A-STABLE METHOD FOR THE SOLUTION OF THE CAUCHY PROBLEM FOR STIFF

 SYSTEMS OF ORDINARY DIFFEREWITAL EQUATIONSS.S.ARTEM'EV, G.V.DEMIDOV
Computing Center, Novosibirsk, USSR

For the solution of the Cauchy problem for the system of equations

$$
\begin{equation*}
\dot{y}=f(y) \tag{1}
\end{equation*}
$$

there is constructed the Rosenbrock type method accurate to the filth local order with a single computation of a Jacobian matrix per step of integration. Numexical experiments have shown high efficiency of the proposed method. The following approximation of the exponential function is taken as the basis of the method

$$
\begin{equation*}
e^{x} \approx \varphi_{4}(x) \equiv 1+\frac{x}{1-x}-\frac{1}{2} \frac{x^{2}}{(1-x)^{2}}+\frac{1}{6} \frac{x^{3}}{(1-x)^{3}}+\frac{1}{24} \frac{x^{4}}{(1-x)^{4}} \tag{2}
\end{equation*}
$$

From the results of papers [1,2] it immediately follows that

$$
\begin{equation*}
\left|\varphi_{4}(x)\right| \leq 1, \quad \text { at } \quad \operatorname{Re} x \leq 0 \tag{3}
\end{equation*}
$$

One of the possible versions of the Rosenbrock type formulae based on approximation (2) is of the form

$$
\begin{gather*}
\bar{y}_{n+1}=y_{n}+\sum_{i=1}^{4} p_{i} k_{i}, \tag{4}\\
k_{i}=h\left[1-h f_{y}\right]^{-1} f\left(\eta_{i}\right), \tag{5}
\end{gather*}
$$

$$
\begin{gather*}
\eta_{i}=y_{n} \sum_{j=1}^{i-1} \beta_{i, j} k_{j}, i=2,3,4 \tag{6}\\
\eta_{1}=y_{n}
\end{gather*}
$$

Where f_{y} is the Jacobian matrix of system (1) calculated in the point y_{n}. Method (4)-(6) is of the fifth local order of accuracy and A-stable provided that the coefficients $p_{i}, \beta_{i j}$ satiafy the following system of nonlinear algebraic equations:

$$
\begin{gather*}
\sum_{i=1}^{4} p_{i}=1, \tag{7}\\
\sum_{i=2}^{4} p_{i} c_{i}=-\frac{1}{2}, \tag{8}\\
\sum_{i=2}^{4} p_{i} c_{i}^{2}=\frac{1}{3}, \tag{9}\\
\sum_{i=2}^{4} p_{i} c_{i}^{3}=\frac{1}{4}, \tag{10}\\
\beta_{32} c_{2} p_{3}+\left(\beta_{42} c_{2}+\beta_{43} c_{3}\right) p_{4}=\frac{1}{6}, \tag{11}\\
\beta_{32} c_{2}^{2} p_{3}+\left(\beta_{42} c_{2}^{2}+\beta_{43} c_{3}^{3}\right) p_{4}=-\frac{1}{4}, \tag{12}\\
\beta_{32} c_{2} c_{3} p_{3}+\left(\beta_{42} c_{2}+\beta_{43} c_{3}\right) c_{4} p_{4}=-\frac{5}{24}, \tag{13}\\
\beta_{32} \beta_{43} c_{2} p_{4}=\frac{1}{24}, \tag{14}\\
c_{i}=\sum_{j=1}^{i-1} \beta_{i j}, i=2,3,4 . \tag{15}
\end{gather*}
$$

All the solutions (7)-(15) are exhausted by the general solution depending on the two parameters c_{2}, c_{3} and by the singular solution depending on one parameter p_{4}.

The general solution where $\left(c_{3} \neq c_{4}\right): c_{2}, c_{3}$ are parameters, is given by

$$
\begin{gather*}
\beta_{32}=\frac{c_{3}\left(c_{2}-c_{3}\right)}{c_{2}\left(6+4 c_{2}\right)}, c_{4}=-\frac{6+7 c_{2}}{8+7 c_{2}}, \\
p_{4}=\frac{3-4 c_{2}-c_{3}\left(4+6 c_{2}\right)}{12 c_{4}\left(c_{4}-c_{3}\right)\left(c_{4}-c_{2}\right)}, p_{3}=\frac{1}{c_{3}\left(c_{3}-c_{2}\right)}\left[\frac{1}{3}+\frac{c_{2}}{2}-p_{4} c_{4}\left(c_{4}-c_{2}\right)\right], \\
p_{2}=-\frac{1}{c_{2}}\left[\frac{1}{2}+c_{3} p_{3}+c_{4} p_{4}\right], p_{1}=1-p_{2}-p_{3}-p_{4}, \\
\beta_{43}=\frac{1}{24 p_{1} c_{2} \beta_{32}}, \beta_{42}=\frac{1}{c_{2} p_{4}}\left[\frac{1}{6}-p_{3} c_{2} \beta_{32}-p_{4} c_{3} \beta_{43}\right], \tag{16}\\
\beta_{21}=c_{2}, \quad \beta_{31}=c_{3}-\beta_{32}, \beta_{41}=c_{4}-\beta_{42}-\beta_{43},
\end{gather*}
$$

