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Introduction 

One possible approach to the problem of optimization of a dyna- 

mical system 

when the simultaneous minimization of the given set~ of performance 

criteria-functionals J~(X,~),~C~is required, consists in re- 

ducing it to a mono-criterial problem with the single functional 

~6~2 
to be minimized. 

The tasks of such a type arise in technical fields (for example, 

the problem of maximal deviation of the regulated object coordinates 

minimization) and in the mathematical economics (the example is the 

problem of minimization of maximal time of production for components 

of the final product). Some problems with the nondifferentiable per- 

formance criteria can be formulated in the same way. For example, the 

problem of minimization of the functional 

J(z,u) = Iz( ,u) / 
may be replaced by an equivalent problem of the minimization of the 

functional 

J(x,u = max { z ( z , . ) ,  - I ( z , u ) ) .  

The minimax problem considered attracted attention of many 

authors. R.Bellman suggested treating it by means of dynamical pro - 

gramm~ng [1,2) , A.Ya.Dubovitsky, A.A.Milutin, V.F.Demianov, I.V.Gir- 

sanov, V.N.Malozemov, T.K.Vinogradova [5-8] investigated various 

forms of the necessary optimality conditions, in works [9,10] numeri- 

cal algorithms for the solution of this problem with the help 
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of the auxiliary functionals were constructed. V.F.Demianov and 

T.K.Vinogradova [~,7,8] proposed using the necessary optimality 

conditions for determining the stationary solutions. 

In the present report the sufficient optimality conditions for 

optimization problem with the functional (2) are formulated. Besides 

the general significance of sufficient conditions for optimization 

problems, specifically when numerical solutions are interpreted, in 

the minimax problem considered they are especially interesting when 

the various necessary conditions (as shown in [7,8] - no equivalent) 

are discussed. From the results given below it follows that the ne- 

cessary conditions given here, proposed for the first time by 

A.Ya.Dubovitsky and A.A.~ilutin [3~ and including Pontr~agin maximum 

principle as a main element, are very strong. Forformulation of glo- 

bal sufficient conditions with their help they must be supplemented 

by the conditions for the mutual disposition of extremals in the 

studied region as a whole, but not for any characteristics of a spe- 

cific separately taken extremal. 

The approach suggested is the extension of the extremals field 

method used before for the investigation of monocriterial problem 

[q2] 0 The mathematical tool of the classical calculus of variati- 

ons is not applicable for treating the problem considered because 

the functional is not smooth and the controls are restricted. Never- 

theless such analogues of an explicit nonlocal relations of the clas- 

sical calculus of variations as a Hilbert invariant and exact formu- 

las for variations of a functional can be obtained. It is the possi- 

bility to write the variation of a functional in the form of exact 

formula without any assumption of the nearness between the investi- 

gated trajectories that permit us to formulate the sufficient condi- 

tions for absolute minimum of functional (2) by means of the appro- 

ach analogous to that of Weierstrass [13~ • 

Statemen t of the problem 

Let us give an explicit formulation of the problem. In (I) 

is the ~-dimensional phase-coordinate vector and ~ is the ~- 

dimensional control vector. We shall take the admissible controls 

to be piecewise-continuous functions ~ ~ ~ . The left end 

I~ ~ } of atrajectory ~ of the system (I) is fixed, the right 

end ~ ~T#, T~ in the terminal moment of time must belong to the 

terminal manifold ~ , specified by the equations 
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N](=,~)=o, y=L...,m-'~. (3) 

As the performance criteria we shall consider a finite number 

of functionals which are given as functions of the right end of the 

trajectory (in such a form integral functional may also be written) 

u ) = ¢h ,, [ (T) ,  T l . (#) 

(~) ~ LL, that 

Necessar~ optimality conditions 

Necessary optimality conditions we derive by considering the 

region of attainability in the ~÷~ -dimensional vector space 

of variations of the end-point conditions (3) and the functionals 

(4) ~1#,15] . In that way the necessary optimality conditions for the 

problem discussed are reduced to the necessary minimum conditions 

for the auxiliary Lagrange functional 

L/.,.E~_(T),TJ=.T~=,X~[~(T),TJ +]Z___J~]~'[:~(T), T ] (6) 

and can therefore be derived with the help of the formula for small 

variations of a functional ~16,12] (this necessary optimality condi- 

tions can also be obtained from the results of the work ~3] ). 
The ~oint use of the results given below with the results of [12, 

1#,15] gives a possibility to formulate the necessary and sufficient 

optimality conditions for a broad range of minimax problems, in par- 

ticular for the problems with nonfixed left end of trajectory and 

for the problems where the terminal points for functionals (~) is each 

determined by its own group of conditions of the form (3). We 

Thus the problem we pose is to choose the control 

minimizes the functional 

~7 (:~. , ) = ~ [ :~ ( T). "F ] = ~ x  [ cP~ [ ~c E T), T J } " (5) 

The functions ~ j  (X, ~) and ~ {~> ~) are assumed to be con- 
tinuous together with their first-order partial derivatives and to 
have bounded second-order partial derivatives with respect to all 

argt~nents, and %C~ U, ~) has the same properties with respect to 

D(, ~ and is continuous with respect to ~ (the discontinuou~ prob- 

lems also may be treated [12] ). 



223 

shall confine ourselves here to the formulation discussed for simp- 

licity. 

