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Introduction

One possible approach %o the problem of optimization of a dyna-
mical system

x(t) = f(z,u,t), “n

when the simultaneous minimization of the given set £2 of performance
criteria-functionals Jw(Z u),wefis required, consists in re-
ducing it to a mono-criterial problem with the single functional

7(1', Ll)’-'-a/?eaﬁ {gw(xru)} (2)

to be minimized.

The tasks of such a type arise in technical fields (for example,
the problem of maximal deviation of the regulated object coordinates
minimization) and in the mathematical economics (the example is the
problem of minimization of maximal time of production for  components
of the final product). Some problems with the nondifferentiable per-
formance criteria can be formulated in the same way. For example, the
problem of minimization of the functional

I(z,u) = [1(z,u)]

may be replaced by an equivalent problem of the minimization of the
functional

Iw,u)=mazx {I(zx,u), - I(z,u)},

The minimax problem considered attracted attention of many
authors. R.Bellman suggested treating it by means of dynamical pro -
gramming [1,2] , A.Ya.Dubovitsky, A.A.Milutin, V.F.Demianov, I.V.Gir-
sanov, V.N.Malozemov, T.K.Vinogradova [5—8} investigated various
forms of the necessary optimality conditions, in works [9,10] numeri-
cal algorithms for the solution of this problem with the help
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of the auxiliary functiocnals were consbtructed. V.F.Demianov and
T.X.Vinogradova [4,7,8] proposed using the necessary optimality
conditions for determining the stationary solutions.

In the present report the sufficient optimality ceonditions for
optimization problem with the functional (2) are formulated. Besides
the general significance of sufficient conditions for optimization
problems, specifically when numerical solubions are interpreted,in
the minimax problem considered they are especially interesting when
the various necessary conditions (as shown in [?,8} ~ nn equivalent)
are discussed. From the results given below it follows that the ne-
cessary conditions given here, proposed for the first time by
A.Ya.Dubovitsky and A.AMilutin [3] and including Pontrjagin maximum
principle as a main element, are very strong. Forformulation of glo-
bal sufficient conditions with their help they nmust be supplemented
by the conditions for the mutual disposition of extremals in the
studied region as a whole, bubt not for any characteristics of a spe-
cific separately taken extremal.

The approach suggested is the extension of the extremals field

method used before for the investigation of monocriterial problenm

[12] . The mathematical tool of the classical calculus of variati-
ons iS not applicable for treating the problem consldered because
the functional is not smooth amd the controls are restricted. Never-
theless such analogues of an explicit nomnlocal relations of the clas-
sical calculus of variations as a Hilbert invariant and exact formu-
las for variations of a functional can be obtained. It is the possi-
bility to write the variation of a funcbional in the form of exact
formula without any assumption of the nearness between the investi-
gated trajectories thet permit us to formulate the sufficient condi-
tions for absolute minimum of functional (2) by means of the appro-
ach analogous to that of Weierstrass [13) .

Statement of the problem

Let us give an explicit formulation of the problem. In (1) X
is the N -dimensional phase~coordinate vector and « 1is the 2=~
dimensional control vector. We shall take the admissible controls
to be piecewise-continunus functions wut)eld « The left end
xS T;} of atrajectory x(f£) of the system (1) is fixed, the right
end { x( T), Tf in the terminal moment of time must belong to the
terminal menifold M , specified by the equations
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Mi(x,4)=0, j=1,..,m<n, (3)

As the performance criteria we shall consider a finite number
of functionals which are given as functions of the right end of the
trajectory (in such a form integral functional may also be written)

T (x> LL) = b, [x (T), T1. (4)

Thus the problem we pose i8 to choose the control LL({)G u y Gthat
minimizes the functional

I, u)= ¢’[x(T),T]=m5x{¢u[X(T))TJ}- (5)

The functions Mj(x, i‘) and CPU(x,{-) are assumed to be con-
tinuous together with their first-order partial derivatives and to
have bounded seconnd-nrder pertial derivatives with respect to all
arguments, and f(x, l, 1’:) has the same properties with respect to
X, 4 and is continuous with respect to t (the discomtinuous prob-
lems also may be treated [12] ).

Necessary optimality conditions

Necessary optimality conditinns we derive by considering the
region of attainability in the ( €+m) -dimensional vector space
of variations of the end-point conditions (3) and the functionals
(4) [114»,15] » In that way the necessary optimality conditions for the
problem discussed are reduced to the necessary minimum conditions
for the auxiliary lLegrange functional

WEx(r),TI= 5 AT+ 5 g METT] o
u=4 J=

and can therefore be derived with the help of the formula f£or small
variations of a functional [16,12] (this necessary opbimality condi-
tions can also be obtained from the results of the work [3] Je

The joint use of the results given below with the results of [’52,
14,’15] gives a possibility to formulate the necessary and sufficient
optimality conditions for a broad range of minimax problems, in par-
ticular for the problems with nonfixed left end of trajectory and

for the problems where the terminal points for functionals (4) is each
determined by its own group of conditions of the form (3). We
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shall confine ourselves here to the formulation discussed for simp-
licity.
*

Tet J  denote the minimal value of the functional (5), and R
denote the set of indexes & for which we have an equality
®, [x (T), T]= 7%on the optimal trajectory.

