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I. Introduction 

One of the oldest problem in the theory of automata and languages is the so-called 

LBA problem, that is the question whether deterministic linear bounded automata 

are as powerful as nondeterministic linear bounded automata. This problem can be 

formulated also in the terminology of computational complexity. Let us denote by 

TAPE(f(n)) the class of all languages which are acceptable by deterministic multi- 

tape Turing machines operating with tape bound f(n). Correspondingly NTAPE(f(n)) is 

defined taking the nondeterministic Turing machine as the underlying machine model. 

Then the LBA problem is just the question whether TAPE(n) is equal to NTAPE(n). 

It is not difficult to see that equality results which hold for some tape function 

do hold also for every tape function which grows more rapidely. That means: 

Let g: ~ ÷~ be some function such that NTAPE(Iog n) ~ TAPE(g(Iog n)) holds. 

Then NTAPE(f(n)) c TAPE(g(f(n))) holds for all functions f: ~ ÷~ such that 

f(n) > log n for all n. 

In particular we have: If NTAPE(Iog n) = TAPE(log n) then also NTAPE(n) = TAPE(n). 

Therefore we can restrict our study to the behaviour of (log n)-tape bounded non- 

deterministic Turing machines. This has been done before by J. Hartmanis ~2J and 

I.H. Sudborough ~8~ . First we define a subclass of NTAPE(Iog n). 

Definition: Let C be the class of all languages accepted by nondeterministic 

one-way one-counter automata. Such an automaton consists of a finite control~ an 

input tape where one head is moving from the left to the right and of a counter. 

The next move function is nondet~rministic. 

It is not difficult to see that C c NTAPE(Iog n) because every string accepted 

by such an automaton is accepted also by a sequence of moves such that the numbers 

stored by the counter are always lineary bounded by the lenght of the input. Further- 

more it is clear that all elements of C are context-free languages. In section 2 we 

prove the following theorem. 

Theorem 1: Let ~ > I be some rational number. Then 

NTAPE(Iog n) ~ TAPE((Iog n) e) is equivalent to C ~TAPE((log n)~). 

Because of the results of P.M.Lewis, R.E. Stearns and J. Hartmanis ~ we know 
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that every context-free language can be accepted by a deterministic Turing machine 

with tape bound (log n) 2. Therefore we get the result of W.J. Savitch [6] as a 

corollary of our theorem. 

Corollary I: NTAPE(Iog n) = TAPE((Iog n) 2) 

Furthermore theorem I shows that the simulation of (log n)-tape bounded nondeter- 

ministic Turing machines by deterministic Turing machines is simpler (that means 

that the deterministic Turing machine needs at most the same amount of space) than 

the deterministic acceptance of context-free languages. As an immediate consequence 

of theorem I we get the following result. 

Corollary 2: NTAPE(Iog n) = TAPE(log n)<----->C ~TAPE(Iog n) 

In order to get an idea of the difference between determinism and nondeterminism, 

we now consider the usual closure operations. It is obvious that both classes, 

TAPE(log n) and NTAPE(Iog n), are closed under union, intersection, concatenation 

and inverse homomorphism. To the author's knowledge nothing is known about the 

closure of either of these classes against s-free homomorphism, but it is easy to 

show that TAPE(log n) is equal to NTAPE(Iog n) if TAPE(log n) is closed under s-free 

homomorphism. The most interesting operation in this context is Kleene's ~-operator. 

The ~-operator is defined in the following way: Let L be some language. Then 

L ~= {Vl...Vk ]kel~u{O} v.sL for all i = I,. .,k} It is obvious that NTAPE(Iog n) 

is closed under the application of the ~-operator and we show in section 3 that 

this property is characteristic for the nondeterminism. We prove the following result. 

Theorem 2: NTAPE(log n) = TAPE (log n) holds if and only if TAPE(log n) is 

closed under the application of the ~-operator. 

This theorem makes clear that in the case of the tape function log n the 

difference between nondeterministic and deterministic machines is just the ability 

to compute an admissible decomposition of the given input string. We even get the 

following, more general result. 

Theorem 2a: Let ~ ~ l be some rational number such that TAPE((Iog n) ~) is 

closed under the application of the • -operator. Then NTAPE(Iog n) c TAPE((Iog n)~). 

It is not difficult to see (by means of the methods of ~ ) that TAPE ((log n) 2) 

is closed under the application of the ~-operator, and therefore again we get 

Savitch's result. Furthermore if we could prove an analogon of theorem 2 for any 

tape function growing faster than log n, then most probably we would get the 

corresponding analogon of theorem 2a too and this would imply a better result for 

the deterministic simulation of nondeterministic machines. 

