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INTRODUCTION 

~ultilevel control structures are especially important when a large-scale 

syster~ ~s to be contrelled. The system is divided into interconnected sub-systems 

CF~g. 7) controlled by decision-making units hierarchically arranged (Fig. 2) 

~esarovlc et al., (]). Multilevel structures are interesting since control is divided 

and thus simplified, and since the control system is much more reliable (Plander, (2)). 

Up to now, most of the works have dealt with two-level optimization (Lasdon et 

al., (3), Brosilow et al., (4), Titli (8)). The different sub-systems are coordinated 

by coordination variables, calculated on the second level, and whose nature depends 

on the chosen coordination method. But in any case, these variables are linked with 

coupling equations of sub-systems. For large-scale systems~ the number of coordination 

variables may be high. Consequently a multilevel structure is necessary if constraints 

exist on the size of coordinators or on the transmission capacity of channels. Several 

solutions are then available. The synthesis of these structures has been partly 

realized by Strasjak (6), Kulikowski (7). 

At first, the decomposition of linear coupling equations associated with a 

multilevel structure is defined. The extension of classical coordination methods is 

done and it is shown that there is no feasible method for a n-level optimization 

(n > 2). 

Im a second part~ the effects of couplings on the convergence of coordination 

~Igor~thlns are studied and are illustrated by an euxample. 

DECOEPOS.ITION..OF TEE c OUPLING EQUATION $ 

In a multilevel structure, each coordination deals with the couplings between 

groups of sub-systems. So if n v = 2 (Fig. 2), then the v th level coordinator deals 

with the couplings between two groups of sub-systems. 

The coupling equations are now decomposed according to the vertical division 

of the coordination and we suppose that they are linear. 
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Let I 1 be the set of numbers of the N sub-systems. Suppose v = 2. The 2nd 

level-coordinator deals with n 2 groups of sub-systems and let 12 be the n2-partition 

of I 1 : 

The coupling equations become : 

xz= ~ c 6 z  ~ + Z v ~  

v ~- ~ c~ :~_~ 

I/I-- 
( I I = o r d e r  o f  a s e t )  

with V~ ~ ~' 

with VL 6~ I' 

~ c ~  ;~ ~ -~)~{~,-.-,o~} 

(~) 

(2) 

Example 1 : 

For any v, this decomposition is then achieved from the n -partitions of I 1 
w 

( w =  1 ,  . , v ) o  

N=~ ; v = 3 ; ~z= 4 } n~=2, , Z_- d 

), 

i 
C C~L,7 

On Fig. 3, this decomposition procedure means successive partitions of the 

coupling matrix C. 

In general V c is the input coupling vector for the sub-system "a", made up 
' ab 

th from the outputs of a group of sub-systems "b" which is obtained after the c 

partition of the coupling matrix. 

Coordination met:hods 

A static system is considered for which each sub-system has the following 

model and criteria : 

The overall optimization criteria is separable : min Y = min ~_ f.. 

This enables to realize a multilevel optimization (Fig. 2). With constraints being 

of type (]) and (2), the Lagrangian of the optimization problem is : 
N 

-r 5 ...) 

(3) 

On the analogy of the feasible method, let us suppose that ~l V~ V5 ;,1~' Z~ , "'" 
are respectively calculated by ]st, 2nd 3rd... level coordinators. 
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To give the Lagrangia~ a separable form, it ca~ he shown that ~%L~ t ~L~% 

must be fixed for the local optimizations and consequently calculated on coordination 

levels. If ~c ~ is obtained by a gradient algorithm : 
C 

the variables Zj which occur in ~ must be known. If the information flows verti- 

cally in the structure and according to the hierarchy, the lowest coordination levels 

where~ ¢ ~% can be calculated is then determined (see Fig. 4 for example 1). 

Consequently, all the coupling equations are satisfied only when all the 

coordinators have converged. Therefore, there is no feasible coordination method for 

a n-level optimization (n > 2). 

