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Abstract: 
One of the methods used for defining translations is the socalled syntax-directed 
translation scheme which can be interpreted as a pair of rather similar grammars 
with the productions working in paral lel.  Because of the s imi lar i ty  of the grammars 
each of the two grammars " f i t s "  the other in the sense that for each derivation pro- 
cess in one grammar leading to a terminal word the corresponding derivation process 
in the other grammar also leads to a terminal word. For many practical applications 
i t  suffices to consider the case that one of the grammars f i t s  the other, but not ne- 
cessarily conversely. Investigating this idea, translations are obtained which are 
more powerful than the syntax-directed. I t  is shown that one can determine whether 
a given grammar f i t s  another given grammar. As a by-product, i t  is established that 
the containment problem for Szilard languages is decidable. 

I .  MOTIVATION AND DEFINITIONS 

The concept of transforming certain sequences of symbols into other sequences of sym- 
bols is of crucial importance in many areas of computer science. Consider e.g. a pro- 
gramming language such as ALGOL 60. A compiler for ALGOL 60 supposedly transforms a 
given ALGOL 60 program - and such a program is nothing but a sequence of symbols, after 
al l  - into another sequence of symbols, namely the corresponding machine-language or 
assembly-language program. Or consider a commercial environment in which certain data 
f i les  are to be restructured in a specified manner: again this is a situation which 
can be understood as a transformation of sequences of symbols. 
One possib i l i ty  for defining transformations of sequences of symbols is the notion 
of (formal) translation. 
Definit ion 1: 
A (formal) translation T is a set of pairs (x ,x ' )  of words x and x' over some alpha- 
bets E and s ' .  In tu i t i ve ly ,  i f  (x ,x ' )  is element of a translation T, then x is the 
given input word and x' the desired output word. The set of a l l  input words of T is 
called the domain of T and defined by dom(T)={xI(x,x')eT for some x ' } .  The range of T 
is the set of al l  output words of T and defined by ran(T)={x' l(x,x')~T for some x}. 
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For a family ~ of t ranslat ions dom(~):{dom(T)ITeT} and ran(T):{ran(T)IT6T}. 
Notation: 
A context- f ree ~rammar, cal led ~rammar,for short, is denoted by a quadrupel G:(N,S,P,S) 
where N is the set of nonterminals,~, is the set of terminals, Nn r. =~, P is the set of 
productions and S the star t ing symbol. 
In order to assign labels to the productions in P, we consider a set of labels Labp 
and a sur ject ive mapping X: Labp + P. I f  l~Labp is one of the labels of the produc- 
t ion A-~ then we wri te A~ 1 :eP.The usual re la t i on :>~  for der ivat ions in G is ex- 
tended in the fol lowing way: 

( i )  ~ i  ~>J~2' if~l=~2G(Nu~) ~ 

(2) ~I 1~*~2' i f  ~l=6AY,~2:~Y 

and A~ :eP 
dl ,  ~>~3 ~>~2 (3) ~i = ~ : 2 '  i f  ~1 

where deLab~, leLabp 
We often abbreviate ~i d--~>*~2 to just ~i --~2 and call the word d in Lab; the control- 
word of this derivation. The controlword indicates in which sequence the productions 
are applied, but not at which place. Thus, different derivations may have the same 
control word. 
A derivation S d-->~ 2 is called terminal i f  ~2 is in ~ and in this case the terminal 
controlword d is said to generate x. A word B in (NuZ) ~ is said to be a sentential 
form i f  there is a controlword d such that S d__~6. The set L(G)={xe~'l S d-->x} is called 
the language ~enerated by G. The Szilard language of G, denoted by Sz(G), is the set 
of all control words of terminal derivations in G, i.e. 

Sz(Gl:{deLabp~ J S d=>x, xeL(G)}. 

For convenience i t  is assumed that grammars are always reduced, i .e .  for  each nonter- 
minal A~S there are controlwords d I and d 2 such that 

H _  H 
S ~=1>xAz----~ xyz for some x,y ,z  in s ~" 
Notation: 
Throughout th is  paper, l e t  G=(N,Z,P,S) and G'=(N ' ,S ' ,P ' ,S ' )  be two reduced grammars 
such that Labp=Labp,. Now the re la t ion Co from P to P' is defined by (p,p')eCo i f  p 
and p' have the same label leLabp=Labp,. Whenever a production p in P is applied in 
a der ivat ion in G, one of the productions p' such that (p,p')eCo, called a correspon- 
ding production, has to be applied in G'. For convenience, we choose N:{A I . . . . .  An}, 

i N'={A~ . . . . .  A n , } ,  S:A I and S':A~. 
Def in i t ion i :  
The t ranslat ion T(G,G') ~enerated by the ~rammar pair (G,G') is defined by 

