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I. INTRODUCTION 

Let X be a finite alphabet and X* the free monoid generat- 

ed by X. A subset L of X is bounded iff there exists a finite 

number of words Wl,W2,...,Wk of X* such that L c w~ w; ...w; I 

Bounded languages were introduced in [I] by Ginsburg and Spanier as a 

special family of context-free languages which has "simple" structural 

properties and is intimately related to certain algebraic concepts. In 

[2] Ginsburg and Spanier considered also the particular case of bound- 

ed regular sets for which derived some characterization results. 

In this paper the boundedness of a language is related with the 

presence in it of strings "without repetitions" of arbitrary length, and 

a new characterization of bounded regular sets is given (theorem 2). 

The problem of existence of strings "without repetitions" of arbitrary 

length was first considered and solved by Thue [3] giving an explicit 

construction of such strings. Later the same property was rediscovered 

by other people in different context as symbolic dynamics and the theory 

of semigroups. Many references on the subject can be found in [4] 

To formalize these notions let us now introduce for any positive integer 

p the following subset of X * : 

L = { f ~X [ f # uvPw for all u, v, wE X with IVJ > O } . 
P 

In the sequel, if it is necessary, we shall use the symbol L (X) to 
P 

specify the alphabet X on which L is defined. We note that if 
P 
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p :< p' , L c L p p' - 

stated as follows 

The basic result of Thue for our pourposes can be 

Theorem 1 (Thue). Let IXI be the cardinality of the alphabet X. 

If fXl = 2, L 3 is infinite; if IXl> 2, L 2 is infinite. 

Given an arbitrary subset L of X , we consider now the 

intersections L N~L for any p. We have the following 
P 

Proposi~on 1 If L is bounded, L n L is finite for any p. 
P 

Proof. Let L c w~ w ~ . w ~ If f ~ L, there exist k positive 
2 "" k " 

n2 wknk integers nl, n 2 ..... n k such that f = w~ 1 w 2 ... 

The length of f is then Ifl = nllWll+ n21w21 + ... + nklWkl 

Let r be the maximal length of the words Wl, w 2 .... w k . 

For any p > o, if Ifl ~pkr , there exists an index j such that 

n. ~ p . Hence, for any f e L such that IfI~pkr, f ~ L This 
3 P 

completes the proof of the proposition. 

Proposition 1 in the case L = X ~ gives immediately, by 

theorem i, the following result of Ginsburg and Spanier [i I concerning 

the existence of unbounded sets. 

Corollary If IXl~ 2, X* is not bounded. 

The converse of the proposition 1 is not generally true. 

The main result of the paper is the following 

Theorem 2. Let L be a regular set. L is bounded if and only if 

L D L is finite for any p. 
P 

The hypothesis that L is regular is essential, as shown by 

the following counterxample. 

Let I XI ~ 3, x s X and Y = X\ {x} . Consider the language 

L = {f = gxlgl I g y~} 

L "is context - free and is not bounded; however, for any p > o, 

L D Lp is finite. Indeed if f s L and Ifl = 2p, then f = gx p 
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for some g s YP Hence f N L 
P 

The proof of theorem 2 is based on a certain number of tech- 

nical lemmas which are reported in the next section without proof. 

In Section 3 we give in detail the kernel of the proof of the theorem. 

2. SOME PRELIMINARY LEMMAS. 

In this section we give, without proof, some lemmas which 

will be used in the proof of theorem 2 in the next section. 

The f~ st lemma concerns the problem of the invariance, under 

a morphism 8, of the sets L . 
P 

Lemma i. Let X and Y be two finite alphabets and let 8 

morphism from Y* to X* For all words v ¢ Y* 

be a mono- 

v s L (Y) => 8(v) s L (X) 
P JSlP 

where 181 is the maximal length of words in e (Y) c x* 

Lemma 1 is not generally true if Y is not finite and e 

is not one-to-one. The next lemma concerns regular sets 

Lemma 2. Let L be a regular set. There exist two positive integers 

re, k, such that for all u,v,w ¢ X* and for all n_> m 

n n+k 
uv w ¢ L < > uv w a L. 

The following notations ~ill be now introduced. Let f and 

v be words of X* v is a subword of f iff there exist u, w s X* 

such that f = uvw. If L is a subset of X* , we denote by S(L) the 

set of all the subwords of words in L. 

