ~) + s. + ~ /2
l l p=o P P 3. l

and o < i _< n }, i.e.

the root k is determined such that Sk_ I i I/2 and

s k A I/2. It proceeds then recursively on the subsets

{ si; i & k - I } and { si; i ~ k }.

The main program

beqi~n
i-I

let s. +
l p=o

(~p + Bp) + B.I + ~i/2 for o _< i _< n;

construct-tree (O, n, O, 1)

end

uses the recursive procedure construct-tree.

construct-tree (i, j, cut, Z) ;

comment we assume that the actual parameters of any call of

construct-tree satisfy the following conditions.

(1) i and j are integers with o ~ i < j ~ n,

34

(2) Z is an integer with Z Z I,

o-P (3) cut = [x - with x e { 0, I } for all p,
p=1 P P

~4) cut ~< s i ~< sj < cut + 2 -Z+I.

A call construct-tree (i, j, -, -,) will construct a binary.

search tree for the nodes ~ ~ and the leaves

..... IT_l,

beoin

if i + I = j (case A)

then return the tree ~ % _

else comment we determine the root so as to bisect the interval

(cut, cut + 2 -~+I)

begin

determine k such that

(5) i < k % j

< cut + 2 -Z (6) k = i + I or Sk_ I _

(7) k = j or s k Z cut + 2 -~

cov~ent k exists because the actual parameters are

supposed to satisfy condition (4);

if k = i + I (case B)

then return the tree

~I construct-tree (i+1,j,eut+2-9",Z+1) ;

if k = j (case C)

then return the tree

construct-tree (i,j-l,cut,%+1) ktl;

end.

35

if i + I < k < j (case D)

then return the tree

c o n s t r u c t - t r e e (i , k - 1 , c u t , . ~ + l) c o n s t r u c t - t r e e
(k , j , cu t+2-£ , .~+2)

end

Lemma :

The approximation algorithm constructs a binary search tree

whose weighted path length P is bounded above by approx

I + ~ aj +H.

The algorithm can be implemented to work in O (n log n) units

of time and O (n) units of space.

proof :

We state several simple facts.

Fact I :

If the actual parameters of a call construct-tree (i, j, cut,Z)

satisfy conditions (I) to (4) and i + I + j then a k satisfying

conditions (5) to (7) exists and the actual parameters of the

recursive calls of construct-tree iniated by this call again

satisfy conditions (I) to (4).

Fact 2 :

The actual parameters of every call of construct-tree satisfy

conditions (I) to (4) (if the arguments of the top-level call

~]o),

36

We say that node ~ (leaf ~ respectively) is constructed

by call construct-tree (i, j, cut,£) if h = j (h = { or h = j)

and case A is taken or if h = i + I (h = i) and case B is taken

or if h = j (h = j) and case C is taken or if h = k and case D

is taken. Let b i be the depth of node Q and let aj be the

depth of leaf ~ in the tree returned by the call construct-tree

(o, n, o, I).

Fact 3 :

If node Q (leaf ~) is constructed by the call construct-

tree (i, j, cut,Z) then b h + I = ~ (a h = Z).

Fact 4 :

If node ~ (leaf ~I) is constructed by the call construct-

tree (i, j, cut,Z) then Bh~ 2 -I+I (~h.<2 -Z+2).

Fact 5 :

The weighted path length Papprox of the tree constructed by the

• + H. approximation algorithm is bounded above by I + ~-~3

We sketch now an efficient implementation of our approximation

algorithm. The complexity of the algorithm ~s determined by the

complexity of the search for k. If we search for k simultaneously

from both ends, i.e. try k = i + I, k = j, k = i + 2, k = j - I,

... successively, then the complexity of this search is 0 (min

(k - i, j - k + I)). Hence we get the following recurrence re-

lation for the complexity of construct-tree (as a function of

j-i).

37

if n : o (by definition)

I
o

<~) ci if n = I
T (m)<

max o<k<ml2 ~T (k) + T (m-k+1) + c 2 (k+1~J otherwise

for some constants c I, c 2.

Fact 7 :

The recurrence relation ({) has a solution T (n) { 0 (n log n).

Fact 8 :

The approximation algorithm can be implemented to work in

0 (n log n) units of time and 0 (n) units of space,

q. e. d.

Theorem I :

Let eo' BI' ~1'''''Bn ' ~n be any frequency_ distribution, let

Popt be the weighted path length of the optimum binary search

tree for this distribution, let P be the weighted path length approx

of the tree constructed by the approximation algorithm, and let

I{ = - ~ S i log B i - [~j log ~j be the entropy of the frequency

distribution. Then

Popt ~ Papprox ~ I + [~j + H.

Furthermore, this upper bounds is best possible in the following

sens<~ : If c I [B i + c 2 [~j + c 3 • H is an upper bound on

Popt then c I ~ I, c 2 k [, and c 3 h I.

proof :

The first part of the theorem follows from the preceding !emma.

The second part is proven by exhibiting suitable frequency distri-

butions.

38

c I A 1 : Take n = 1, ~o = ~I = o and ~1 = I.

c 2 k 2 : Take n = 2, ~o = e2 = ~I = B2 = o, el = I.

- - = = 2 -k for all j. c 3 > I : Take n = 2 k I, B i o for all i and ~]

It is easy to see that the complete binary tree is the

optimal binary search tree for this distribution. Thus

H = log n + I = k = [I/2 k- • k = Popt"
leaves

a. e. d.