Moreover, ~ and ~ can be simultaneously calculated by the same coordinator. 

This leads to t~e combined method (Grateloup et al., (5)). The stationnarity equations 

of the %agranglan for V ¢ ~¢ ~ and ~ are : 

bvT~ 
ASV~ and A~ have been defined as vectors of same dimension, from (4), they 

can be directly calculated for given ~ , Zj. So, at any v th coordlnation-level 

(v > 1), a direct iteration algorithm can be implemented (Grateloup et al.~ (II)). 

COORDINATION CONVERGENCE 

The effects of couplings on the coordination convergence in multilevel 

structures are here studied and were first pointed out by Sprague (9). 

Let us suppose v = 2, n 2 = 2. V and ~ are the coordination variables on the 

2 nd coordination-level, and Z, X, M, ~ , ~ , are the other variables of the optimi- 

zation problem. The optimal value of a variable is marked ~ . 

To determine V and ~ , a combined method is used with a direct-iteration 

algorithm whose convergence is studied. 

From (4) V = V (~] ) O, [C~ C'~ 
= A ( C )  with vC~_1:- c~ o ) ~ , C = \ c  ~' c ~ 

C 11, C 22, C ]2, C 21 = submatrices of C corresponding with the partition of the N sub- 

systems into two groups (n 2 = 2). 

At the i th iteration of the 2 nd level-coordinator, we get : 

aa E~ (5) 
• ~,(e~_e ~) ----~ g ^ :  - -  C A') : 

!For gi~zen~7 i and A L , when local optimizations and ]st level-coordinators have 

converged, the follow~ng equations are satisfied : 
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L~ ( ~C...~, 

L r ( )<t '~ / 

~*~, I ~*~, p ~ ° )  : o 

H L*~, ~ ) =  o 

2 ~*~, v ~ ) : o 

(where L : l l ~  ,L ) 
~T 

(6) 

A first-order development of the preceeding functions give : 

L+~ 
5l"~l 1. E'~ *--67--1~' r = o  

(where ~ [~ = optimal 
value of f). 

(7) 

From (5) and (7), it can be pointed out : 

-i 

:~_E.~ ~__L~ o 
Dx 0~[ 

aLH 9!..~ 0 
aA O.lh. 

0 0 0 

~,Lt~ %L-, OL F 

DL x 9L,~ 

9LH 0 

DL~ 9 L g 

at1 9(, 
0 0 

O O 

o O 

O O 

O DL~ ' A~ : 

°°] 
DV 

[: &v 
O O 

It can be shown that E ~ has the following structure : 

0 0 X 0 K 

0 0 I- 0 

0 0 x 0 X 

0 0 1" 0 X 

0 0 X 0 X 

where X = non-zero submatrix 

0 0 

od_.~ ~ 

(8) 
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-~zz" j~¢ - a__~v 

- I=~,z. '~v 4Z 

_l~=~e ~L__~. a,~ 
,),\ a~ ) 
Di~ ~A (9) 

N 
where, if ~'-I ~L and ~-- •I 7~'~ 

Since the coupling equations are linear : 

~A = - o[h [ (I = identity matrix) 
~ v -  - Z ~ - t c  ~' o ; ~,~ c ~' o / ;  a-'~ -= 

TO study the coordination convergence, from equations (5) and (8), is is 

sufficient to study the discrete dynamic system (9). If the modulus of all the 

eigenvalues of I~ are less than ], then the coordination is stable. 

This stability depends on the partition of the coupling matrix, as is shown 

in (]O), explicitly by ~--~ , ~-- and implicitly in the submatrices ~, ~@ , ~e~l , 

~(~@ . Indeed, the matrix B~ contains the submatrices ~L____~ and DL~. 