The results of this paper are proved by means of transformational methods. These 

methods have been used extensively by R.V. Book in ~I~ and in other papers. Further 

results are proved in E5] . 
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2. Proof of theorem | 

We use the notion of many-one reducibility as it is defined in recursive function 

theory (due to D. Knuth D~ we will speak of transformability). 

Definition Let ~ be a class of functions (on strings). 

(i) Let f: Z ~ ÷ P be a function in ~. A set L l ~ ~ ~ 

is f-transformable to L2~ ~ ~ if for every wEZ ~ 

wcLl if and only if f(w)sL 2. 

(ii) A class ~I of sets is C-transformable to a class ~2 of 

sets if for every L1z~ I there exist L2s~ 2 and 

fs ~such that L| is f-transformable to L 2. 

(iii) A class~of sets is closed under~-transformabilities if 

for every set Ll, L l is ~-transformable to some set L2e~ 

implies LIE~. 

The following lemma follows immediately from the definitions above: 

Lemma I: Let o~i, ~2' =~3 be classes of sets and let ~be a class of functions. 

that ~I is ~-transformable to ~2 and that ~3 is closed under Suppose 

~-transformabilities. Then ~2 C ~3 implies ~I ~ ~3" 

The method of trnaformabilities was used explicitly by R.V. Book in ~I] and 

implicitly by J. Hartmanis who showed in E2~ that NTAPE(log n) c TAPE(log n) is 

equivalent to N 3 c TAPE(log n). N 3 is defined below. 

Definition: A k-head two-way automaton consists of a finite control and an input 

tape where k heads may move independently in both directions (k-head two-way 

finite automata). The input is placed between two endmarkers (-4 and#--). The 

automaton starts in a distinguished starting state with its k heads on the left 

endmarker. It accepts the input if it stops in an accepting state. The automaton 

is called deterministic if its nextmove function is deterministic, otherwise it is 

called nondeterministic. Let Dk(Nk),ke-~q, be the class of all sets accepted by 

deterministic (nondeterministic) k-head two-way automata. 

It is obvious that ~_~ N k = NTAPE(Iog n). 
kel~ 

In 1973 I.H. Sudborough ~8~ improved the result of Hartmanis and showed that 

~.~ N k C TAPE(log n) is equivalent to I-N 2 C TAPE(log n), where l-Nk, kelq, 
kel~ 

is the class of all languages accepted by nondeterministic k-head one-way finite 

automata (that means, the k heads are only allowed to move from the left to the 
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right between the two endmarkers). We will show in this paper that it is also 

equivalent to consider the problem whether C is contained in TAPE(log n). 

This result looks similar to Sudborough's result but it seems that this result 

can't be proved by using his methods, and the fact that C is a subclass of the 

context-free languages may be useful to get further results. Furthermore we get our 

results by using only transformational methods whereas Sudborough uses Savitch's 

language of threadable mazes ET~. 

We use a class ~ of functions which is defined in the following way: 

(i) Let E be an alphabet, let -[, ~- be elements not in E and let k be a 

natural number. Let fE,k: -~E~- -+ ((E ~{ -~, ;-- })k)~ 

be the following function. For all me~ and all a. s E , i = l,...,m, 
i 

fE'k(--lal'''am~-) = O'Oa1"''an k-I where n = m+2 and 

k-I 
ej = (ai],ai2 .... ,aik) for j = i] + i2n + ... * ikn with 

0 <--i v _< n-l for all v = 1,..,k. For the sake of simplicity we set 

a 0 =-q and an_ l = ~-. 

As an example let us consider the case k = 3 and n = 3. 

Then fE,3(aoala2) = ~0e]...e26 ' where 

eO = (ao'ao'a0) ~ a3 = (ao'al'ao) I "'" I ~9 = (a0'ao'al) 

al = (al'ao'a0) ~4 = (a]'a]'ao) "'" alO = (al'a0'a|) 

~2 = (a2'ao'a0) ~5 = (a2'a]'a0) "'" ~l] = (a2'a0'al) 

(ii) 

Note that (4,-~ .... ,4) and (~-, ~ .... ,~-) enclose the new string 

and don't occur inside, therefore they can be regarded as endmarkers. 

Let d be a natural number and let 

~E~--+ -~((E ~ {_q,~_})k)~ be defined gE,k,d: by 

gE,k,d(~W~) = ~(fE,k(~W~-) • f~,k(-qwk-)R) d " l(~w~-)k~ VwcE~. 

We denote by ~ the class of all functions which are defined in (ii). 

Lemma 2: ~ N k is ~-transformable to 
k 

{LI~ LIgC, L2¢TAPE(Iog n) such that L = L 1 ~ L2}. 