Lemma 3 Let L be a regular set. 

S(L) ~ L finite for any p < > L n L finite for any D. 
P p - 

In order to state the next lemma let us now give some other 

k 
definitions. An element f ¢ X* is primitive iff any relation f = g 

implies f = g. Let L be a subset of X w . An element v ~ X* is 
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an iteratinq factor of L iff there exist u,w e X ~ such that uv~w N L is 

k Xe infinite. If v is an iterating factor of L and v = g for some g 

and k > o, then also g is an iterating factor of L. We are here inter- 

ested only to primitive iterating factors of a set L. The proof of the 

following lemma makes use of theorem ioi of Ginsburg and Spanier in [2]. 

Lemma 4. Let L be a regular set having only a finite number of primiti- 

ve iterating factors. Then L is bounded. 

3. PROOF OF THEOREM 2 

Suppose L be a regular set such that L Q L is finite for 
P 

any p. To prove that L is bounded it is sufficient to prove, by lemma 

4, that L has a finite number of primitive iterating factors. The argu- 

ment is by contradiction. By lemma 3, if L n L is finite for any p, 
P 

also S(L) n L is finite for any p. Let y(p) be the maximal length of 
P 

words in S(L) o L , and let m,k be positive integers as in the lemma 2. 
P 

If L has not a finite number of primitive iterating factors, there 

exists a primitive iterating factor v such that I v ] > Y(m). The condi- 

tions v ~S(L) and IvI >y(m) imply that v ~ L , and th~n there exist 
m 

m 
a,b,c c X , with b primitive, such that v = ab c. Since v is an iter- 

1 
ating factor of L, there exist u,w e X and n > i~iY(3(ivI+k_ bl)) such 

n 
that uv w ~ L. We may write 

n m m m m  m a b m 
uv w = u~a ~ c a ~ e a b c ..... c)w ~ L 

I 
n times 

n 
By lemma 2, if we substitute, as exponent of each factor b in uv w, m+k 

for m, we obtain again a word of L. Consider now the alphabet 

Y = {yo,y I } and a map y from Y to the integers { o,I } defined as fol- 

lows: T(y O) = o, T(y I) = 1. Let s be a word of Y~ of length n such 

that s s L3(Y). If s =SlS 2. . .Sn, si ~ Y' consider now the following 
w 

word f of X , which, by the above remark , belongs to L: 

f = uab m+ ~(Sl)kcab m+T (s2)kcabm+T (s3)kc .. oab m+~ (sn)kcw ~ L. 
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The subword h of f defined by the equality f = uhw plays an es- 

sential role in the rest of the proof. 

We have clearly lhl > nlv I 

X* Let 8 be the morphism from Y* to defined as follows 

e(Yo = cab m 

(yl) cab m+k 

We prove now that @ is a monomorphism. Let us introduce a new alphabet 

Z = {Zl, z 2 }, and exprime 6 as the composition of the morphism e 1 

from Y* to Z* and e from Z* to X* defined as follows: 
2 

le I m le2(Zl ) = ca 
e (yo) = ZlZ 2 

(yl) ZlZ2m+k 82(z 2) = b 

81 is clearly a monomorphism. 82, by a well known result in the 

theory of free monoids [5], is a monomorphism if and only if ca and 

b are not powers of the same word. Since b is primitive by hipothesis 

if ca and b are powers of the same word, there exists q>o such that 

ca = b q . We have then 

I~ = bqlb 1 
= b 2 b q2 

with b I b 2 = b and ql + q2 = q - i. If follows that the word 

v c = b m b ql b I (b 2 bl)q+m = ab m b2bq2 = 

is not primitive in contradiction with the hypothesis. Then 92 is a 

monomorphism. Since the composition of two monomorphisms is a mono- 

morphism, 8 is also a monomorphism . This, with the condition 

s e L3(Y), implies, by lemma i, 

with 101= I vl + k Ibl . 

Consider now the word h e S(L~ 

that h is a subword of e(s) 

L3~8"I I We have then h e S(L)O 

e(s) ~ Z31el(X), 

previously defined. It is easy to see 

and then, clearly, h belongs to 

L 3 lel and JhJ > nlv I > y(3 lel), a 
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contradiction. Hence the starting hypothesis is not true and 

only a finite number of primitive iterating factors. 

This completes the proof of the theorem. 

L has 
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