DL~. ,  (Co" o ) T  Ot't "D:~ 
3(, CZ~" 

l~or the best coordination convergence, an optimal partition is then difficult 

to be found. Nevertheless the nature of F4~ suggests a suboptimal partitioning of 

matr 1~x ~. 

Let "C'[#~] 5e ~the spectral radius of A 
It is known that (Varga, (12)): 

and also (goviello, (]3)) : 

~[A] ~ ~,~[,,~ Ai~g~x ~T ~] (A i = i th line of A) 
. th 

A. = ] column of A) 
3 

Let us consider the dynamic linear system (9). In the expression of elements 

flj of F~ all the elements of C 12, C 21 , , are multiplicative terms. 
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By looking for a partition of C which minimizes IC121 + IC211 we tend to 

decrease the modulus of fij and thus we tend to decrease the upper and lower bounds 

of ~[~i] whose value mainly determine the dynamic of the system. Consequently, we 

tend to have a faster coordination convergence. 

It can be noted that the effects of the partition arise in the suhmatrices b~m, 

~ ' ~e,~' ~CC ~' but are difficult to estimate. 

Exmmple 2 : Consider N identical sub-systems (linear models, quadratic criteria) 

N == 6 ; v = 2 ; n 2 = 2 ; Ip21= IP~ i=~ 

The coupling matrix C is given by Fig. 5. 

There are 10 partitions of the N sub-systems into 2 equal groups. A direct 

iteration algorithm is implemented at the 2nd coordination-level. It is unstable for 

all the cases. So we look for k such as for V = kV(Z) and ~ = kA (~) the algorithm 

will be stable. 

Let K = IC121 + IC211. Results appear in table I. 

(123) (456) 

(124) (356) 

(125) (346) 

(126) (345) 

(1'34) (256) 

(135) (246) 

(]36) (245) 

(145) (236) 

(146) (235) 

(I 56) (234) 

K k 

9 0,94 

]6 0,48 

23 0,24 

16 0,36 

15 0,33 

24 0,15 

19 O,18 

15 0,44 

22 0,22 

21 0,14 

Table 1 - Effects of the partition on coordination 
convergence 

There is a good correlation between k and K (Fig. 6). For slightly different 

values of K, this correlation is not so strong. This comes from the suboptimality of 

the partitioning criteria. But these results show that less interactive groups of 

sub-systems give a faster coordination convergence. 

CONCLUSION 

In multilevel optimization, all the decomposition-coordination methods deal 

with the coupling equations of the sub-systems. The partition of the system is then 
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an important factor in the synthesis of multilevel structures. In the study of the 

effects of couplings on coordination convergence, a suboptimal partitioning criteria 

has been proposed for linear coupling equations. For large scale systems, one will be 

faced with the partition of large coupling matrices and graphical methods seems to be 

useful. 

0 
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.•111111 
i i i i  

Xi Sub system 
n ' ;  Zi 

X i = input coupfi'ng vector(RXi) 
Z i =output coupling vectorCRZi) 
Yi =outpout vector CRY;) 
H i = control vector CRI~o 

Fig. i :Sub_system n'i 

v t-h coordinatiOnnv+l= 1 l e v e ~  

lStcoordination level . ~  
n 2 coor'd;nat or's 

Optimization level 
N local opt;mizafions 

; i 'l i I , , , ' System [ , , , / ,  , , , 

decision making 
i units 

,Sub system n'1 

Multilevel control structure Cmultilevel optimization) 

Fig. 2 : A coordination method 
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Partition of coupi;ng matr;x C A coordination method 
Fig. 3 : Fig. 4 : 

0 3 4 2 0 0 

2 0 0 0 0 2 

0 3 0 | 0 0 

2 0 0 0 2 0 

0 0 0 3 0 2 

! 0 ] 0 2 0 

Fig. 5 : Coupling matrix C. 

1.0t K 

0.5 

0 10 20 K 

Fig. 6 : Coupling effects on 
coordination convef-~lence 