Proof: Let Lc E ~ be an arbitrary element of N k for some k. We will show that there 

exists a del~ such that gE,k,d(L) = L ~ gl,k,d(~E~) where LsC. Therefore we 

first have to show that gE,k,d(--4E~-)sTAPE(log n). This is not difficult to be 

proved and we refer the reader to ~5~ where a detailed proof of a slightly stron- 

ger result is given. 
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"v 

Now we will construct a nondeterministie l-counter automaton M which accepts an 

input string of the form gE,k,d(--~w~-) if and only if ~w~- eL. We don't care 

about the behavior of M on input strings which are not of this form. 

Let M k be a nondeterministic k-head two-way automaton accepting L. Then there 

exists a del~ such that every computation of M on an input of lenght n needs at 

k 
most 2 • d • n moves. In the following let d be this number. M simulates on the 

input string gE,k,d(-~wl--) all the moves performed by M k on the input string-/w~-. 

When M is simulating the t-th step, 1 < t < 2 • d • n k, of Mk, then its head is 

located in the t-th block (a block is a string fE,k(--fw~--) or fE,k(-~wp-) R, 

respectively) of gE,k,d(-~wP-)" Let 11,12,' " ... , i k be the positions of the k heads 

of M k before M k performs its t-th step. Then the head position of M is given by 

k-I k 
i = i! + i2n + ... + ikn + tn if t - l mod 2, and 

i = (t+l)n k - (i I + i2n + ... + iknk-] ) if t - 0 mod 2. 

Note that the head of M is located in a block of the form fE,k(-~wP-) if t ~ l mod 2 

and in a block of the form fE,k(-~we-)R if t - 0 mod 2. 

,a ..... ,aik) when Therefore the i-th symbol of gE,k,d(-~we-) is just (ail 12 

-~w~-= a 0 ... an_ I. That means that M_ reads with its single head just the symbols 

read by the k heads of M k and so M has all the information necessary to simulate 

the next move of M k. 

Let us suppose that M is simulating the t-th step of M k and let i be the head 

k k 
position of M. Then M has to move its head to the position i' = t • n + (t" n - [), 

where 
k-1 

'~ Bj n 3 i = i + [ and Bjs{-l,O,+1} , j = I ..... k, are determined by the 
j=O 

moves performed by the k heads of M k in its t-th step. 

i i' 

I J I I i 
(t-]) .n k t • n k (t+1) • n k 

same length 
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M performs the following operations (note that the head of M is not allowed to 

move to the left). 

Its head moves to the right and the number of these moves are stored by its 

counter. During this process M subtracts all numbers n J such that B. = +|. 
J 

That means, if M reads a symbol of the form(~, ~,...,~, a,...), a~E, on the in- 

m 

put tape, it looks for the greatest j < m such that it still has to subtract n j. 

Then M moves to the next cell containing a symbol of the form 

(-~,-~, ... ,-~,a, ...),asE. The distance of these two cells is just n J. During 

J 
these moves the counter remains unchanged. Therefore the counter stores the number 

(t • n k - i) - ~ J n j when the head reaches the (t • nk)-th cell. 
j , B , = I  

] 

Now ~ adds  to  i t s  h e a d p o s i t i o n  a l l  numbers  n j such  t h a t  Bj = - l  one a f t e r  t h e  o t h e r  

beginning with the largest one. Again the movement of the head is controlled by 

symbols of the form (-~,-q, ... ,--~,a, ...), eel. During this process the head 

J 
> , 

moves to  t h e  p o s i t i o n  t • n k + ~ n j .  Now ~ r e a c h e s  t h e  head  p o s i t i o n  i '  
j ,ej= -1 

by a d d i n g  t h e  c o n t e n t s  o f  t h e  c o u n t e r .  

~ a c c e p t s  t h e  i n p u t  s t r i n g  when i t  n o t i c e s  t h a t  M~ r e a c h e s  a f i n a l  s t a t e .  T h e r e f o r e  ~ 

a c c e p t s  gE ,k ,d ( - - tw l - - )  i f  and o n l y  i f  N k a c c e p t s  ~w~-- . Le t  L be t h e  l a n g u a g e  
% 

a c c e p t e d  by ~', t h e n  g l , k , d ( L )  = L ~ g E , k , d ( - - t E ~ l - ' - ) o  q . e . d °  

I t  i s  n o t  d i f f i c u l t  to  s e e  t h a t  t h e  c l a s s  TAPE(( log n) ~) i s  c l o s e d  u n d e r  

~ - t r a n s f o r m a b i l i t i e s .  

Lemma 3: For any rational number ~ > I the class TAPE((Iog n) e) is closed under 

~-transformabilities. 

