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Abstract 

An algorithm for the approximate solution of two point boundary value 

problems of Class C 2 is given. A simple version having one check point 

at the center of each polynomial segment results in an algorithm which 

is easy to program and very efficient. Computer test runs with a 

Newton-Raphson iterator and numerical differentiation to generate the 

partial derivatives required show a fast convergence compared to ex- 

tremal field methods and gradient methods in function space. 

Introduction 

Optimal control problems with smooth continuous solutions will be 

treated. They are transformed into mathematical programming problems 

in two steps. First applying the calculus of variations or the maxi- 

mum principle a two-point boundary value problem results. This is then 

solved approximately by parameterization using piecewise polynomial ap- 

proximations. 

Assuming that the frequency content of the solution can be estimated 

the range of the independent variable is subdivided into sections with- 

in which the solution may be well approximated by third order polyno- 

mials. For each segment and each variable the four coefficients of the 

polynomial are determined from the function values at each end - which 

are the unknown parameters that have to be estimated initially - and 

from the derivative obtained by evaluating the right hand side of the 

differential equations with these values. By this the approximating 

function is continuous and has continuous first derivatives. At one 

or more check points within each segment the interpolated function va- 

lues are computed. The derivatives evaluated with these values from 

the right hand side of the differential equations are then compared to 

the slope of the interpolating polynomial at this point. The sum of 

the squares of all these errors plus the errors in the prescribed boun- 

dary conditions is chosen as the payoff quantity to be minimized. 
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In this paper an algorithm taking one checkpoint in the middle of each 

segment is developed using a modified Newton-Raphson scheme for itera- 

tive parameter adjustment. In connection with the third order polyno- 

mial which can be determined from the function values at adjacent grid- 

points only (parameters) this leads to especially simple relations. 

Higher order approximations over more than one segment and more than 

one check point are of course feasable but not investigated here. 

Statement of the Problem 

The extremal value of the functional 

J = ¢ (xf, tf) (I) 

under the differential equation constraints 

± = tf f (x,u) (n-vector) (2) 

with the control vector u having m components, the initial values 

x(o) x 0 (n-vector) (3) 

and the final constraints 

~(xf,tf) = 0 (q-vector) (4) 

has to be found. 

The solution is assumed to be continuous with continuous first deriva- 

tives; tf is a final time parameter allowing to treat open final time 

problems in a formulation with the independent variable normalized to 

the range O ~ t ~ I. 

Reduction to a Boundar X Value Problem 

Applying the calculus of variations or the maximum principle E13 the 

determination of the optimal control is transformed into solving a 

two-point boundary value problem. The differential equation constraints 

(2) lead to an additional set of time varying multipliers which are gi- 

ven by 

~f T 
= -tf • (~-~) ~ (n-vector) (5) 

The final constraints (4) invoke constant multipliers ~ (q-vector) and 

transversalilzy conditions have to be satisfied 

T = E~ + ~X + T ~x3t =I = 0 (n-vector) (6) 
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Here the subscript x means partial differentiation with respect to x. 

For open final value of the independent variable the Hamiltonian func- 

tion 

H = tf ~Tf (7) 

has to satisfy the condition 

_ ~H ~% + T B~ ] 
= O. (scalar) (8) 

Eqs. (2) and (5) may be written in the form 

= g(z) 

where z T = (x T,~T) is a (2n)-vector which has to satisfy the boundary 

conditions (3), (4), (6) and (8). This is a nonlinear boundary value 

problem. The functions z(t), the multipliers ~ and the parameter tf 

have to be determined. 

Parameterization and Iteration Scheme 

In figure I the basic idea of the algorithm is displayed. Three seg- 

ments have been chosen (NS = 3) resulting in a total of 4 gridpoints 

per variable (full dots and empty or full squares). The slope evalu- 

ated by introducing the estimated function values into the right hand 

side of the differential equations (9) is given by solid straight lin- 

es at the gridpoints j. The resulting interpolating cubic polynomials 

are shown as the wavelike solid curves. The function values at the 

check points are marked by empty circles and the resulting slopes from 

the differential equations by dashed straight lines. Both the initial 

estimate and the converged curves are given. 

Changing one function value at a gridpoint (z22 in fig. I, empty tri- 

angle) affects only the two bordering check points (full triangles), 

however, for all variable z. For each segment a new time variable 

O ~ t' ! (Ti+ 1 - T) = T is introduced which yields as interpolated 

function value at the (central) check point 

Cj - 21 L[zJ + z.j+l + tf ~T ~ ~ J~Iflz-~ - f(Zj+l) )]j (lO) 

and 
tf 

~j _ 32T (zj+l  zj) -~- ( f ( z j )  + f ( z j + l ) ) .  (11) 

The difference in the slopes at the check point then is 
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_ 3 
kj 2z(zj+l 

t f  
z j )  - T ( f ( z j )  + f ( z j + 3 )  ) - t f  • f ( c j )  

( 2 n - v e c t o r ) .  

(]z) 

With this the contribution of the segment j to the convergence measure 

is 

1 AT A (13) 
S o = 7 ] j 

As total convergence measure the sum 

NS 
M = ~] S.  + I E~T~ + TTT + R2 3 (14) 

j=1 J 

is chosen, where 4, T and R are given by eqs. (4), (6), and (8). Con- 

vergence is considered to be achieved for M <_ e, where e is a prede- 

termined small number. 