Let ~* denote the minimal value of the functional (5), and 

denote the set of indexes ~ for which we have an equality 

q~ Ex (T), TJ = Y*on the optimal trajectory. 

Theorem I. If the control g£(@) and trajectory 28(@) are op- 

timal in the problem (1), (3)-(5) then there exist numbers ~ >I O 

(~ =O for ~3~ ) andS] not all zero, such that for the vector 

function ~(~) determined by the system of equations 

ig{t.):-l, HCx, p,u,7), H-(p> iCx,~x,7=)), p(TJ:-v':ci.~[x(T)> T] (7) 

the following conditions are satisfied 

H (:% P' ~ "~ ) = s ~,,- J'Pu /.-/ (,x, /o, ~ ~. ) , 7-0 ~ ~. < T, (8) 

- t . / [ : x (T ) , f~ (T ) , . (T -o ) ,  f .] + ~ [ x . ( 7 " ) , T ] / ~ T - - O .  (9) 

Any trajectory of the system (1) with the initial point ~ ,~J 

which satisfies the conditions of the theorem 1 will be denoted 

~(~) = ~(x~ ~) and called an extremal, and corresponding 

control will be denoted ~(%) = ~(xo, To, £). 

Field of extremals 

Let a region ~cEn.q be given. VTe construct in ~ the set X 

of the extremals ~{~,~j 5) with the initial points { ~,%~J 68. 

N~arking all the values concerning extremals with the sip "~ ,we 

obtain that the extremals of set ~ determine in ~ a reference 

f u n c t i o n  "V(~,r)= ~kE£(I,'g;T'(Lr)),~'(Lr)J , a s y n t h e s i s  

control ~h,~)=ah, r;T) , a f~ction ~(~,~) whichindiea- 

tee the set of maximal fu/%ctional from (~), Lagra/Ige multipliers - 

functions ~ , h , ' E )  and an (n+i)-dimensional incline ±'unction 

We say that the set X with the incline function (10) forms 

an ~-continuous field of extremals in ./7 , if there exist cons- 

t ~ t s  ~ and X:_ such t h a t  f o r  ~ y  two e ~ r e m ~ s  X i"~)= ~ ( i , ' r  ; -~) 
" - I I  " "  #! #,'. #"Co ,# ~ ,, < ~ d  ~ ( ~ ) :  x g l , ' z "  , #:) , whe=e l ( f ,  / - I t ,  J l - - ~ ,  

the corresponding controls " ~ " ( J c )  and ~ " ( ~ )  and the terminal  
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moments of time T / and T satisfy the conditions (here ~=~o-~{T~T'~" 
T*= m,:. ( ~  ~"J) 

fT*f~,(~}_~."(~]l~ ~. ~ I~ ' -  ~"I-¢ ~ .  

Exact formula for variation of functional 

Let ~(~) be the trajectory of the system (1) with initial 

and end pointg (~-(To,) J To~ = { ~ t  "To ~ and ~ ~C('~), -~  C- ~ lying 

entirely in ~ and corresponding to the admissible control ~(~). 

Let 

denote the difference between the values of the functional (5) for 

~(~) and for the extremal with the initial point {~ To~. 

If A~>o for ~ ,~) for eao~ ~(L~;~)e % in 
the conditions of theorem 1, than we can normalize the multip- 

liers A~) /~] so that to obtain 

,Z__ A, . , ( i ' ,~ ) -  t ,  ~~, ~] ~ ,q. ~11) 

Then from (5), (6) and determination of the reference function 

F(~> ~) we have 

7&, . ) -  = 

(12) 

= = Vh, O. 
The representation (12) and the condition (11) permit us to employ 

the tool of exact formulas for variation~ of functional for studying 

the functional in the region ~ as a whole. For the problem consi- 

dered all the results of lemma I [121 under the conditions of 
theorem 2 are valid. We shall confine ourselves to the result that 

is necessary for the discussion of sufficient optimality conditions 

given below. 

Theorem 2. Let the field of extremals in ~ be ~-continuo- 

us, the condition (11) be true and ~(~(~))~) as a function 

of ~ be piecewise-continuous. Then the following formula is true 
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Sufficient optimality condition s 

It follows from the formula (13) and maximum condition (8) that 
14. 

under the conditions of theorem 2 for any trajectory ~ of ~e sys- 

tem (1) lying entirely in 

This inequality proves the following statement. 

Theorem 3. Let the field of extremals in ~ be L-continuous, 

l~(~,~.)>Ofor ~ 6 ~(x,~) and ~(~(4)~) as a function of ~ be pi- 

ecewise-continuous along any admissible trajectory ~). Then each 

extremal belonging entirely to ~ for any of its points in the role 

of fixed initial data at the left end furnishes in ~ an absolute 

minimum to the functional (5) sub3ec~ t~ the fulfllment of conditi- 

ons (p. 

Theorem 3 determines the properties of principle under which 

the global optimality takes place. Its statement is valid also for 

the piecewise L-continuous fields of extremals. Such generalizati- 

on of the theorem 3 proved as in [12~ has a wide range of applicati- 

ons. If set (~) consists of a unique functional, then the conditions 

of theorems 1 and 3-4 tranform to the necessary and sufficient condi- 

tions [11,12] for mono-criterial problem. 
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