T(G,G ' )= { (x ,x ' )ez~x~ '~ IS~>x  and S' =d>x' for  a terminal controlword deLabp subject to 
condit ion ( i )  below} 
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Condition (1): 

d=~ 1 d=~ d 1 ~ 
I f  S ~ = > y  xezi,S ' ~8'  :>y' x'e~'~ and (A~ ~, A '~  ~')eCo, then 

(i) the leftmost A in B is replaced and 
( i i )  i f  B' contains an A' generated at the same time as the leftmost A in B, then 

that A' is replaced; otherwise the leftmost A' in B' is replaced. 
The above condition rules out certain undesired pairs of terminal derivations. By 
determining the place where to a apply a given production, there is a unique de- 
rivation in G' for each terminal controlword dGLab~p. Larger examples for grammar 
pairs translating simple ALGOL 60 programs to equivalent assembly language programs 
are given in KANDZIA und LANGMAACK (1973) as well as in MAURER und SIX (1974). 
A major problem with translations generated by grammar pairs is the fact that a ter- 
minal controlword in one grammar is not necessarily again a terminal controlword in 
the other grammar. 
This leads to the introduction of agreeable grammar pairs and agreeable translations. 

Definition 2: 
A grammar pair (G,G') is called agreeable i f  Sz(G)=Sz(G') that is i f  each terminal 
controlword in one of the grammars G and G' is a terminal controlword in the other 
grammar. A translation is called agreeable i f  i t  is generated by an agreeable gram- 
mar pair. 
PENTTONEN (1974) has shown that for two reduced context-free grammars G and G', 
Sz(G):Sz(G') i f  and only i f  G and G' agree up to terminals, up to a one-one rena- 
ming of nonterminals and up to a permutation of nonterminals on the right hand side 
of corresponding productions, the correspondence given by a bijection from P onto P'. 

Since the conditions in the above theorem are exactly those LEWIS and STEARNS (1968) 
and AHO and ULLMAN (1969 and 1972) used for defining syntax-directed translations, 
the family A_~T of agreeable translations equals the family SDT of syntax-directed 
translations and dom(SDT)=ran(SDT)=CF, where C__FFdenotes the family of context-free 
languages. 
For many applications, the translation process is only performed in one direction. 
This leads to the following 
Definition 3: 

A grammar pair (G,G') is called f i t t ing i f  Sz(G)~Sz(G') that is i f  each terminal con- 
trolword in G is a terminal controlword in G'. The translation T(G,G') is called 
f i t t ing i f  i t  is generated by a f i t t ing grammar pair (G,G'). 

I I .  PROPERTIES OF FITTING TRANSLATIONS 

Let FT denote the family of f i t t ing translations. 
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Theorem i: 
SDT~ F T 
Proof: 
By definit ion of agreeable translations, SDT~FT. Now consider the translation 

T={Cabc)n,anbncn)In~l} ~ SD__ ! (ran(T) is not a context-free language). T is generated 
by the f i t t ing  grammar pair (G,G'), where 
G=({A I . . . . .  A6},{a,b,c},P,A 1) 

I i l  G'={A~ . . . . .  A4}, {a,b,c},P ,A1), 

Labp=Labp,={1,2 . . . . .  7} and 
productions in P 

(A 1 ~ A 2 

(A 2 ~ aA 3 

(A 3 ~ bA 4 
4 

(A 4 ÷ cA 2 

(A 2 ~ aA 5 

(A 5 ~ bA 6 

(A 6 ~ c 

corresponding productions in P' 
AIi A~A~A~) 

A} aA~ 

+3 bA~ 

4 cA~ 

~7C I .  

By definit ion, dom(FT) = C__FF. 
I t  can be shown easily that for a f i t t ing  grammar pair (G,G') the language ran(T(G,G')) 
is a matrix language. By the following theorem this inclusion is proper. 
Theorem 2: 
Let T be a f i t t ing  translation. Then the Parikh-mapping of the language ran(T) is a 
semilinear set. 
For the proof, a system of linear diophantine equations associated with G is used. A 
meaningful set of solutions of this system is considered and proved to be a semi- 
linear set. Now a linear transformation is applied to yield the Parikh-mapping of 
ran(T). 
Since there are matrix languages whose Parikh-mapping is not semilinear, this implies 
Corrollary 3: 
The family ran(F_T_T) is a proper subset of the familyJw~ E of matrix languages: 
ran(FT)~y~ E. (The upper index ¢ indicates that productions A÷~ are allowed). 
For practically applying the concept of f i t t ing  translations, i t  is important to de- 
termine whether a given grammar pair is f i t t i ng  or not. In an earlier report by 
KRIEGEL and MAURER (1974) i t  has been shown that this " f i t t ing  problem" and the equi- 
valent containment problem for Szilard languages are decidable. An outline of the 
proof follows. I t  is obvious, to apply Parikh's theorem to the sentential forms of 
the grammar G. Since we are interested neither in the terminals nor in the position 
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of the nonterminals, but only in the number of occurrences of the nonterminals, we cha- 
racterize sentential forms in G by n-vectors whose i-th component indicates the 
number of occurrences of the nonterminal A i ,  l<__i<_n. 
Notation: 
For some fixed natural number n, an n-vector is an ordered n-tupel of integers, an 
n+-vector an ordered n-tupel of nonnegative integers. 

