MATHEMATICAL PROGRAMMING APPROACH TO A MINIMAX THEOREM

OF STATISTICAL DISCRIMINATION APPLICABLE

TO PATTERN RECOGNITION

K. ISII, Osaka UniversityY. TAGA, Shizuoka University

1. Let \mathcal{F}_i 's be two families of all possible p-variate distribution functions with specified mean vectors \underline{u}_i and non-degenerate variance-covariance matrices Σ_i , and π_i be prior probability or weight assigned to \mathcal{F}_i for i=1,2 ($\pi_1+\pi_2=1$). We are supposed to discriminate whether an observation \underline{x} is from a (true) distribution $F_1\in\mathcal{F}_1$ or $F_2\in\mathcal{F}_2$. A randomized decision rule is represented by a pair of functions $\phi_1(\underline{x})$ and $\phi_2(\underline{x})=1-\phi_1(\underline{x})$ ($0\leq\phi_1(\underline{x})\leq 1$), based on which one decides, with probability $\phi_i(\underline{x})$, that an observed value \underline{x} is a sample from some F_i in \mathcal{F}_i (i=1,2). If the pair $F=(F_1,F_2)$ is known, the error probability or classification error for the decision rule $\phi=(\phi_1,\phi_2)$ is clearly given by

$$(1.1) \qquad e(\phi, F) = \pi_1 \int_{\mathbb{R}^p} \phi_2(\underline{x}) dF_1(\underline{x}) + \pi_2 \int_{\mathbb{R}^p} \phi_1(\underline{x}) dF_2(\underline{x}).$$

The aim of the present paper is to give the values of $\sup_{F \in \mathcal{F}} \inf_{\phi \in \Phi} e(\phi, F)$ and $\inf_{\phi \in \Phi} \sup_{F \in \mathcal{F}} e(\phi, F)$ together with a saddle point of $\sup_{\phi \in \Phi} \inf_{\phi \in \Phi} F \in \mathcal{F}$ and $\inf_{\phi \in \Phi} \sup_{\phi \in \Phi} \inf_{\phi \in \Phi} F \in \mathcal{F}$ and $\inf_{\phi \in \Phi} \sup_{\phi \in \Phi} \inf_{\phi \in \Phi} F \in \mathcal{F}$ and $\inf_{\phi \in \Phi} \sup_{\phi \in \Phi} \inf_{\phi \in \Phi} \inf_{$

 Some necessary quantities and results used in the main theorems are introduced in the following lemma.

Lemma Suppose
$$1 \leq \frac{\pi_2}{\pi_1} < 1 + (\underline{\mu}_1 - \underline{\mu}_2) \cdot \Sigma_2^{-1} (\underline{\mu}_1 - \underline{\mu}_2)$$
. Then, for every vector \underline{x} in R^p satisfying $\frac{\underline{x}'(\underline{\mu}_1 - \underline{\mu}_2)}{\sqrt{\underline{x}' \Sigma_2 \underline{x}}} \geq \frac{\pi_2}{\pi_1} - 1$, there exists a unique real number $t = t(\underline{x})$ which satisfies the equation (2.1) $\sqrt{\underline{x}'\Sigma_1\underline{x}}\sqrt{\pi_1t - 1} + \sqrt{\underline{x}'\Sigma_2\underline{x}}\sqrt{\pi_2t - 1} - \underline{x}'(\underline{\mu}_1 - \underline{\mu}_2) = 0$.

Further, there exists a vector $\underline{x} = \underline{b}$ attaining the maximum value, say t_0 , of $t(\underline{x})$. The vector \underline{b} is unique up to a positive multiplier, and $t_0 > \frac{1}{\pi}$.

In the following the vector \underline{b} and real number \mathbf{t}_0 should be understood to represent those introduced above.

It may be assumed without loss of generality that $\pi_1 \leq \pi_2$. We have then

Theorem 1 (i) When
$$1 \le \frac{\pi_2}{\pi_1} < 1 + (\underline{\mu}_1 - \underline{\mu}_2)' \Sigma_2^{-1} (\underline{\mu}_1 - \underline{\mu}_2)$$
, we have

(2.2)
$$\max_{F \in \mathcal{F}} \inf_{\phi \in \Phi} e(\phi, F) = \min_{\phi \in \Phi} \sup_{F \in \mathcal{F}} e(\phi, F) = \frac{1}{t_0}.$$

A saddle point (ϕ^*, F^*) of $e(\phi, F)$ is given by any $F^* = (F_1^*, F_2^*)$ such that

$$(2.3) F_i^* = \frac{1}{\pi_i t_0} G_0 + (1 - \frac{1}{\pi_i t_0}) G_i (i=1,2),$$

where G_0 is the one-point distribution concentrated at $\underline{m}_0 = \underline{\mu}_1 - \frac{\sqrt{\pi_1 t_0 - 1}}{\sqrt{\underline{b}' \Sigma_1 \underline{b}}} \Sigma_1 \underline{b}$, G_i any distribution with mean

$$\underline{m}_{i} = \underline{\mu}_{i} - \frac{(-1)^{i} \Sigma_{i} \underline{b}}{\sqrt{\pi_{i} t_{0} - 1} \sqrt{\underline{b}' \Sigma_{i} \underline{b}}}, \text{ variance-covariance matrix}$$

