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1. Lett;%'s be two far.lles of all possible p-variate distri-
bution functions with specified mean vectors 9] and non-degenerate
varilance-covariance matrices Zi, and T be prior probability or
welight assigned to(ja for i=1,2 (nz o, = 1}. We are supposed to
dise¢riminate whether an observation z 1s from a (true) distribu-
tion E}e(jgz cr Eée ng. A randomized declsion rule is represent-
ed by a pair of functions ¢,(x) and ¢,(x) = 1 - ¢,(z) (0 2 ¢,(x) 3
1), based on which one decides, with probability ¢i(£)’ that an
observed value x is a sample from some E% in;;; (£=1,2). If the

palr F = (F,, Fb) i1s known, the error probablility or classification

error for the decision rule ¢ = (¢1, ¢2) is clearly given by

(1.1) e(¢, F) = m, ¢o(z)dFy(z) + 7, ¢, (z)dFy(z).
P 2P

The aim of the present paper is to give the values of su%z
Fe
inf e{¢, F) and inf sup e(¢, F together with a saddle polnt of
$ed bed Fe F
e(¢, F), using the mathematical programming method given in one

of the authors [3], where ¢ denotes the set of all possible clas-
= o
sification rule ¢ = (¢, ¢,), and = x;;é is the set of all

pairs F= (F,, F2) with Fieji (i=1,2).
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2. Some necessary quantities and results used in the mailn

theorems are introduced In the following lemma.

m
2 -
Lemma Suppose 1 =<?r—z- <14 (uy = u)' Iy, - uy). Then,

z'(y, -*‘}5.2) i

for every vector z in gP satisfying > 2. 1, there
- Szl I,z T T

existe a unique real number t = t(z) which satisfies the equation

T - [ - - ! - -
(2.1) YeTlg /e - 1 +Vallgs /myt - 1T - x'(y, u,) = 0.
Further, there exists a vector & = b attaining the macimum

value, say t of t(z). The vector b is unique up to a positive

03

multiplier, and t, > 2.
M1

In the following the vector b and real number t, should be

understood to represent those introduced above.

It may be assumed without loss of generallty that 7, £ 7

1 2’

We have then

m
2 -1
Theorem 1 (1) When I < ﬂ < T+ (py - W)L, (M - By, we
have
(2.2) max inf e(¢, F) = min sup e(¢, F) = -f:z—— .
FeF $ed ted Fe% 0
4 saddle peoint (¢*, F*) of el(¢, F} is given by any F = (Fl", FZ*)
such that
- 1 1 .
(2.3) Fi* =TI G'o + (1 - F—-t_)G‘L (i=1,2),
0 10
where G, is the one-point distribution concentrated at m, = p, -
ﬂli;o - 1

iy L,b, G, any distribution with mean
g

i
~1)% 1, b

s, variance-covariance matrix

me = W, = -
Tt s T /AR
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.t
0 1
['i= 5, = 7 (%~ grr,p Tkl and by any 4% = (0% 4,%)

such that 0 < ¢, .%(x) < g.(z) (i=1,2) and ¢ *(z) + ¢, *(x) = 1,
= T31 =97 1 = 2 =

where g.(x) = e . (g -~ m.)'bb'(x - m.) with
7= AR M

2
g -

H ¥ Ty
1 Tk Ziéf TR 2 L1 gy .
a .

i Tty - 1“‘/1717?0- 1 anto- 1

m
2 -1
(11) When —Tr—z— 21+ (Uy - W) 'Ty (W, - Wy), we have

(2.4) sup inf el(¢, F = min sup el¢, F) =7

FeF $ed $ed F !
In this case, sup e(¢, F) is minimized by ¢1*(£) = 0 and
FeF
¢2*(gc_) = 1, while a maximizing Fof inf e($, F) does not always

$€d
exist. Hence a saddle point does not always exist.

If we restrict the classification rule to (non-randomized)
Mlinear diserimination™, that is, to the case where cbi is the
indicator function of a half space (open or closed), we obtain
the following theorem. Denote by @0 the gset of all linear clas-

sification rule ¢ and, in particular, by @B the set of all ¢ such

that ¢1 is the indicator function of a half space of the form

{z | 8'z>ctor {z | B'z > ¢} (e being arbitrary) for a p-

dimensional vector 8. Clearly @0 =\ @8' Then we have
§_ =
Te -1
— - 4 -
Theorem 2 (i) When I < T <1+ (B - W) 'Ly (u; - B,), the
value of sup inf e(d, F) (hence also sup inf e($, F)) is the same
Feg ¢ed FeF $e2, '

as sup inf e($, F) given in Theorem 1, where b is the vector defin-
FeF ¢e?

ed in the lemma, while inf sup e(d, F) is in general larger than
$ed, Fef

inf sup el(d, F}.
ded FeoF
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m
(ii) When Fé > 1 + (gl - 32)’22’1(E4 - Ee)’ sup inf e(d, F) and
1 FeF et

inf sup el(d, F) coineide with those in the non-restricted case
¢eQOEtJZ

{hence the value is wl).
Variocus explicit results are obtained under additional assump-

=

2

3

tions. Particularly, In the simplest case that p=1 and =

ST

1
the results coincide with those in Chernoff [1].

3. The formal prcofs of Theorems 1 and 2 need not bear any
direct reference to the theory of mathematical programming, if

once a saddle point (¢¥, F¥) has been found. The essentials of

our method may lie rather in how to find such a saddle point.

For this purpose a mathematical programming approach is useful.

For fixed 4, the problem to obtain sup e(¢, F) 1is regarded as to
maximize a linear functional e(¢, Ff%in F subJect to the linear
constraints described in terms of specified By and Zi’ The assump-
tion of non-degeneracy allows us to make use of the duality theorem
given in [3] (the essential part is contained in [2]), and the
problem is transformed into a minimization problem. Then inf sup
problem is reduced to a simple minimizatlion problem, and wgeSaébéz
obtain the minimizing ¢¥ as well as the minimum value. For this

¢¥ the maximizing F = F¥* of ¢(¢¥*, F) 1s easily obtalned, and the
pair (¢¥, F*) thus obtained is introduced in Theorem 1. It remains
to verify that (¢*, F¥) is actually a saddle point. Some formal

and elementary calculations assure in fact that:(¢¥, F¥) is a

saddle point.
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