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I . Let~i's be two fa~lies of all possible p-variate distri- 

bution functions with specified mean vectors ~i and non-degenerate 

variance-covariance matrices Zi' and wi be prior probability or 

weight assigned toni for i=1,2 (71 + ~2 = I). We are supposed to 

discriminate whether an observation x is from a (true) distribu- 

tion or A randomized decision rule is represent- 

ed by a pair of functions el(E) and ¢2(~) = 1 - ¢i(~) (0 ~ el(x) 

1), based on which one decides, with probability ¢i(~), that an 

observed value ~ is a sample from some ~ in c~ i (i=I,~). If the 

pair F = (~, F 2) is known, the error probability or classification 

error for the decision rule ¢ = (¢i, ¢2) is clearly given by 

(i.i) e(¢, F) = ~lj Rp¢2(x)d~(x) + ~2J Rp¢l(x)dF2(x). 

The aim of the present paper is to give the values of su~ 

inf e(¢, F) and inf sup e(¢, ~ together with a saddle point of 
¢~ ¢~ F~ 
e(¢, F), using the mathematical programming method given in one 

of the authors [3], where ¢ denotes the set of all possible clas- 

sification rule ¢ = (¢i, ¢~), and~=~ ×~ is the set of all 

p~irs F= (Fl, F 2) with Fge~i (i=1,2). 
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2. Some necessary quantities and results used in the main 

theorems are introduced in the following lemma. 

~2 Lemm~ Suppose I ~ ~ < I + ( ~ !  - ~2)'Z21(~I - ~2 )" T h e n ,  

{'(~I " "~2 ) ~ 
for every vector x in R p satisfying > ~ - 1, there 

- ¢ x' ~2"~ = ~I 

exists a unique real number t = t(x) which satisfies the equation 

B~rther, there exists a vector ~ = b attaining the maximum 

value, say to, of t(~). The vector b is unique up to a positive 

I 
multiplier, and t O > --. 

In the following the vector ~ and real number t o should be 

understood to represent those introduced above. 

It may be assumed without loss of generality that ~I ~ w2' 

We have then 

Theorem ] 

have 

(2.2) 

~2 -I 
(i) When I ~ ~--~ < I + (~I - ~)'~2 (~I - ~2)" we 

max inf e(¢, F) = min sup e(¢, F) = ~ 

A saddle point (~*, F*) of e(@, F) is given by any ~ = (~I ~, F2*) 

such that 

(2 3) Fi , = I I • Wito ~ + (I ~ito) G i (i=1,2), 

where G O is the one-point distribution concentrated at ~0 = ~I - 

tO - 1 

Fa1 _ Z1b_~ ~ any distribution with mean 

(-I) i Zo b 
_ _ ,  variance-covariance matrix m-i = ~-i - 

/~ito - 1 ~ i  b - 
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Fi = 
7ito 1 

~ito - i ( ~i - _b'~_'b Zibb'~i )" and by any ¢* = (¢I*" ¢2 *) 

such that 0 < ¢3_i*(x) < gi(x) (i=1,2) and ¢1"(x) + ¢2"(z_) = 1, 

where gi(x) = ci(x- m i) 'bb'(x - re_i) with 

~i J~ito 1 ~V~lo 1 ~ ~2to ~ 1~ tO~" 

72 
(il) When ~T >_ I + (~-I- ~_~)'Z~'(~_1- - ~_~),we have 

I 

(2.4) sup inf e(¢, ~ = min sup e(¢, ~ = Wl " 

In this case, sup e(¢, ~ is minimized by ¢i*(~) ~ O and 

¢2"(~) ~ 1, while a maximizing Fof inf e(¢, ~ does not a~ays 

exist. Hence a saddle point does not a~ays exist. 

If we restrict the classification rule to (non-randomized) 

"linear discrimination", that is, to the case where ¢i is the 

indicator function of a half space (open or closed), we obtain 

the following theorem. Denote by ¢0 the set of all linear clas- 

sification rule ¢ and, in particular, by ¢8 the set of all ¢ such 

that ¢I is the indicator function of a half space of the form 

{ ~ I ~'~ ~ c} or { ~ I ~'x > c} (c being arbitrary) for a p- 

dimensional vector ~. Clearly ¢0 =y¢~" Then we have 

72 - 1 
Theorem 2 (I) When 1 < 71 < 1 + (~1 - P2 )'~2 (Pl - ~2 )" the 

value of sup inf e(¢, F) (hence also sup inf e(¢, F)) is the same 

as sup inf e(~, F) given in Theorem I, where b is the vector defin- 
F ~  ~e¢ 

ed in the lemma, while inf sup e(@, F) is in general larger than 

inf sup e(~, F). 
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"~2 
( i i )  When :'~1 > I + (~I - ~2)'Z2 I(~I - ~2 )" 8u~ inf e(¢, ~ and 

~¢o 
inf sup e(~, ~ coincide with those in the non-restricted case 

~¢o ~ 
(hence the value is ~1 ). 

Various explicit results are obtained under additional assump- 

1 
tions. Particularly, in the simplest case that p=l and ~1=w2=~, 

the results coincide with those in Chernoff [I]. 

3. The formal proofs of Theorems i and 2 need not bear any 

direct reference to the theory of mathematical programming, if 

once a saddle point (~*, F ~) has been found. The essentials of 

our method may lie rather in how to f!nd such a saddle point. 

For this purpose a mathematical programming approach is useful. 

For fixed ~, the problem to obtain sup e(~, F) Is regarded as to 
F~ 

maximize a linear functional e(¢, F) in F subject to the linear 

constraints described in terms of specified ~i and Z i. The assump- 

tion of non-degeneracy allows us to make use of ~he duality theorem 

given in [3] (the essential part is contained in [2]), and the 

problem is transformed into a minimization problem. Then inf sup 

problem is reduced to a simple minimization problem, and we can 

obtain the minimizing ~* as well as the minimum value. For thls 

¢* the maximizing F = F* of e(~*, F) is easily obtained, and the 

pair (~*, F*) thus obtained is introduced in Theorem i. It remains 

to verify that (~*, F*) is actually a saddle point. Some formal 

and elementary calculations assure in fact that.(¢*, F*) Is a 

saddle point. 
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