$$\begin{split} & \int_{i}^{\infty} = \frac{\pi_{i} t_{0}}{\pi_{i} t_{0} - 1} \left(\Sigma_{i} - \frac{1}{\underline{b}' \Sigma_{i} \underline{b}} \Sigma_{i} \underline{b} \underline{b}' \Sigma_{i} \right), \text{ and by any } \phi^{*} = \left(\phi_{1}^{*}, \phi_{2}^{*} \right) \\ & \text{such that } 0 \leq \phi_{3-i}^{*}(\underline{x}) \leq g_{i}(\underline{x}) \ (i=1,2) \text{ and } \phi_{1}^{*}(\underline{x}) + \phi_{2}^{*}(\underline{x}) = 1, \\ & \text{where } g_{i}(\underline{x}) = c_{i}(\underline{x} - \underline{m}_{i})' \underline{b} \underline{b}' (\underline{x} - \underline{m}_{i}) \text{ with} \end{split}$$

$$\frac{1}{c_i} = \frac{\pi_i \sqrt{\underline{b}' \Sigma_i \underline{b}}}{\sqrt{\pi_i t_0 - 1}} \left(\frac{\pi_1 \sqrt{\underline{b}' \Sigma_1 \underline{b}}}{\sqrt{\pi_1 t_0 - 1}} + \frac{\pi_2 \sqrt{\underline{b}' \Sigma_2 \underline{b}}}{\sqrt{\pi_2 t_0 - 1}} \right) t_0^2.$$

(ii) When
$$\frac{\pi_2}{\pi_1} \ge 1 + (\underline{\mu}_1 - \underline{\mu}_2)'\Sigma_2^{-1}(\underline{\mu}_1 - \underline{\mu}_2)$$
, we have

(2.4)
$$\sup_{F \in \mathcal{F}} \inf_{\phi \in \Phi} e(\phi, F) = \min_{\phi \in \Phi} \sup_{F} e(\phi, F) = \pi_{1}.$$

In this case, sup $e(\phi, F)$ is minimized by $\phi_1^*(\underline{x}) \equiv 0$ and $F \in \mathcal{F}$ $\phi_2^*(\underline{x}) \equiv 1, \text{ while a maximizing } F \text{ of inf } e(\phi, F) \text{ does not always}$ $\phi \in \Phi$ exist. Hence a saddle point does not always exist.

If we restrict the classification rule to (non-randomized) "linear discrimination", that is, to the case where ϕ_i is the indicator function of a half space (open or closed), we obtain the following theorem. Denote by Φ_0 the set of all linear classification rule ϕ and, in particular, by $\Phi_{\underline{\beta}}$ the set of all ϕ such that ϕ_1 is the indicator function of a half space of the form $\{\underline{x} \mid \underline{\beta'x} \geq c\}$ or $\{\underline{x} \mid \underline{\beta'x} > c\}$ (c being arbitrary) for a p-dimensional vector $\underline{\beta}$. Clearly $\Phi_0 = \bigcup_{\underline{\beta}} \Phi_{\underline{\beta}}$. Then we have

Theorem 2 (i) When $1 \leq \frac{\pi_2}{\pi_1} < 1 + (\underline{\mu}_1 - \underline{\mu}_2)' \Sigma_2^{-1} (\underline{\mu}_1 - \underline{\mu}_2)$, the value of sup inf $e(\phi, F)$ (hence also sup inf $e(\phi, F)$) is the same $F \in \mathcal{F} \phi \in \Phi_0$.

as sup inf $e(\phi, F)$ given in Theorem 1, where \underline{b} is the vector definited in the lemma, while inf sup $e(\phi, F)$ is in general larger than $\phi \in \Phi_0$ $F \in \mathcal{F}$

inf sup $e(\phi, F)$. $\phi \in \Phi$ $F \in \mathcal{F}$ (ii) When $\frac{\pi_2}{\pi_1} > 1 + (\underline{\mu}_1 - \underline{\mu}_2)' \Sigma_2^{-1} (\underline{\mu}_1 - \underline{\mu}_2)$, sup inf $e(\phi, F)$ and inf sup $e(\phi, F)$ coincide with those in the non-restricted case $\phi \in \Phi_0$ $F \in \mathcal{F}$

(hence the value is π_{τ}).

Various explicit results are obtained under additional assumptions. Particularly, in the simplest case that p=1 and $\pi_1=\pi_2=\frac{1}{2}$, the results coincide with those in Chernoff [1].

3. The formal proofs of Theorems 1 and 2 need not bear any direct reference to the theory of mathematical programming, if once a saddle point (ϕ^*, F^*) has been found. The essentials of our method may lie rather in how to find such a saddle point. For this purpose a mathematical programming approach is useful. For fixed ϕ , the problem to obtain $\sup e(\phi, F)$ is regarded as to maximize a linear functional $e(\phi, F)$ in F subject to the linear constraints described in terms of specified μ_{\star} and Σ_{\star} . The assumption of non-degeneracy allows us to make use of the duality theorem given in [3] (the essential part is contained in [2]), and the problem is transformed into a minimization problem. problem is reduced to a simple minimization problem, and we can obtain the minimizing ϕ^* as well as the minimum value. For this ϕ^* the maximizing $F = F^*$ of $e(\phi^*, F)$ is easily obtained, and the pair (ϕ^*, F^*) thus obtained is introduced in Theorem 1. It remains to verify that (ϕ^*, F^*) is actually a saddle point. Some formal and elementary calculations assure in fact that (ϕ^*, F^*) is a saddle point.

References

- [1] Chernoff, H. (1971), "A bound on the classification error for discriminating between populations with specified means and variances," Studi di probabilità, statistica e ricerca operativa in onore di Giuseppe Pompilj.
- [2] Isii, K. (1964), "Inequalities of the types of Chebyshev and Cramér-Rao and mathematical programming," Ann. Inst. Statist.

 Math., 16, 277-293.
- [3] Isii, K. (1969-), "Lecture Notes on Optimization Theory and its Applications (unpublished)."