E.N. Gilbert and E.F. Moore (I) proved this theorem in the

special case that all internal nodes have weight zero

(i.e.B. = o for all i). Their proof suggest the approximation
l

algorithm which we presented above. Other " rules of thumb " are

discussed in ~, 8] ; we prove in ~7] that the strategy " choose

the root so as to equalize the total weights of the left and right

subtree as much as poosible " yields trees whose weighted path

length is bounded above by 2 + I, 44 • H.

C.P. Sehnorr improves this bound to 3 + I, 07 • H in [8] .

In the case that all internal nodes have weight o an algorithm

and A.C. Tucker ~3~ finds the optimum binary search due to T.C. Hu

tree in 0 (n log n) units of tame and o (n) units of space. In

the general case, D.E. Knuth shows how to find the optimum tree

in 0 (n 2) units of time and 0 (n 2) units of space FSq .

III, Lower Bounds :

We turn now to lower hounds. Again we will exhibit bounds which

are best possible. Upper and lower bounds differ only by a con-

stant factor; thus they define a narrow interval containing the

weighted path length of the optimum (and the nearly optimal)

search tree. This per~dts a simple a-priori test for the perfor-

39

mance of binary search trees.

Theorem 2 :

a) ([I~) : If all intermal nodes have weight zero,

(all B. = o) then
l

H < P
opt

b) Otherwise

I/log 3 H S P opt

c) Both bounds are best possible in the following sense :

If c I [Bi + c2 [~j + c3 H is a lower bound on the weighted

path length of optimum binary search trees then c 3 ~ I in ease

a) and c 3 ~ I/log 3 otherwise. Furthermore, if c 3 = I in

case a) or c 3 = I/log 3 in case b) then ci, c 2 ~ o.

d) Both bounds are sharp for infinitely many distributions.

Proof :

Let ~o' ~I' ..., 8 n, a n be any frequency distribution and let

Top t be the optimum binary search tree for this distribution, let

b i (aj) be the distance of node Q (leaf ~I) from the

root, and let Popt = [~i (bi + I) + [~j aj be the weighted

path length of T
opt"

We define new frequency distributions. If all internal node

have weight o (al] ~. = o) then define
1

B! = o for I < i < n
-a.

~j' = 2 3 for o < j < n , . . _

otherwise define

B'.' = 3 -(bi+1)
for I < i < n l

--61.

e'~ = 3] for o < j < n.

It is easy to see that [~ + [~, .-_ [B., + [n': : I.
i 3 l 3

40

The following inequality is well-known (cf. ~4~). If pl,...,pn

and ql,...,qn are two frequency distributions ([Pi = [qi = I)

then

- [Pi log Pi ~ - [Pi lo~ qi

wiuh equality if and Only if Pi = qi for all-i.

It yields in our case :

H = ~ ej log I/ej

[~j log 1 / ~
a.

< ~ ~j log 2] = Popt

{f ~iI inte]:nal nodes have weight zero and

H = [h i log I/h i + [~j log I/~j

_ log I/~" < [~i :~og 1/hi + [~j j
(b i+ l) a.

< ~ B i log 3 + ~ ~j log 3 3

(loc 3) Popt

otherwise with equality if h i = B~ (h'~) and aj = e[(~'f)
z l 3 3

for all i and j.

Assume now that B i = h~l (Si") and ~j = el3 (e'~3) for all i and j.

Then it is easy to see that the approximation algorithm of section II

constructs Top t. Thus Popt = H if all internal nodes have weight o

and Popt = I/log 3 H otherwise. The lower bounds stated above are

hence sharp for infinitely many distributions.

Part c) of the theorem is now inferred easily. The details are left

to the reader.

q.e.d.

41

TV. Conclusion

We proved that Popt' the weighted path length of the optimum binary

search tree, lies in the following interval

I/log 3 H ~ P < I + H if all leaves have weight o
opt -

H 5 Popt ~ 2 + H if all inter~al node,s have weight o

I/log 3 H 5 Popt ~ I + [ej + H otherwise.

All bounds are best possible. Furthermore, we exhibited an approxi-

mation algorithm which constructs trees, whose path legth lies in the

intervals stated above, and which can be implemented to work in

0 (n log) units of time and 0 (n) units of space.

Acknowledc~ement :

I want to thank Prof. C.P~ Schnorr for many extremely stimulating

discussions on the subject of this paper.

Biblio~ra~h~

I. E.N. Gilbert and E.F. Moore : Bell System Techn. Journal 38
(1959), 933 - 968.

2. T.C. Hu and K.C. Tan : Least Upper Bound on the Cost of Optimum
Binary Search Trees, Acta Informatica, I, 307 - 31o (1972).

3. T.Co Hu and A.C. Tucker : Optimal Computer Search Trees and
variable length alphabetic codes, Siam J. Applied Math. 21,
514 - 532, (1971).

4. T. Kameda and K. Weihrauch : EinfHhrung in die Kodierungstheorie,
B I Skripten zur Informatik, Vol. 7.

5. D.E. Knuth : Optimum Binary Search Trees, Acta Informatica, I,
14 - 25, 1971.

6., D.E. Knuth : The Art of Computer Programming, Vol. 3°

7. K. Mehlhorn : Nearly Optimum Binary Search Trees, Preorlnt,
Fachbereich 1o, Universit~t des Saarlandes, 1974.

8. C.P. Sch~orr : TWo Algorithms for Nearly Optimal]Zina>~v Search
Trees, Preprint, Fachbereich Mathcmatik, Universit2it Frankfurt, 1974.