Starting from estimated values z.. for all gridpoints j and variables j1 
i=1...2n, for the multipliers ~ and for the parameter tf improved va- 

lues of the total parameter vector 

T T z t T T,tf] 
P = [:XI' 2 "'" ZNGP'~ (15) 

have to be found to drive M towards O. Using a modified Newton-Raph- 

son iterationscheme the linearized iteration equations may be written 

a_MM ~p = - u  . M 
ap 

/ k 

aI~ ) ~ + a~ 
NGP zNGP a~f 8tf = -~ , 

NGP AZNGP + ~ ~  6~ + ~ 6 t f  = - a T  

(36) 

a(~_~ ) 8 + aR aR 
NGP ZNGP ~ 6~ + a--f7 f 8 t f  = - a R  , 

where ~ is a factor to improve convergence. Taking advantage of the 

fact that each element Sj of M depends only on the values zj and zj+ I 

adjacent to it and on the parameter tf, the total variation of S is 

dS = Aj~a-~z j 8zj + ])Zj "]'''+1 8ZJ+I + atf 6tf (17)  
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Introducing this into (16) yields for each segment 

~A. ~A~ ~A. 
....... 7. azj ~z. + ..7... atf = -~ A. 
~ z j  + 3 z j +  1 J + l  ' ~ t f  3 

(18) 

~A. 
and as set of iteration equations there follows (with __ZSZk = Aj,k, and 

~A. 

8tf = Nj; for indices see fig. I). 

2n ........ 2n Dim..[ n 

2n -AI ,1 

0 

0 

2n 

q 

n 

I 

A O 0 
I~2 

A 2 ,  2 A2, 30 

O A a A a ~,3 ,4 

0 

q 1 

Nl 

0 N2 

"° o 

A~S,N S "ANS,NGP O NNS 

~z O ~tf 

T z T Ttf 

R z R Rtf 

-A 1 

A2 

= -~ ANS 

T 

R 

(19) 

The submatrices have the following dimensions: 

A i l  

Ai,j 
3N. 

Nj = ~t~ 

*z = ~--f 

~tf- ~tf 

~T 
Tz - ~z 

2 n  x n 

2 n  × 2 n  

2 n x  1 

q x 2 n  

q x 1 

n × 2n 

T _ ~T 

~T 
Ttf = ~Tf 

DR 
Rz - ~z 

~R R - 

DR 
R t f "  ~ t f  

n x  q 

n x 1 

l x  2 n  

1 x q 

1 x 1 

The partial derivative matrices Aj, k are computed by numerical differ- 

entiation. The dimension of the linear system of equations (19) is 

2nxNS + n + q + I. Because of the bidiagonal form in the upper left 

part it is conveniently reduced for solution to a (3n + q + 1)-system 

independent of the number of segments NS chosen. 
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Numerical Examples 

The algorithm has been tested on a variety of problems such as time 

minimal accelerated turns of a Hovercraft (n = 2, one control, figure 

I), optimal landing approach trajectory of an aircraft (n = 4, one 

control), maximum lateral range of gliding entry vehicles (n = 5, two 

controls) and threedimensional skips with prescribed heading change 

and minimum energy loss at the exit of the atmosphere for the same 

class of vehicles. 

The last problem will be given here. The differential equations are 

E2, 3] 

2 
±I = E-a.b.exp(-~x4).(CDo+kU~)x~-G/(R+x~) "sinx 3]-tf 

x2 = [a'b'x1"exp(-~x4)ulsinu2/c°sx3-xl/(R+x4)'tanxs'c°sx2"c°sx3]'t f 

2 
x3 = [a'b'xiexp(-Bx4)ulcosu2-(G/((R+x 4) Xl)-Xl/(R+x4))'cosx3]'t f (20) 

~4 = Exl/(R+x4)'c°sx3"sinx2]'t f 

±5 = Exlsinx3]'t f 

where a = 1/550 m2/kg, CD0 = .04, k = ]., n = 1.86 are vehicle parame- 

ters and b = 1.54 kg/m 3, G = 3.9865.10 s km3/s 2, R = 6371 km, B =.O145 

km -I are parameters of the planet and its atmosphere. For the 

initial values and the final conditions 

Xl(O ) = 8.18 km/s ~1 = x2(I ) - 2.5 = 0 

x2(o) = 0 deg ~2 = x3(I ) - 1.25 = O 

x3(o ) = -1.25 deg ~3 = x%(I) -80.0 = 0 

x 4(o) = 80 km x~(1) open 

x S(o) = 0 deg x I(I) to be maximized 

the control time history of the lift coefficient (ul) and the aerody- 

namic bank angle (u2) are to be found which yield the final value of 

x I to be maximal. 

Initial estimates were found by linear interpolation between given 

boundary values or by physical reasoning in the other cases. The con- 

vergence behaviour is shown in fig. 2. Table I gives the intentional- 

ly bad initial estimates and the converged values of the parameters. 

The estimated initial controls are seen to be very poor. The result 

achieved with NS = 5 segments is in very good agreement with results 

obtained by multiple shooting E4] and a refined gradient algorithm 
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based on E5, 63. Computer time needed was only a fraction (about I/5 

or less) of that of the other methods. Systematic investigations of 

the radius of convergence are being performed. 

Conclusion 

An algorithm for the approximate solution of two point boundary value 

problems of class C 2 has been given. It is based on third order Her- 

mite polynomial approximation. With one check point in the center of 

each segment it results in an algorithm which is simple to program and 

very efficient. Numerical test runs with a Newton-Raphson iterator 

and numerical differentiation to generate the partial derivatives re- 

quired showed fast convergence compared to extremal field methods and 

gradient methods in function space. 
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