
DUAL DIRECTION~HODS,, FOR FUNCTION MINIMIZATION 

Yu.~. Danilin 
Institute of Cybernetics Ukrainan 

Academy of Sciences, USSR 

1 ° . Let 
= + + c, 

xgE~A bea symmetric matrix, and (Ax,x)>0, Vx~0,6- .- dimensional 

vector, c- scalar. Gradient of this function ~'(x)=A(X-X,). Here and 

further X, is a point of minimum. 

Minimization of the assumed function is equivalent to the solu- 

tion of the linear equation system 

or the system of following equations 

where X~ are arbitrary points;~,Z~. 4 - an arbitrary system of li- 

neary independent vectors; ~L= ~'(X~) - $'(X£-Z~) = A ~. 

The systems (1) and (2) may be written in the form 

~L+~ o~L ~ n-i ( ~ )  ( / . ~ , X . ,  = ) - - 

where 

or ( for the system (2)) 

In the last case ~= ×~-~t; ~L=~QxL)-~) ; points ~L are chosen arbitra- 

rily so as to provide the linear independence of the vectors ~,,Z,.,. 

The finding of the point X~, that satisfies the system (3), can 

be treated as some iterative process of the finding of points 

satisfying the relations 

~+4 (6) 
XK÷~ , ~L ---- ~ , 

Prom the comparison of formulas (@) and (6) it follows that X. = X.. 
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The finding of the point -X is realized with recurrent formulas. Let 

xo=~ 0 be an arbitrary point, and 

7,k,~ - ~'k + P k  ~ k =  0,'1-,..., r l-~.. (7)  

So from the relations (6) it follows that vector~must satisfy s u c h  

conditions: 

(, Pk, e.L) =0, O-~L-~ k- ~. (8) 

(Pk'Ck) -- k + 4  (X.k, Ck ) (9) 

The lamt condition may be altered to the form: 

The choice of vector Pk'  satisfying the conditions (8) and (9), p e r -  

mits a wide range of possibilites at k~n-z. Thus, the formula (7) 

defines actually a wide cla~s of the quadratic algorithms of minimi- 

zation, in which second derivatives do not participate. 

Here we dwell upon  the study of the dual direction methods. 

If the system of vectors Sk.4j, ,OmI.~k, is made dual ( biortogo- 

nal) to the system ~o, ,ek, it may be assumed that 

Pk = °C k 'S' k+.l, k (11) 

where 

,% z "*' (~,,,~,,) = - (-t- (xk ) ,  ~k)"  

So, it appears that 

xk.., = ek)] 

Choosing p. in form (11), the following 
/ .  I ~.r. 

=~,~ (Xo), Z k) holds. Consequently 

~,--o 

(12) 

equality (~i~k~,z.)= 

(13) 

2 °. Let um dwell on the task of minimization of the non-quadra- 
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tic functions. Let's assume~)as a twice continously differentlable 

function, and m ~  ~ ~"(x) ~ M ~  m>O. 

Now we consider the algorithmm in the basis of which the for- 

mulas (12)  and (13) lie. 

The method, founded on the application of the formula (13), iu 

its main facilities consists in the following steps. We make the se- 

quence of points 

-- k = n, n+~, . (14) Xk+ 4 = X k -'l'- A k Pk ., " 

wherein the vector 

1"i-,I 
-- I 

L=O 
and as the multiplier ~k' defining the stepsize, we choose the grea- 

test value of the parameter 0ml~l_~/ i.e. the value obtained by me- 

ams of fracturing ~/, that satisfies umequality 

o < ~ < ~ ( 1 6 )  

At the initial stage of this process some iterations can be realized 
-~ (kl) in the case, when the by the gradient method ( that is Pk- '× " 

c h o i c e  o f  Pk i n  the  fo rm o f  (.1~) has r e s u l t e d  i n  (-~'(Xk) , Fk ) = O. 

The vector ~k in the Eq. (15) is determined as ~k--Xk--Yk' where 

the point Yk is found arbitrarily so as to provide the carrying out 

of the following conditions: a) the vector system ~k, ,Zk_n+4 ~alst 

be linearly independent at amy k ; b) II Zk]l-~ 0 at k --~ co . 

The vectors Sk÷4,k_L , 0 ~--[~n-ipform the basls~dual to the 

basis ek, ,,£k_,÷ i . The finding of the vectors is carried out with 

the recurrent formulas 

,Sk, k -  ~ 

= (S .k ,k . , ,  ' %) 

= - , j. = i , . . . ,  n - i .  

I f  at  some value of  k i t  occurs tha t  ~Sk, k - . ' £ k ) - - O  / i t  can 
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take place only at the initial stage of the process / we shall choose 

a new vector ~k and find the corresponding vector 8k" So we can always 

achieve the fulfilment of the condition -,(Sk~k-n'Ek~ ~0. 

Theorem 1. With above-mentioned assumptions for the sequence 

~Xk} , determined by formulas ~(I~, (I~)~, the following statements 

~(×k.~) ~ ~ (Xk), II X k - X, II-~ 0 are true independently of the choice 

of initial point ×o ! what's more, the speed of convergence is super- 

linear: 

(17) 

Here~N+~ i at any ~ 0 ,  &L--~-O i£ ~-~-~. 

If the matrix ~"(X) satisfies the Lip~ condition, the es- 

timate (17) is defined more precisely as follows: 

I1 x,+,-x.II C tlxk_.÷4-x.II Itxk-x.U. 

The other dual direction algorithms may be found in the follo- 

wing way. The sequence ~ ×k}is formed according to the formula (14), 

wherelnvector Pk = xk÷1- xkand the point x--k+ I is determined as 

shown in (12). The parameter ~k is chosen from the condition (16). 

The different algorithms correspond with the choice of the value of 

E k+i by the formula (4) or (5). For the sake of brevity we name 

such algorithms as the methods {(14),(4)),~(14),(5)~Iu these algorithms 

the gradient steps are also possible at the initial stage of the process. 

Theorem 2. If the function ~(x) and the vector system 

~k) "'" ~ Zk-.÷~ s a t i s f y  t h e  above  f o r n a z l a t e d  r e q u i r e m e n t s ,  t h e  s e q u e n c e  

~X~,) , ~ = O, i ,  . . .  , found by method { (14) ,  (4 ) )  , converges 
t o  t h e  p o i n t  X~. w i t h  t h e  s u p e r l i n e a r  s p e e d  i n d e p e n d e n t l y  o f  t h e  c h o i c e  

of the initial point Xo • And ~ (Xk+4)~ ~(Xk) . The analogous 

properties are peculiar for the method {(14), (5)) with the value of 

the vector Z constrained as follows: k 

tl ~k tl ~ tTt~I'I {/j X k -  Xk_  I It ,~ )1 #/(*'~'k ) tl 

The p r o p e r t i e s  o f  t he  method { ( 1 4 ) ,  (15) t  ( which  was described 

i n  t h e  f o r m  d i f f e r e n t  f r om one g i v e n  h e r e  ) were s t u d i e d  i n  t h e  
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papers [1 - 2] , where the above cited values of the speed of conver- 

gence and some other values were derived. The properties of the methods 

((14),(4)) and ((14),(5)) were studied in detail in paper [ 3] • No- 

te that the stud~ of the algorithms alike in their meaning was accomp~ 

lished in papers [ 4] and [ 5]. 

In conclusion we also notice that the methodology used in item 1 ° 

permits creation of conjugate direction methods as well. The theory 

of convergence of these methods was developed in the paper C6] . 
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