Theorem 1. If the control w(t) ana trajectory x(t) eore Op=-
timal in the problem (1), (3)=(5) then there exist numbers Aw =0
(Ao =0 for @R ) and Mj not all zero, such that for the vector
function /o(f) determined by the system of equations

SI=-T Hxpud), H=(p,fxut)), p(T)=~ YT, TT ()
the following conditions are satisfied

Hix, pru,t) = sup H(x,p,0t), Tost<T, (8

K[ (T), p(T)u(T-0), T1 + Y [x(T),T1/3T =0. ()

Any trajectory of the system (1) with the initial point {X9 T}
which satisfies the conditions of the theorem 1 will be denoted
Z(t) = X(x5Ts; t) and called an extremal, and corresponding
control will be denoted W(t)= W(x%To;t).

Field of extremals

P~

Let a region A CEnu be given. We comstruct in A the set X
of the extremals X(3,T;#)  with the initial points {3,T} €A.
Marking all the values concerning extremals with the sign ™ ,we
obtain that the extremals of set ) 4 determine in A a reference
function V(;, )= Y[xG,T;7G,7), TG, 12_] , & synthesis
control UL(},T):&(},T; T) , a function R,(f)'l') which indica-
tes the set of maximal functional from (4), Lagrange multipliers -
functions /L., (;,‘C) and an (N+1) ~dimensional incline function

BGT), HGT)= (PGO. £G,E(;,7),T). (10)

We say that the set X with the incline function (10) forms
an ke -continuous field of extremals in A y if there exist cons-
tants o and A such that for any two extremsls X)) =%X(3,T; t)
and  X7(¢)= i(?’; T ) , where [{3.T'f-{3"T"}]<¢,

the corresponding controls &£'(#t) and I:Z”(i) and the terminal
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~/ P
moments of time / = end / satisfy the conditions (here T*=max{T/r}
T¥= min [T TP

L @) - W < [T/~ T« ge.

Exact formula for variabtion of functional

Let 3?:({) be the trajectory of the system ('3) with initial
and end points {x(T)J;j {x% To} and {x(T) T}GM lying

entirely in A ana corresponding to the admissible control d—(f)

AT = PLE(T), Tl - PIE(xeT; T)F]

dinnte. the difference between the values of the functional (5) for
X(t) and for the extremal with the initial point {xS ToJ.

If A\o>0 for WE R(},T) for each i(})’l’;f)é X in
the conditions of theorem 1, than we can normalize the multip-
liers Ao, M; so that to obtain

z . G,0)=1, {37)€A. (11)
wGK(fL)

Then from (5), (6) and determination of the reference function

V(f T) we have
Tlx,u)= PLZ(,7;TG,7)), TG,T)]=
Y [RG,T T6,7), 76,9 = V(3,9).

The representation (12) and the condition (11) permit us to employ
the tool of exact formulas f£or variations of functional for studying
the functional in the reginn A as a whole. For the problem consi-
dered all the results of lemma 1 [12] under the conditions of

theorem 2 are valid. We shall confine ourselves to the result that
is necessary for the discussion of sufficient optimality conditions

(12)

given below,

Theorem 2. Let the field of extremals in A be l. ~continuo-

Cond A. .
us, the condition (11) be true and R(x({-)) -&) as a function
of ¢ be piecewise-continuous. Then the following formula is true

aT=-f (HIZ, B G, E), L] - HIZ, FE, L), @60, dt (1)
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Sufficient optimality conditions

It follows from the formula (13) and maximum condition (8) that
under the conditions of theorem 2 for any trajectory $i of the sys-
tem (1) lying enbirely in A

@[%(T) T1> PLE(T),T].

This inequality proves the following statement.

~ Theorem 3. Let the field of extremals in A ve lL—continunus,
Lo ()50 for w € R(x,t) and R(xf%), +) as a function of ¢ be pi-
ecewigse-conbtinuous along any admissible trajeotory'acff). Then each
extremal belonging entirely to A for any of its points in the role
of fixed initial data at the left end furnishes in A an absolute
minimum to the functional (5) subject to the fulfilment of conditi-
ons (3.

Theorem 3 determines the properties of principle under which
the global optimality takes place. Its statement is valid also for
the piecewise L»-continunus fields of extremals., Such generalizati-
on of the theorem 3 proved as in [12] has a wide range of applicati=-
ons. If set (4) consistsof a wunique functional, then the conditions
of theorems 1 and 3-4 tranform to the necessary and sufficient condi-
tions [11,12] for mono-criterial problem.
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