The singular solution $\left(c_{3}=c_{4}\right)$, where p_{4} is a parameter, is given by

$$
\begin{align*}
& c_{2}=-\frac{16}{7}, c_{3}=-\frac{5}{4}, c_{4}=-\frac{5}{4}, p_{2}=-\frac{7^{3}}{6 \cdot 16 \cdot 29}, \\
& p_{3}=\frac{17 \cdot 16}{3 \cdot 5 \cdot 29}-p_{4}, p_{1}=1-p_{2}-p_{3}-p_{4}, \\
& \beta_{32}=\frac{5 \cdot 7 \cdot 29}{2 \cdot(16)^{2} \cdot 11}, \quad \beta_{43}=-\frac{4 \cdot 11}{3 \cdot 5 \cdot 29} \cdot \frac{1}{p_{4}}, \tag{17}\\
& \beta_{42}=\frac{\left(\frac{1}{6}-\beta_{32} c_{2} p_{3}\right)-p_{4} \beta_{43} c_{3}}{c_{2} p_{4}}, \beta_{21}=c_{2}, \\
& \beta_{31}=c_{3}-\beta_{32}, \quad \beta_{41}=c_{4}-\beta_{42}-\beta_{43} .
\end{align*}
$$

From this set of solutions we distinguish the variant of the general solution with $c_{2}=-1, \quad c_{3}=1 / 2$:

$$
\begin{align*}
& c_{2}=1, \quad c_{3}=\frac{1}{2}, \quad c_{4}=1 \\
& p_{1}=\frac{13}{6}, p_{2}=\frac{1}{6}, \quad p_{4}=-2, \quad p_{4}=\frac{2}{3}, \tag{18}\\
& \beta_{21}=-1, \quad \beta_{31}=\frac{1}{8}, \quad \beta_{32}=\frac{3}{8}, \quad \beta_{41}=\frac{3}{8}, \\
& \beta_{42}=\frac{19}{24}, \quad \beta_{43}=-\frac{1}{6} .
\end{align*}
$$

Method (4)-(6), (18) has the following remarkable properties. In the first place, the domain of influence is reduced to the minimal possible one:

$$
\begin{equation*}
\left|\beta_{i, j}\right| \leq 1, \quad\left|c_{j}\right| \leq 1 \tag{19}
\end{equation*}
$$

In the second place, accumulation of round-off errors characterized by the value ξ :

$$
\begin{equation*}
\xi=\sum_{i=1}^{4}\left|p_{i}\right|=5 \tag{20}
\end{equation*}
$$

is close to the minimal one. If the condition (19) is fulfilled, the minimal $\xi \approx 4.8$, but the coefficients $\beta_{i j}, p_{i}$ have a more complicated form. We assume that the fulfilment of condition (19) must ensure high accuracy on smooth slowly changing variables. Teste of the method (4)-(6),(18) on examples of the small stiffness show that it achieves the same accuracy as the Runge-Kutta method with steps two times smaller than those required by the Runge-Kutta method. The global volume of work in comparison with the Runge-Kutta method, is approximately ten times as large. The method suggested will be more effective than the Runge-Kutta method, if stiffness of the system (the relation of the maximal module of eigenvalues of the Jacobian matrix to the minimal one) exceeds one hundred.

Numerical trials of the method on typical test stiff type problems [3]heve show its high efficiency in comparison with the methods of Runge-Kutta, Hamming [4], Brayton, Gustavson, Hachtel [5] and Iiniger [6]. We used the standard programs of the "Dubna" monitor systen [7] for method of Runge-Kutta and Hamming in numerical experiments, in algorithm [5] changes were introduced in the variation strategy of the step and the order of the method; method [6] was used in the form linearized according to Newton (non-iterative Rosenbrock type algorithm) was used.
[I] G.V.Demidov. About one method of constructing stable high order schemes (Russian). Information Bulletin "Chislennye metody mechaniki sploshnoi sredy", t.1, N 6, 1970, Novosibirsk.
[2] V.A.Hovikov and G.V.Demidov. A remark on one method of constructing high order schemes (Russian). "Chislennye metody mechaniki sploshnoi sredy", t.3, N 4, 1972, Novosibirsk.
[3] G.Bjurel, G.Dahlquist, B.Lindberg, S.Linde, L. Oden. Survey of stiff ordinary differential equations, The Royal Institute of Technology, Stockholm, Report NA 70.11.
[4] R.V.Hamming. Stable predictor-corrector methods for ordinary differential equations, JACM, 6, 1959, pp 34-47.
[5] R.K.Brayton, F.G.Gustavson, G.D.Hachtel. A new efficient algorithm for solving differential algebraic systems using implicit backward differentiation formulas. Proceedings of the IEEE, volume 60, N 1, January 1972, pp98-108.
[6] W.Liniger. Global accuracy and A-stability of one-and-two-step integration formulae for stiff ordinary differential equations, IBM Rep RC 2396 (1969).
[7] G.I.Mazniy. "Dubna"monitor system (Russian). User"a Manual , Dubna, 1971.