Proof: We have to show that LeTAPE((Iog n) ~) implies 

f-](L) = {w I f(w)gL}ETAPE((Iog n) ~) for all fs~. 

Let M be some deterministic (log n)e-tape bounded Turing machine accepting L. We 

will define a Turing machine ~ accepting f-1(L). ~ simulates on the input w all 

moves performed by M on the input f(w). Since there exists a kel~ such that 

l(f(w)) ~ l(w) k, M needs not more that (log n) ~ cells to store in each step of the 

simulation the contents of the working tape of M. Furthermore ~ has to store the 

head position of M. This can be done in log n cells. It is clear that ~ can decode 

the head position of M in order to read just the symbols necessary to simulate one 

step of M. 
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Our transformational lemma ] implies together with lemma 2 and lam~a 3 our first 

main result. 

Theorem |: Let ~ > I be some rational number. Then 

NTAPE(Iog n) C TAPE((Iog n) ~) is equivalent to C c TAPE((Iog n)~). 

Proof: Because of lemma 1,2,3 the following relation holds: 

NTAPE(log n) c TAPE((Iog n) ~) 

<~ ~ = {L] n L 2 I L|eC,L2eTAPE(Iog n)}'- TAPE((Iog n) ~. 

Since C ~ TAPE((Iog n) ~) implies o~ TAPE((Iog n) e) the theorem follows. 

3. Proof of theorem 2 

Let L= E ~be an arbitrary element of NTAPE(log n). We showed in the proof of 

lemma 2 that there exist k,del~ and a set ~EC such that gZ,k,d(L)=~gE,k,d(-~E~). 

Furthermore we constructed a nondeterministic l-counter automaton ~ accepting 

whose head is moving one cell to the right in each step and which has the 

following property: 

If its counter stores a number not equal to zero then the next move of ~ is 

determined deterministieally. 

That means that ~ can act nondeterministerically only if its counter stores zero. 

Now let S = { .,s } be the set of states, F~ S the set of final states and s sS So''' r~ o 
the starting state of M. We define sets L.. c E w', 0 !i,j ! r. ~3 

Let M start its computation with the state si, vsE ~on its input tape and its 

counter storing zero. v is an element of L.. if and only if the following two ~3 

condition are fulfilled: (1) After M has read the whole string v, that means after 

its head has left the input string, the state of ~ is s. and its counter stores zero. 
3 

(2) During the whole computation (except of the first step) the contents of the 

counter are always greater than zero. 

Because of this definition M can act nondeterministically only in its first 

step when it is accepting an element of Lij. Therefore each Lij,O ! i,j !r, is a 

finite union of elements of C D , where C D is the class of all languages accepted by 

deterministic one-way one-counter automata. This implies L..sTAPE (log n) for all lj 

O i i,j !r~ because C D ~ TAPE(log n) and TAPE(log n) is closed under union. 

Now let wee ~ be an arbitrary element of ~. Then there exists a decomposition 

w = vlv2...v t such that the contents of the counter of M are zero if and only if 

the head of ~ is located on the first symbol of one of the v.,is {|,.,.,t}. This 
I 

shows us that wet holds if and only if there exist a rein and i|,...,its{O,...,r} 
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such that WSLoi|O L ili2 o ... QL it_lit and s.ltEF 

We set now 

L~. = ~J ~J L.. o L. o ... oL.. 
lj tel~ i],..,it~{O,..,k-1} lj! lli 2 itJ 

The L~o are also defined by the wellknown recursive formula lj 

L?. = L.. lJ ~J 

L k+1 L~. U L k L k 
ij = lj i,k+! o Lk+l,k+I/o k+],j 

Intuitively L~. consists of all words which lead from the state s. to the state s. 
lJ 1 J 

such that during this computation only states s with O < ~ < k-! are reached. 

We have seen above that ~ = ~ L r. . 
j , sj sF oj 

Now let ~ > ] be some rational number such that TAPE((Iog n) ~) is closed under 

the application of the ~ -operator. We have shown already that L..sTAPE(Iog n) lj 

for all i,jc{O,...,r} and therefore the recursion formula above and the closure 

of TAPE(log n) against ~-transformabilities (Lemma 3) lead to the following 

conclusions: 

L..sTAPE(Iog n) Vi,je{O .... ,r} lJ 

-----> Lk.~TAPE((log n) ~) Vi,j,ke{O .... r} ij 

------> ~ = ~_~ Lr.s TAPE(log n) ~) 
j ,sj eF oj 

-----> g~,k,d (L) = ~f~ g~,k,d (--{~-)E TAPE((Iog n)a). 

----~ LsTAPE((Iog n) c*) 

Because L was arbitrarely chosen this completes the proof of theorem 2 and 

theorem 2a. 
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