0 denotes the zero-vector, e i ,  11i~n, the i-th unitary vector. 
n-vectors are denoted by u,v,w,t,b, specially O,ei,l~i~n, n'-vectors by u ' , v ' ,w ' , t ' , b ' ,  
specially O',e~, 1<i<n'.== Let V,V',V+ and V'+ denote the sets of all n-vectors, n'-vec- 
tors, n+-vectors and n~-vectors, respectively. 

Let the grammars G=(N,Z,P,S) and G'=(N',S',P',S') now be in vector representation,i.e. 
1 N={e I . . . .  ,en},%=~, S=e I and a production in P has the form e i ÷ u, l~i~n, u an n+- 

vector and l~Labp. The usual relation d~, d~Lab;, for sentential forms is carried 
over to n+-vectors. Clearly, d is a terminal controlword i f  e I ~> O. An n+-vector v 
is a sentential form in G i f  there is a controlword d such that e I ~> v. Since G is 
reduced, for each nonterminal e i, 2!i!n, there are controlwords d I and d 2 such that 

e I d~---~ ei d2> O. 

G' is given in the analogous way. Clearly, for a f i t t ing grammar pair (G,G') in vector 
representation e l j~O implies e~ --~0 . Now by Parikh's theorem i t  follows immediately: 
Lemma 4: 
The set M={wV+Iv is a sentential form in G} is semilinear. 
Definition 4: I. 

et 1-~-~u~eP', l<_j~n' and l<i<m The value of d, in Let d=1 1 . . . .  Im~Lab P, such that 
symbols z(d),  is defined by m 

e~i u~ ' z(d) : ~ ( • - .)~V 
i : l  

Clear ly,  i f  d is a terminal controlword in G' such that v'  ~> 0 ' ,  then z(d)=v'~V~. 
For any sentential form wV+ in G the set f ( v )  is defined by f ( v ) : { z (d )~V ' I v  ~ ) 0 ,  
d cyc le- f ree} .  
Add i t iona l ly ,  define f(O) = {0 ' } .  
A controlword d in G such that v --d'~o is cal led cycle- f ree i f  in no branch of an 
associated der ivat ion tree any nontermina] occurs more than once. 
Note that the elements of f ( v )  may have negative components. 
An n~-vector w'6f(v) can be considered a nonterminal balance vector which should be 
generated by the same controlword as v. 
Let ~(S) denote the number of elements of the set S. For the fol lowing de f i n i t i on ,  we 
suppose #(f (v))=1 for  each sentential form v in G, which w i l l  turn out to be reasonab- 
le in Theorem 5. 
Def in i t ion 5: 
Let E~V+ be a l inear  set in the semilinear set M and bo,b I . . . . .  bk~V + be a basis of E. 
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E is termed well-formed, i f  for all teV+ such that t=bo+b i, l~i<_k, and for t:b O, 
t ~ w, leLabp, implies f( t )  ~> f(w). 
The ~rammar pair (G,G') is well-formed, i f  M is the finite union of well-formed linear 
sets. 
Now we can state necessary and sufficient conditions that a grammar pair (G,G') is 
f i t t ing. 
Theorem 5: 
(G,G') is a f i t t ing grammar pair i f  and only i f  the conditions (1)-(4) hold: 
(1) #(f(ei))=l for all i ,  l~i<__n 
(2) f(el) = {e~} 
(3) Let E~V+ be a linear set in the semilinear set M and bo,b I . . . . .  bk~V + be a basis 

of E. Then f(bi) is an n~-vector for all i ,  O~i<__k. 
(4) The grammar pair (G,G') is well-formed. 
Obviously, the conditions (1)-(4) in Theorem 5 are decidable. They can be easily for- 
mulated as algorithm for deciding whether or not a given grammar pair (G,G') is f i t -  
ting. 
Given a grammar pair (G,G'), we use the above algorithm to test whether (G,G') is 
f i t t ing. If  the result is "yes", we parse a given inputword xGL(G) (e.g. with Earley's 
algorithm) yielding a controlword d such that S ~>x. Observing condition (1) of de- 
finition 1 this d generates an outputword x' such that (x,x')GT(G,G'). 
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